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Abstract: In finishing simulations, achieving accurate results can be challenging due to the mini-
mal amount of material removal and the limited measurement range of surface micro-topography
instruments. To overcome these limitations, a novel high-fidelity modeling method combining
image mosaic and wavelet decomposition technologies is proposed in this paper. We achieve the
stitching of narrow field and high pixel micro morphology images through four steps: image feature
extraction, overlapped feature matching, feature fusion, and stitching effect evaluation. On this
basis, the wavelet decomposition method is employed to separate detection signals based on their
respective frequencies, allowing the establishment of a datum plane and a roughness surface. The
point cloud model undergoes a transformation into a continuous geometric model via the Poisson
reconstruction algorithm. In the case study, four sample images of an aluminum alloy sheet after
barrel finishing were collected using the ZeGage Plus optical profiler. Each image has an actual size
of 834.37 µm × 834.37 µm. Subsequently, a comparison was carried out between the physical and
simulation experiments. The results clearly indicate that the proposed method has the potential to
enhance the accuracy of the finishing simulation by over 30%. The error between the resulting model
and the actual surface of the part can be controlled within 1 µm.

Keywords: discrete simulation; micro-surface models; finishing; image processing

1. Introduction

There is a growing trend toward digitalization in manufacturing that allows people
to replace machining trials with computer simulation technology. The potential to reduce
production costs, eliminate waste, and improve efficiency has attracted the attention of
researchers and industry [1]. While early applications of machining simulations focused on
optimizing tool paths and predicting tool/holder collisions, the technology has expanded
into other areas. With advances in Finite Element Modelling (FEM), there are opportunities
for new and innovative metal cutting simulations to be developed [2]. The deformation
process of plastic metal chips and the change in cutting surface temperature and pressure
can be simulated using FEM. Applying this method, the cutting action is modeled as a
Boolean operation, providing moderate simulation times and both relevant and fairly
accurate surface topographies [3].

However, the simple Boolean intersection assumption is not directly applicable for
the simulation of finishing operations because of the tiny amount of material removed
and the lack of a micro-surface topography. In this case, a significant number of examples
from the literature represent the finishing process as the cinematic mapping of the tools or
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particles on the smooth surface [3–6]. By doing that, the surface shape of the part on the
micro scale is ignored. The simulation results based on such an ideal model often differ
greatly from reality [7]. Therefore, constructing a high-fidelity surface part model that
can be directly applied in the finishing simulation is critical to improve the accuracy and
benefits of simulation [6].

The ISO standard 25178 and ASME B46.1 defines a uniform description for surface
models using surface texture (surface roughness, waviness, and lay) [8]. An ideal surface
model, also known as a Nominal Model, is a continuous surface composed of an infinite
number of points on the geometric shape of parts. Subtractive machining processes like
milling, turning, and grinding are imperfect by nature, and therefore produce imperfections
and deviations in part surfaces such as pits and bumps. A high-fidelity surface model
should map these machining defects into the 3D model. There are two distinct strategies
for simulating machining deviations on part surfaces.

The CAE-based machining simulation strategy, which simulates the detailed machin-
ing process and generates high-fidelity models (known as Schleich) divides geometric
deviations into system deviation and random deviation according to GPS standards. Then,
it utilizes geometric modeling methods, such as Bezier curves [9,10], Splines [11–13], and
NURBS [14,15], to establish the system deviation model. The Gaussian process method is
used to establish the random deviation model, thereby ensuring that a high-fidelity part
surface model is transferred to the CAE system [16–18]. The simulation results obtained by
this strategy are based on the premise that the ideal processing state remains unchanged
and does not include the actual physical state.

To address this deficiency, some researchers study the use of the machine learning
method to train high-fidelity models from historical machining data. Jose proposed a
reconstruction algorithm that takes as input an incomplete measurement, identifies the
statistical shape parameters, and outputs a full scan reconstruction [19]. Nicholas utilized
machine learning in the ultra-precision diamond machining of single-crystal germanium
to create a model, which demonstrated that by using surface metrology parameters in the
model, improvements in fracture prediction can be achieved [20]. Gaikwad used machine
learning techniques to train high-fidelity models from historical monitoring data obtained
through high-speed imaging, for predicting the size, velocity, and shape characteristics
of droplets in the liquid metal jetting additive manufacturing process [21]. The trained
high-fidelity models can effectively improve prediction results when processing conditions
remain constant.

The second strategy is based on real-time physical detection data. The detected
physical signals are converted into numerical values using mathematical statistical methods,
and then surface and solid models are generated using geometric modeling techniques.
Min uses one-dimensional and three-dimensional random noise to generate the part surface
model with shape deviation [22], but because the vertex coordinates of the surface model
simulated by random deviation are generated independently, the distance between the
two connected vertices may be too large, resulting in a surface that is not smooth. Rui
Xiong used a full-dimensional measurement method based on polarized coded aperture
correlation holography, which greatly improves the reliability and practicability with
respect to conventional measurement methods [23]. Fireman and Xun developed a surface
roughness predictive model by obtaining machining parameters, e.g., feed rate, depth of
cut, and spindle speed [24].

