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Abstract: Herein, we prepare MoS2 and Cu-MoS2 catalysts using the solvothermal method, a widely
accepted technique for electrocatalytic overall water-splitting applications. TEM and SEM images,
standard tools in materials science, provide a clear view of the morphology of Cu-MoS2. HRTEM
analysis, a high-resolution imaging technique, confirms the lattice spacing, lattice plane, and crystal
structure of Cu-MoS2. HAADF and corresponding color mapping and advanced imaging techniques
reveal the existence of the Cu-doping, Mo, and S elements in Cu-MoS2. Notably, Cu plays a crucial role
in improving the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) of the Cu-
MoS2 catalyst as compared with the MoS2 catalyst. In addition, the Cu-MoS2 catalyst demonstrates
significantly lower overpotential (167.7 mV and 290 mV) and Tafel slopes (121.5 mV dec−1 and
101.5 mV dec−1), standing at −10 mA cm−2 and 10 mA cm−2 for HER and OER, respectively,
compared to the MoS2 catalyst. Additionally, the Cu-MoS2 catalyst displays outstanding stability
for 12 h at −10 mA cm−2 of HER and 12 h at 10 mA cm−2 of OER using chronopotentiaometry.
Interestingly, the Cu-MoS2∥Cu-MoS2 cell displays a lower cell potential of 1.69 V compared with
the MoS2∥MoS2 cell of 1.81 V during overall water splitting. Moreover, the Cu-MoS2∥Cu-MoS2 cell
shows excellent stability when using chronopotentiaometry for 18 h at 10 mA cm−2.

Keywords: Cu-MoS2; HER; OER; overall water splitting; excellent stability

1. Introduction

The rapidly growing urban landscape, defense industry, space divisions, and fossil
fuel-based transportation sectors are causing global warming and disparities in the eco-
logical system [1]. Therefore, the inescapable energy shortage and ecological concerns
due to carbon emissions have unlocked an opportunity for widespread research on al-
ternative energy sources [2,3]. Hydrogen, a widely distributed substance in the universe
that is generated from various catalytic nanomaterials, is comprehensively accepted as a
favorable energy source with which to substitute fossil fuels [4]. Furthermore, clean and
green hydrogen can be achieved using the electrochemical splitting of water, without any
further carbon secretion during the hydrogen and oxygen generation process [5]. Therefore,
catalytic water splitting is considered an important and vital procedure for harvesting
clean hydrogen energy from chemical energy [6], consisting of two half-cell reactions at the
cathode (hydrogen evolution reaction, HER) and at the anode (oxygen evolution reaction,
OER) [7]. Interestingly, OER provides electrons and protons for a reduction in half-reaction,
creating major energy losses due to sluggish reaction kinetics [8]. Remarkably, the OER
electrocatalysts with the greatest catalytic activities are precious metals and their oxides,
namely Ru, RuO2, IrO2, and Ir [9]. However, the precious metal Pt is considered the
standard electrocatalyst for HER, which is expensive and makes hydrogen generation
overpriced [10]. Therefore, making progress in developing active, inexpensive, durable,
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and excellent conductive bifunctional catalysts for the HER and OER is one of the cru-
cial tasks for several electrocatalytic water-splitting technologies. Curiously, numerous
nanostructural materials have been studied to examine the capabilities of electrochemical
water-splitting activities.

Molybdenum disulfide (MoS2) is a prominent member of the transition metal dichalco-
genide (TMD) family that has received noteworthy attention in recent years due to its
intriguing physical, optoelectronic, mechanical, and magnetic features, and various po-
tential applications [11]. As a nanolayered material, MoS2 displays an exclusive S-Mo-S
sandwich structure, where molybdenum atoms are sandwiched between layers of sulfur
atoms, exhibiting an n-type behavior [12,13]. This sandwich structure of the MoS2 divulges
resilient edge active sites, which facilitate quick catalytic reaction kinetics, making it a
more suitable candidate for electrocatalytic water-splitting technological developments [14].
MoS2 materials are multidimensional and outstanding and well recognized for their excel-
lent optoelectronic, magnetic, mechanical, and ionic properties [15]. MoS2 is an extremely
stable nanomaterial with weak van der Waals interactions between the layers and resilient
in-plane covalent bonds that enable smooth mechanical exfoliation into thin sheets [16].
Interestingly, the exclusive features of MoS2, exhibited mainly when reduced to a few layers
or a monolayer, facilitate its use in next-generation cutting-edge technologies. MoS2 exhibits
distinct optical bandgap properties depending on its thickness. The electronic properties of
the MoS2 are remarkable due to its switchable nature from an indirect bandgap (bulk form)
to a direct bandgap (monolayer), which can be favorable for numerous applications. More-
over, MoS2 has an indirect bandgap of nearly 1.27 eV in the bulk form [17]. Besides, MoS2
displays a direct bandgap of about 1.90 eV in the few-layer or monolayer form [18]. The
morphologies of MoS2 can differ significantly based on the synthesis techniques, which tune
its properties and appropriateness in different applications. MoS2 can be synthesized in
various forms, including nanotubes [19], nanosheets [20], nanoflowers [21], nanowires [14],
and nanoribbons [22], each demonstrating unique edge structures, surface areas, and
electrolysis water-splitting activities [23]. The morphologies of MoS2 play a decisive role
in shaping its capabilities in various applications, such as the electrolysis of water [24],
supercapacitors [25], field-effect transistors [26], batteries [27], perovskite light-emitting
diode [28], and gas sensors [29]. Numerous production methods have been established
to prepare MoS2 with precise morphologies and properties, which include hydrothermal
qualities [30], solvothermal qualities [31], sol–gel applications [32], co-precipitation [33],
pulse laser deposition [34], DC sputtering [35], and flame spray pyrolysis [36]. Interestingly,
the above-discussed techniques offer distinctive benefits in terms of ease, scalability, and
the capacity to modify the features of MoS2. Remarkably, chemical synthesis routes, such as
hydrothermal and solvothermal approaches, have been extensively used for their capability
to synthesize high-purity MoS2 with well-defined morphologies [37,38]. On the other hand,
physical synthesis methods, such as RF sputtering and chemical vapor deposition, have
been broadly utilized to prepare high-purity MoS2 thin films in vertically aligned morpholo-
gies with various applications [39,40]. Despite its prospective applications, MoS2 faces
serious limitations, such as slow OER electrocatalytic reaction kinetics, high overpotential,
and inadequate stability, which hamper its commercial applicability. Therefore, improv-
ing the catalytic performance of MoS2 is imperative for its practical application. Among
the various doping materials investigated, copper (Cu) is a hopeful catalytic candidate
for advancing the electrochemical activities of the MoS2. Therefore, the Cu-doped MoS2
(Cu-MoS2) boosts ionic interactions, magnifies the surface area, and enables electrical con-
duction, making it predominantly active in increasing electrocatalytic activities. Therefore,
the doping of Cu into MoS2 can build chemically active defect states, which can increase
overall conductivity, thereby regulating the overall water-splitting process.