In recent years, digital twin technology has gained significant traction, promoting an
increasing number of scholars to develop digital twin systems that enable the creation of
high-fidelity models. Bao proposed a biomimicry-based digital twin modeling method
to construct high-fidelity models by fusing machining process data and optimizing the
machining process in real-time [25]. Xin proposed a refined simulation method based on
digital twin technology, which integrates real-time machining data with a process design
system through the integration of CAPP and MES systems. The high-fidelity process model
is iteratively generated using real-time inspection data to improve the fidelity of process
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simulation [26]. Similar methods have also been applied to cutting tools [27,28], machine
tools [27,29,30], and process models [31–33]. Admittedly, the modeling methods based
on the actual detection data are more conducive to improving the overall accuracy of
the model.

In practical applications, the accuracy of the aforementioned high-fidelity geometric
models is often influenced by various factors such as model complexity, computer perfor-
mance, and data transmission. In addition, data collected through optical measurement is
often affected by environmental interference, equipment errors, and other factors, requiring
the filtering and processing of the data [34]. Mean and median filtering are two commonly
used basic filtering methods that reduce the influence of outliers by calculating the av-
erage and median values of the data, respectively. Liu used median filtering to denoise
the vibration signals during the milling of thin-walled workpieces [35]. Si implemented
Kalman filtering to estimate the state of the engine support system by establishing a system
state model and an observation model [36]. When the signal is extremely unstable, it is
usually necessary to adjust the filtering parameters in real-time based on the change or
noise characteristics. This type of filtering method is called adaptive filtering. He proposed
an adaptive filtering method based on singular values and a mixture of Gaussian models,
which accurately identified the tool wear state under different machining parameters [37].
The wavelet transform method is a time–frequency analysis method that decomposes a
signal into multiple sub-signals of different frequencies and filters each sub-signal. Its
advantage is that it can simultaneously process high-frequency and low-frequency signals.
Ahmed used the wavelet transform method to monitor the changes in cutting force signals
in stainless steel machining, achieving effective control of the built-up edge [38].

Based on the above research, it is clear that the geometric accuracy of high-fidelity
models generated by different filtering methods may vary, making it challenging to ensure
consistency. Furthermore, detection signals reflect various geometric morphologies at
different scales. Surface roughness and waviness are associated with distinct frequencies
and wavelengths, as illustrated in Figure 1. The v/div and s/div refer to the time base unit
of the oscilloscope, representing the volt value per grid and seconds per grid, respectively.
Therefore, separating, extracting, and processing these signals will significantly affect the
accuracy of the surface model.

Figure 1. Schematic diagram of multi-scale characteristics of surface topography of (a) composite
surface feature; (b) shape deviation; (c) surface waviness; and (d) surface roughness.
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To address the shortcomings described above, this paper proposes a high-fidelity
surface modeling method that combines an image mosaic technology with wavelet decom-
position. A flowchart to describe this process is shown in Figure 2.

Figure 2. High-fidelity surface modeling flow chart.

Following this logic, the paper is structured as follows: Section 2 describes the concept
of the image mosaic, Section 3 compares the three different wavelet decomposition methods
and describes how the Symlet wavelet was selected to reconstruct the high-fidelity surface
model, and Section 4 compares and analyzes the results of the simulation developed and
the finishing experiment employed. Finally, conclusions and some areas identified for
future research are described.

2. Image Mosaic

The CCD camera imaging system is typically used to image the micro-shape of a
surface measured by the 3D topography instrument [39,40]. But, due to the restriction of
the lens, the transverse dimension of the measured surface is limited to approximately a
1000 µm × 1000 µm viewing area [32]. When measuring a large area with a high-power lens,
it is necessary to expand the field of view of the measured surface. The work presented
in this paper employs a method for dividing the surface of the test part into several
overlapping sub-areas for the purpose of measuring. The algorithm is designed to cut and
splice the overlapping areas and create a larger range of 3D surface topography data.

Using a 2 × 2 image to demonstrate the stitching process, the data acquisition and
processing diagram is shown in Figure 3. The splicing steps are as follows: (a) Move
the lens to the first detection position to obtain the image S1. (b) Now, move the lens
horizontally in the +x direction to the next detection position S2. Here, it is important
that the horizontal distance d1 is less than the length of S1 so that images S1 and S2 are
overlapped. (c) Next, move the lens back in the −x direction over S12 to obtain the area of
calculating coincidence, being sure to completely cover the S12 overlapping area. (d) Repeat
the same principle explained above to obtain the overlapping area of S3 and S4. (e) Lastly,
complete the splicing of S12 and S34.
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Figure 3. Schematic diagram of image acquisition and mosaic of (a) acquisition process; (b) stitch-
ing process.

To demonstrate the methods proposed in this paper, a 20 mm × 20 mm × 3 mm
aluminum alloy sheet is used. The part’s surface is measured with the ZeGage Plus
optical profiler, which has sub-nanometer precision and an optical resolution of 0.52 µm.
The sampling area selected for use is in the geometric center of the part. By using three
equally spaced distances for moving the lens d1, a set of mosaic images with different
coincidences are collected. The overlapping areas are about 10%, 20%, and 30% of the
original image size. Figure 4 shows the image with a coincidence of 10%. The sampling
interval is approximately 0.815 µm. In Figure 4, the image is enlarged by 700% and the
result is 1200 × 1200 pixels. The original size of the composite image created using the
stitching/splicing process described earlier is 834.37 µm × 834.37 µm.

Figure 4. Micro morphology of sampling area.
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2.1. Image Feature Extraction

The first step in the image mosaic process is to recognize the features within the
overlapping regions. The most widely used feature description methods are the Harris
corner algorithm [41] and the Scale-Invariant Feature Transform (SIFT) algorithm [42,43].
An analysis is performed to identify the optimal feature recognition by comparing the
results from two algorithms.

(1) Harris corner feature extraction algorithm

A corner is defined as a stable sparse geometric feature in the point cloud data. The
Harris algorithm finds corners by sliding the convolution window; when the sliding
window moves at various angles, the corner points will be determined when the pixel gray
value in the window changes [41]. The details are shown in Appendix A. Figure 5 shows
the corner detection results of S1, S2, S3, and S4 in MATLAB 2020, which are 1561, 1551,
1578, and 1582.

Figure 5. Test results of Harris corner detection of (a) S1; (b) S2; (c) S3; and (d) S4.

(2) SIFT feature extraction algorithm

The SIFT algorithm includes four steps: scale space extreme value detection, key point
location, direction assignment, and key point description [44]. The result of stitching an
image using the SIFT algorithm in MATLAB is shown in Figure 6. The key point numbers
of the four images (S1, S2, S3, and S4) are 1660, 1349, 1670, and 1548.

Figure 6. Test results of SIFT feature descriptor detection of (a) S1; (b) S2; (c) S3; and (d) S4.

2.2. Image Feature Matching

After extracting the corresponding corner position of each image, the Normalized
Cross Correlation (NCC) is used to match the feature points. Yoo and Han [45] demonstrate
the robustness and accuracy of NCC, and its formula is as follows:

NCC = ∑
(x,y)∈W

(
I1(x, y)− I1(x, y)

)
·
(

I2(x, y)− I2(x, y)
)

/

√√√√ ∑
(x,y)∈W1

(
I1(x, y)− I1(x, y)

)2
·

√√√√ ∑
(x,y)∈W2

(
I2(x, y)− I2(x, y)

)2
(1)

where W is the window of feature point. I1(x, y) and I2(x, y) are the pixel values in the
original image. I1(x, y) and I2(x, y) are the average pixel values in the window.
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The matching process consists of the follow steps: First, a point is selected in I1(x, y)
and its corresponding feature point with the greatest correlation is searched for in I2(x, y).
Then, for the selected point in I2(x, y), the feature point with the greatest correlation is
searched for in I1(x, y). The matching process is considered to be completed when the
feature points with the greatest correlation are found to correspond to each other through
a double-way search. The matching efficiency r and Mean Average Precision (MAP) are
generally used as two indicators to evaluate the matching effect:

r = Pr/(Pm·t) (2)

where pr is the number of correct matching feature points extracted from each image, pm
is the total number of matching feature points extracted from each image, and t is the
matching time.

MAP =
∫ 1

0
P(R)dR (3)

where the accuracy rate is P = pr/pm, the recall rate is R = pr/p.
In the case of three different overlapping areas, the Harris and SIFT algorithms are

used to match the two adjacent images, and the results are shown in Table 1. According
to Formula (3), the average matching accuracy MAP of the SIFT algorithm and Harris
algorithm is 0.539 and 0.474, respectively. As the overlap area increases, the matching
time (t) will also increase correspondingly, and the recall rate (R) will gradually increase,
resulting in a gradual decrease in the matching efficiency. The matching efficiency of the
SIFT algorithm shows more than three times that of Harris algorithm.

Table 1. Algorithm matching results.

NO. Image Algorithm Feature Points p pm pr t (s) r P R

1
(10% overlapping area)

S1, S2
Harris 3112 100 92 15.92 0.058 0.920 0.030
SIFT 3009 83 83 4.76 0.210 1.000 0.028

S3, S4
Harris 3160 106 100 14.18 0.067 0.943 0.032
SIFT 3218 98 98 5.12 0.195 1.000 0.030

2
(20% overlapping area)

S1, S2
Harris 3506 240 237 18.92 0.052 0.988 0.068
SIFT 3367 258 258 5.34 0.187 1.000 0.077

S3, S4
Harris 3521 241 239 19.87 0.050 0.992 0.068
SIFT 3578 291 291 5.71 0.175 1.000 0.081

3
(30% overlapping area)

S1, S2
Harris 4331 605 605 25.98 0.038 1.000 0.140
SIFT 4186 679 679 6.70 0.149 1.000 0.162

S3, S4
Harris 4330 614 613 26.20 0.038 0.998 0.142
SIFT 4304 693 693 6.97 0.144 1.000 0.161

Figure 7 (Harris algorithm) and Figure 8 (SIFT algorithm) show the first set of mosaic
images in Table 1, respectively. In Figure 7, both of the S12 and S34 have obvious abnormal
matching points and sutures. There are no such circumstances in Figure 8.

In Figure 7, we can see that some matching points far from the stitching position
have also been identified by the Harris algorithm(as indicated by the yellow circle), which
is obviously incorrect. From the comparison of the results above, it can be seen that
the SIFT algorithm has higher computational efficiency and reliability in the stitching of
three-dimensional micro-surface morphology images. Therefore, this article uses the SIFT
algorithm to implement the stitching of the micro-surface morphology images of parts.
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Figure 7. Matching point connection of Harris algorithm of (a) Harris feature point matching of S1,
S2; (b) Harris feature point matching of S3, S4.

Figure 8. Matching point connection of SIFT algorithm of (a) SIFT feature point matching of S1, S2;
(b) SIFT feature point matching of S3, S4.

2.3. Image Fusion Algorithm

In the image fusion algorithm, S1(x, y, z) and S2(x, y, z) are used to represent point sets
for images S1 and S2. R(x, y, z) represents the common area of both in the mosaic image S12,
as shown in Figure 9. Since S1(x, y, z) and S2(x, y, z) belong to different coordinate systems,
o1 − u1v1w1 and o2 − u2v2w2, in order to obtain the point set S(x, y, z) of the mosaic
image S12 in the global coordinate system o-xyz, a coordinate geometric transformation
is required.

Image fusion can be divided into pixel-level fusion, feature-level fusion, and decision-
level fusion. Since the mosaic images discussed in this paper are the images obtained under
the same lens, pixel-level fusion is selected. Pixel-level fusion methods usually include
the average fusion method, gradual in and gradual out fusion method, wavelet fusion
method, etc.

(1) The average fusion method is used to directly add the corresponding height values
of the overlapping areas after matching and take the average value. The calculation
formula can be expressed as follows:

S(x, y, z) =


S1(x, y, z), (x, y) ∈ S1

(S1(x, y, z) + S2(x, y, z))/2, (x, y) ∈ R
S2(x, y, z), (x, y) ∈ S2

(4)

(2) The gradual in and out method is also known as the linear transition fusion method,
and its algorithm can be expressed as follows:

S(x, y, z) =


S1(x, y, z), (x, y) ∈ S1

aS1(x, y, z) + (1 − a)S2(x, y, z), (x, y) ∈ R
S2(x, y, z), (x, y) ∈ S2

(5)

where a = (xr − xi)/(xr − x1), x1 is the abscissa value of the left boundary of the
overlapping area. xr is the abscissa value of the right boundary of the overlapping
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area. xi is the abscissa of pixel points in the overlapping area. a is a coefficient between
0 and 1. When a changes from 0 to 1, the two images can smoothly transition.

(3) The wavelet fusion method is used to decompose the overlapping regions corre-
sponding to a group of 3D topography images by a two-dimensional discrete wavelet.
The morphology image is decomposed into low-frequency coefficients and high-
frequency coefficients in three directions. The algorithm can be expressed by the
following formula:

S(x, y, z) =


S1(x, y, z), (x, y) ∈ S1

Cj1 ∗ S1(x, y, z) + Cj2 ∗ S2(x, y, z), (x, y) ∈ R
S2(x, y, z), (x, y) ∈ S2

(6)

where Cj1,2 are the decomposition rules for the low-frequency coefficients and high-
frequency coefficients, described in detail in the literature [46,47].

Figure 9. Schematic diagram of three-dimensional topography splicing.

Figure 10 shows the fusion results of S1 and S2 using the above three methods, which
is to extract the height values of two different interfaces in the overlapping region R(x, y, z).
It can be concluded that the curve created by the gradual in and out fusion method is the
closest to the reality height curve fitting, which represents the actual surface.

2.4. Splicing Effect Judgment

This section evaluates the splicing effect by calculating the structural similarity coef-
ficient SSIM of overlapping areas. Given two images x and y, the SSIM can be expressed
as follows:

SSIM(x, y) =
(
2µxµy + c1

)(
2σxy + c2

)
/
(

µ2
x + µ2

x + c1

)(
σ2

x + σ2
y + c2

)
(7)



Micromachines 2024, 15, 834 10 of 25

where µx and µv are the average values of x and y. σx and σv are the variance of x and y.
σxv is the covariance of x and y. L is the dynamic pixel value. c1 and c2 are calculated by
formulas c1 = (k1L)2 and c2 = (k2L)2. The k1 and k2 are generally selected to be 0.01 and
0.03 [47]. The value range of SSIM can be found in [47,48]. When taking a value of 1, it
means that the two images are identical, while the closer to 1, the better the stitching effect.

Figure 10. Height curves of different image fusion methods at different sections of (a) average fusion
method for S1; (b) gradual fusion method for S1; (c) wavelet fusion method for S1; (d) average fusion
method for S2; (e) gradual fusion method for S2; and (f) wavelet fusion method for S2.

Formula (10) can be used to calculate the SSIM value of the overlapping area. Com-
paring the three fusion algorithms described in Section 2.3, the results are shown in Table 2,
which proves that the gradual in and out fusion method is the optimal method.

Therefore, the gradual in and out fusion method is used to splice S1, S2, S3, and S4.
The results are shown in Figures 11 and 12, and its 3D shape size is 1281 µm × 1281 µm.
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Table 2. Evaluation of splicing effect under different fusion methods.

Images Methods SSIM

S1, S2

The average fusion method 0.927
The gradual in and out method 0.979

The wavelet fusion method 0.933

S3, S4

The average fusion method 0.937
The gradual in and out method 0.980

The wavelet fusion method 0.937

S12, S34

The average fusion method 0.917
The gradual in and out method 0.977

The wavelet fusion method 0.928

Figure 11. Image fusion effects: (a) S12 is spliced by S1, S2; (b) S34 is spliced by S3, S4; and (c) S is
spliced by S12, S34.

Figure 12. Three-dimensional morphologies of spliced images: (a) S12 is spliced by S1, S2; (b) S34 is
spliced by S3, S4; and (c) S is spliced by S12, S34.
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3. Wavelet Decomposition and Surface Reconstruction

Spliced images created in the previous steps lack the datum features or roughness
parameters necessary for simulation and cannot be saved as solid models to import into
simulation software for subsequent analysis. Wavelet analysis separates detection signals,
digitally establishing datum planes and roughness surfaces. The pooling method from a
neural network algorithm simplifies the shape sample data to reduce calculation require-
ments and build high-fidelity solid models. The results undergo review to ensure accuracy
before evaluating error values through a comparison with actual part surface test data.

3.1. Wavelet Decomposition of Detection Signals

The measurement data obtained with the optical profiler are the coordinate values in
the X, Y, and Z directions in the measurement area. If the number of samples in the X axis
and Y axis are recorded as m and n, respectively, the height matrix of part surface can be
expressed as follows:

Zm×n ≈ Dm×n + Rm×n (8)

where Zm×n is the height matrix of the actual surface topography, Dm×n is the height
matrix of the reference plane composed of low-frequency signals such as surface waviness
and geometric shape deviation, and Rm×n is the height matrix of high-frequency signals
composed of surface roughness.

The wavelet transform method is used to decompose the signal at multiple scales. The
wavelet base of the wavelet transform method is a curve with a zero value. By stretching
and translating it, a family of wavelet functions is obtained. The signal is decomposed into
a linear superposition of the family of wavelet functions [4]. The basic idea of 2D wavelet
decomposition is to decompose the original signal S into n high-frequency signals (D1,
D2, . . ., Dn) and n low-frequency signals (A1, A2, . . ., An). Wavelet reconstruction is the
inverse process of wavelet decomposition. The reconstructed signal Z′

m×n is composed of
high-frequency signals at all levels and low-frequency signals at the highest order, which
can be expressed as follows:

Z′
m×n = An + ∑n

i=1 Di, i ∈ Z (9)

The selection of wavelet basis function affects the distribution of wavelet coefficients
after decomposition, and directly determines the accuracy of the decomposed signal [4,49].
In this paper, based on the principle of minimum reconstruction deviation, different wavelet
bases are used to decompose and reconstruct the original signal, and the Root Mean Square
Error (RMSE) of Z′

m×n is calculated to find the optimal wavelet base.

RMSE =

√
1

mn ∑m
i=1 ∑n

j=1

(
Z′

i,j − Zi,j

)2
, i, j ∈ Z (10)

where Z′
i,j is the value of row i and column j in the reconstructed topography height matrix

under different wavelet bases, and Zi,j is the value of row i and column j in the original
topography height matrix.

For specific surface data, the decomposition scale l is customized to divide the rough-
ness surface and datum plane:

Rm×n = ∑l
n=1 Di, i ∈ Z (11)

where Al is the low-frequency signal coefficient under the decomposition scale l, and
∑l

n=1 Di is the sum of all high-frequency signal coefficients in the l to l decomposition scale.
Using S1 in Figure 4 as an example to compare the Daubechies wavelet, Symlet wavelet,

and Coiflet wavelet, the 3D coordinates of some sampling points of S1 are shown in Table 3.
The RMSE results are shown in Table 4 by decomposing and reconstructing the original
data with vanishing moments of different orders.
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Table 3. Part of 3D coordinate data of surface topography at the position S1 of specimen.

Z-Axis/µm X-Axis/µm Y-Axis/µm

2.3635 0 0
2.3177 0.8148 0

2.28 1.6296 0
2.2279 2.4444 0
2.3975 0 0.8148
2.3824 0.8148 0.8148
2.3354 1.6296 0.8148
2.2645 2.4444 0.8148
··· ··· ···

0.1451 832.7409 834.3706
0.1949 833.5557 834.3706
0.2917 834.3706 834.3706

Table 4. RMSE values of different wavelet bases.

Wavelet Basis RMSE (×10−19)

Daubechies

db2 2.6299
db3 32.379
db4 5.8918
db5 9.7226
db6 6.5075

Symlet

sym4 2.3910
sym5 0.85669
sym7 4.0252
sym8 1.1052

Coiflet
coif2 46.183
coif3 2.5555
coif4 124.44

It can be concluded from Table 4 that the optimal wavelet base is sym5, and the
minimum reconstruction error is 0.85669 × 10−19. Therefore, sym5 is used to decompose
the original signal, and the proportion of signal energy at different scales in MATLAB is
shown in Figure 13. It can be seen from the figure that the proportion of low-frequency
signal energy changes from falling to rising with the increase in decomposition scale N,
and the minimum value is obtained when N = 8. Wavelet decomposition conforms to the
law of the conservation of energy. The lower the proportion of low-frequency energy, the
closer the low-frequency signal is to the reference plane. Therefore, a Symlet wavelet basis
is used to decompose S1. Under the condition of order 5 and decomposition level 8, the
datum plane Dm×n and roughness surface Rm×n obtained are shown in Figure 14.

3.2. Simplification and Reconstruction of Surface Model

In order to improve the computational efficiency, the maximum pooling method in
the convolution neural network is used to sample and process the shape data. Pooling has
translation invariance, which can reduce the difficulty and number of parameters in the
optimization when applied to the neural network [5].

Similarly, it can effectively reduce the amount of data and retain the main features
of the original topography when processing the surface topography data. For the height
matrix m × n of the reconstructed surface, select the pool filter window size of a × a, step
size of a, and the height matrix m/a × n/a will be obtained by pool processing. If m1
= m/a, n1 = n/a, the simplified shape height matrix Z′′

m1×n1
is obtained. The calculation

process is as follows: z′′1,1 = max
(

z′i1,j1

)
, 1 ≤ i1 ≤ a, 1 ≤ j1 ≤ a; z′′1,2 = max

(
z′i1,j2

)
,

1 ≤ i1 ≤ a, 1 ≤ j2 ≤ 2a; z′′i,j = max
(

z′ij ,jj

)
, (i − 1) ∗ a ≤ ii ≤ ia, (j − 1) ∗ a + 1 ≤ jj ≤ ja;
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z′′m1,n1
= max

(
z′im1 ,jn1

)
, (m1 − 1) ∗ a + 1 ≤ im1 ≤ m, (n1 − 1) ∗ a + 1 ≤ jn1 ≤ n, where Z′′

i,j
is the value of the ith row and the jth column of the surface topography height matrix
Z′′

m1×n1
after down-sampling, and the point cloud model D′′

m1×n1
of the datum plane and

R′′
m1×n1

of the rough surface can be obtained by using the same processing method.

Figure 13. Energy proportion diagram at different decomposition scales.

Figure 14. The surface of different morphologies at position S1 of the specimen of (a) datum surface;
(b) roughness surface.

Take S1 in Figure 4 as an example; the reconstructed surface model of S1 can be
obtained by overlying the datum and roughness surfaces in Figure 14. The result is
shown in Figure 15a, which has the height matrix m × n of 1024 × 1024. If a = 4 is taken for
sampling processing, then the simplified height matrix is 256 × 256, which can be processed
in MATLAB, as shown in Figure 15b.
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Figure 15. Signal comparison diagram before and after the down-sampling.

The discrete point cloud model is transformed into a continuous geometric model by
the reverse modeling method, which include explicit and implicit reconstruction methods.
The explicit method triangulates the point cloud model directly, while the implicit method
obtains the final triangulation and extracts the isosurface of the function by reconstructing
the implicit function. The Poisson surface reconstruction used in this paper is established
by Meshlab, which is detailed in Appendix B. Figure 16c shows the high-fidelity surface
model after six times magnification, which is a combination of Figure 16a,b. It can be
directly used in the simulation of the machining process.

Figure 16. Surface geometry model of specimen.

3.3. Surface Model Deviation Judgement

Deviation detection is an important basis for judging whether the reconstructed
surface model is consistent with the actual topography. The surface roughness height
parameters Sa, Sq, and Sz represent the arithmetic mean height, root mean square height,
and maximum height of the three-dimensional surface topography, which depend on the
surface height deviation. To verify the precision of the high-fidelity surface model, we
compare it with the measured surface and calculate the relative deviation. The calculation
process is as follows: ∆1 =

∣∣Sam − Sah

∣∣/Sam × 100% ≤ e; ∆2 =
∣∣Sqm − Sqh

∣∣/Sqm × 100% ≤ e;
∆3 =

∣∣Szm − Szh

∣∣/Szm × 100% ≤ e, where, ∆1, ∆2, and ∆3 are relative deviations; Sam , Sqm ,
and Szm are calculated based on the actual part surface measurement; Sah , Sqh , and Szh

are calculated based on the high-fidelity surface model; and e is the threshold.
In this paper, the ZeGage Plus optical profiler is used to obtain the Sa, Sq, and Sz of the

part, as shown in Table 5. The actual roughness values of the four sample areas are shown
in Figure 17.
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Table 5. ZeGagage Plus main performance parameters.

Equipment Performance Value

Magnification 1–50

Measurement array 1024 × 1024, 512 × 512,
256 × 256, 1024 × 160

Transverse scan travel 100 × 100 mm
Longitudinal scanning stroke ≤20 mm

Surface topography <0.15 nm
RMS repeatability 0.01 nm
Optical resolution 0.52 µm

Scanning speed ≤73 µm/s

Figure 17. Part surface images before finishing.

Table 6 shows the Sa, Sq, and Sz values of the four sampling positions (S1, S2, S3, S4) in
Figure 4, and compares them with the actual measured values.
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Table 6. Sa, Sq and Sz value error between simulation morphology and actual morphology of
specimen at different sampling positions.

Sample Location Sa/µm Sq/µm SZ/µm Maximum Relative Error

S1

Part surface 1.272 1.624 15.262
0.659High-fidelity surface 1.280 1.633 14.603

Relative error 0.08 0.009 0.659

S2

Part surface 1.678 2.186 17.907
0.157High-fidelity surface 1.672 2.180 17.750

Relative error 0.006 0.006 0.157

S3

Part surface 1.350 1.708 33.460
0.909High-fidelity surface 1.358 1.715 32.551

Relative error 0.008 0.007 0.909

S4

Part surface 1.901 2.408 20.371
0.236High-fidelity surface 1.889 2.398 20.135

Relative error 0.012 0.010 0.236

Table 6 demonstrates that the maximum relative error obtained at the four sampling
positions is 0.909 µm. In general, the allowable error range for finish machining is within
several micrometers. This proves that this method can meet the high-fidelity modeling
requirements of finish machined parts within the allowable error range of 1 µm. Simultane-
ously, by reconstructing a high-fidelity model after applying wavelet decomposition, the
number of grids in the model is significantly reduced, thereby decreasing the computational
burden of subsequent machining simulations.

4. Comparison with Experiments

To verify the advantages of the high-fidelity model in the machining simulation, the
example in Figure 4 was used for the surface grinding experiment. The discrete element
simulation software EDEM2021 is used to simulate the grinding process. The experimental
equipment is a BJL-LL05 vertical centrifugal roller polishing machine (shown in Figure 18a).
Its working principle is to place the parts, grinding blocks, grinding agents, water, etc., into
four evenly distributed cylinders. The cylinder moves in planetary motion. The revolution
speed is N, the rotation speed is n, and the speed ratio is n/N. Through the motion created,
the grinding block collides, rolls, and micro-grinds the part surface to achieve the finishing
of the part surface, as shown in Figure 18b. The roller and installation position of the parts
are shown in Figure 18c. Figure 18d is the simulation picture of the grinding experiment in
the EDEM simulation.

4.1. Grinding Simulation in EDEM

To simulate roller grinding, four main parameters need to be considered: material
parameters, contact parameters, grinding blocks factory parameters, and geometry param-
eters. The material parameters, as listed in Table 7, comprise the Poisson’s ratio, density,
and shear modulus of the rolling grinding blocks, part, and roller.

Table 7. Material properties in EDEM simulation.

Grinding Block Part Roller

Material Al2O3 Aluminium alloy Photosensitive resin
Poisson ratio 0.36 0.33 0.4

Elastic modulus/Pa 1.26 × 107 2.632 × 1010 9.246 × 108

Density/(kg·m−3) 2675 2700 1150

Contact parameters, displayed in Table 8, encompass the rebound coefficient, static fric-
tion coefficient, and rolling friction coefficient between the grinding blocks, part, and roller.
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Figure 18. Experiment and simulation of part surface grinding.

Table 8. Contact parameters.

Grinding Blocks Part-Grinding Block Roller-Grinding Block

Rebound coefficient 0.35 0.5 0.35
Static coefficient 0.15 0.45 0.3

Dynamic coefficient 0.46 0.15 0.15

To define the grinding blocks used in the simulation, a spherical block with a diameter
of 3 mm, a filling rate of 70%, and a total of 22,000 blocks were specified as the grinding
block factory parameters. Figure 19 illustrates the interface of the grinding blocks factory
in EDEM2021 software, which includes the blocks mass, volume, and rotational inertia in
X, Y, and Z directions.

The revolution speed of the roller is 300 r/min, the revolution radius is 135 mm, and
the direction is clockwise. The rotation speed of the drum is 300 r/min and the direction
is counterclockwise. The simulation time is 60 s, within which the roller makes planetary
motion. The movement track of the roller in one cycle is shown in Figure 20. The time step
is set to 20% Rayleigh time, and the calculated time step ∆t = 1.5 × 10−5 s.

In the simulation experiment, the wear depth nephogram with a time interval of 10 s
is selected to analyze the wear condition of the parts. The wear condition of the ideal
surface model and the high-fidelity surface model in the EDEM simulation is shown in
Figures 21 and 22. It can be seen from the wear nephogram of the common model that the
scratches on the surface of the parts are disorderly. However, the high-fidelity model shows
regular wear traces.
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Figure 19. Particle property parameters.

Figure 20. The trajectory of the roller in a period.

Figure 21. Wear depth cloud image of ideal surface model.
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Figure 22. Wear depth cloud map of high-fidelity surface model.

4.2. Physical Experiment Results

After 5 min of machining, the surface roughness Sa of S1 changes from 1.272 µm
reduced to 0.565 µm. The Sq of S1 is reduced from 1.624 µm to 0.708 µm. The Sz of S1 is
reduced from 15.262 µm to 6.162 µm. Figure 23 is used to compare the wear nephogram of
the ideal model and the high-fidelity model in the EDEM simulation with the image of the
parts after actual grinding.

Figure 23. Comparison of wear nephogram of simulation models and actual part.

In light of the excessive computational complexity, the experimental results were solely
compared after 60 s of simulation processing. The similarity between Figure 23a,c denoted
as SIM1 and SIM2, represents the similarity between Figure 23b,c. The similarity value is
obtained by calculating the normalized correlation coefficient of the two images [22], as
shown in Formula (12).

SIM = ∑
m

∑
n

(
Amn − A

)(
Bmn − B

)
/

√√√√(∑
m

∑
n

(
Amn − A

)2
)(

∑
m

∑
n

(
Bmn − B

)2
)

(12)
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where Amn and Bmn are the value of the mth row and nth column in the gray value matrix
A and B of the two images. A and B are the average of the pixels of the matrix.

Using Formula (12), SIM1 = −0.0237 and SIM2 = 0.3093 are obtained. The experimental
comparison proved that this method is an improvement on current simulation accuracy by
more than 30%. That is, compared with the ideal model, the high-fidelity model is more in
line with the wear situation in the actual part surface.

5. Conclusions and Future Work

This paper proposed a novel method for developing a high-fidelity surface model. The
experiments show that the simulation accuracy can be improved by more than 30% using
the high-fidelity model compared with the ideal model. The method of the image mosaic
can effectively compensate for the shortcomings of the measuring lens. It makes it possible
to obtain a wide range of high-precision part surface panoramas. Some deficiencies of the
paper still need further study. It can be seen from the comparison of simulation results in
Figure 23 that although the result of SIM2 is much higher than that of SIM1, it also took
96.708 h to complete this simulation, which was undertaken by a computer with an Intel
i7-10700 processor (Intel corporation, Santa Clara, CA, USA), a main frequency of 2.9 GHz,
a 32 GB memory, and a 16-core CPU.

In the field of high-end manufacturing, high-precision CNC machining machines
have demonstrated remarkable accuracy, often achieving tolerances as low as 0.001 mm.
Industries such as MEMS (Micro-Electro-Mechanical Systems) and optical component
manufacturing demand even greater levels of precision, necessitating a surface machining
accuracy at the micron or sub-micron level. Consequently, the development of high-fidelity
models is crucial to meet these requirements. However, when analyzing the data collected
from optical measurements, discrepancies arise due to variations in the results obtained
through different filtering methods. Surprisingly, the existing literature rarely addresses the
effectiveness of utilizing these high-fidelity models in machining simulations. This article
aims to address this gap by providing valuable insights and supplementary experiments
on this important topic. In future work, we will try to use different mathematical statistical
methods to simplify the sampling of the data, and in this way, reduce the calculations.
Moreover, with the improvement of computer computing capacity, the method proposed
in this paper is expected to be more easily applied in practical applications.
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Appendix A. Harris Algorithm

In this appendix, we present the calculation principle and formulas of the Harris
algorithm that was used in our paper. The Harris algorithm finds corners by sliding the
convolution window; when the sliding window moves at various angles, the corner points
will be determined, as shown in Figure A1. Assuming that the gray value of a point (x, y)
on the image is I(x, y), when the point is slipping into (u, v), the gray value at the point
becomes I(x+u, y+u).

https://www.researchgate.net/profile/Yupeng-Xin
https://www.researchgate.net/profile/Yupeng-Xin
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Figure A1. Diagram of the Harris corner detection of (a) boundary; (b) flat area; and (c) corner point.

The autocorrelation function formula of the Harris detector based on the gray value is
as follows:

M = ∑
(x,y∈w)

w(x, y)
[

I2
x Ix Iy

Ix Iy I2
y

]
=

[
A C
C B

]
= R−1

[
λ1 0
0 λ2

]
R (A1)

E(u, v) = ∑
(x,y)∈w

w(x, y) [I(x + u, y + u)− I(x, y)]2= ∑
(x,y)∈w

w(x, y) [u, v]
[

I2
x Ix Iy

Ix Iy I2
y

][
u
v

]
= [u, v]

[
A C
C B

][
u
v

]
(A2)

where A = I2
x ∗ w, B = I2

y ∗ w, C = Ix Iy ∗ w. [u,v] is the deviation of window w, (x,y) is the
pixel coordinate position corresponding to window w, and I(x,y) is the image gray value.
Ix and Iy are partial derivatives, which also become the x,y directions gradient. R is the
twiddle factor, which can be expressed as follows:

R = |M| − k × tr2(M) = λ1λ2 − k(λ1 + λ2)
2 (A3)

where |M| represents matrix M. tr means trace of the matrix. k is generally valued between
(0.04~0.06). Whether the window has corners is determined by determining the size of R:
R < 0 means it is a border; 0 < R < threshold means it is a flat area; R > threshold means
that a corner exists. The threshold is a customized threshold. The λ1 and λ2 are variation
quantities of the two orthogonal directions.

Appendix B. Poisson Reconstruction in Meshlab

The reconstruction process includes the following steps: defining octree, setting
function space, creating vector field, solving Poisson equation, and extracting isosurface.
MeshLab2020 software is an open-source 3D geometry processing system, which can easily
convert a point cloud model to geometric model. The geometric model, converted to the
STL format, can be directly imported into discrete element simulation software for analysis
and calculation.

In this paper, the Poisson reconstruction parameters include a tectonic depth 10 µm,
adaptive octree depth of 5 µm, scale factor of 1.1, minimum samples of 1.5, interpola-
tion weight of 4, and Gauss–Seidel Relaxation factor of 8. In Meshlab, the process of
transforming a model from point cloud data to a solid model is shown in Figure A2.
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Figure A2. Models transforming in Meshlab2020.
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