In this work, we investigate the electrocatalytic overall water splitting of the MoS2
and Cu-MoS2 catalysts. Fascinatingly, the MoS2 and Cu-MoS2 catalysts are prepared using
a simple, scalable, and inexpensive solvothermal method. Attractively, Cu plays a dynamic
role in ornamenting the electrocatalytic overall water-splitting properties of the Cu-MoS2
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catalyst. Stimulatingly, the Cu-MoS2 catalyst shows a low overpotential and a low Tafel
slope of HER and OER compared to the MoS2 catalyst. Fascinatingly, Cu-MoS2∥Cu-MoS2
cell shows low potential and excellent stability for 18 h at 10 mA cm−2. Moreover, the OER
and HER mechanisms are also discussed to study the reaction process of hydrogen and
oxygen generation.

2. Synthesis Methods

MoS2 and Cu-MoS2 were prepared using a straightforward one-step solvothermal
process. Typically, 60 mL (1:1 ratio) of ethanol and DI water were mixed with 16 mg of
C2H5NS and 4 mmol of Na2MoO4·2H2O, while being magnetically stirred to create a
consistent solution. Furthermore, 2 mg of Cu was melted in 10 mL of DI water using a
combination of magnetic stirring and sonication. Further, using magnetic stirring, 3 mL
of the Cu precursor was gradually mixed dropwise into the 60 mL Mo and S precursor
solution. The Mo and S precursor solution, mixed with Cu, was then shifted to an autoclave
with a capacity of 100 milliliters. Additionally, a 2.2 cm × 3.0 cm portion of washed Ni-
foam was put in the autoclave at 180 ◦C for 18 h to allow Cu-MoS2 to grow in situ on 3D
Ni-foam. Finally, the Cu-MoS2 deposited on Ni-foam was washed with ethanol and DI
water to remove the impurities and dehydrated at 95 ◦C under vacuum conditions for
15 h. Similarly, pure MoS2 was also synthesized using the above-discussed method with a
Cu source.

The Cu-MoS2 morphology of the Ni-foam is meticulously scanned via a scanning elec-
tron microscope (SEM) obtained from S-4800 HITACHI, Ltd., Tokyo, Japan. Additionally,
the structural, morphological, and elemental properties of the Cu-MoS2 are thoroughly
studied via TEM, HRTEM, and HAADF with elemental mapping using the JEOL, JEM-
2100F, JEOL Ltd., Tokyo, Japan. Moreover, the electrocatalytic activities of the MoS2 and
Cu-MoS2 catalysts for electrocatalytic water splitting are rigorously tested using the elec-
trochemical workstation VersaSTAT3 (Princeton Applied Research). The electrocatalytic
performances of the MoS2 and Cu-MoS2 electrocatalysts are tested via a three-electrode
arrangement in a 1.0 M KOH alkaline electrolyte. The MoS2 and Cu-MoS2 catalysts, Pt,
and Ag/AgCl are used as working, counter, and reference electrodes, respectively. The
overall water splitting is investigated in two-electrode arrangements in 1.0 M KOH, where
MoS2 or Cu-MoS2 are used in both anode and cathode electrodes. The linear sweep
voltammetry (LSV) of the MoS2 and Cu-MoS2 catalysts are studied at 5 mV s−1. Fur-
thermore, the Tafel slopes of the MoS2 and Cu-MoS2 catalysts are accomplished from the
LSV plot, using η = blog j + a, where b is the Tafel slope, j is the current density, a is the
transfer coefficient, and η is the overpotential. The recorded potential vs. Ag/AgCl is
converted into the potential of the reversible hydrogen electrode (RHE) via the relation
ERHE = Eo

Ag/AgCl + EAg/AgCl + 0.059 × pH.

3. Results and Discussions

Figure 1 elucidates the scanning electron microscopy (SEM) visuals of the Cu-MoS2.
The shape of the Cu-MoS2 grown on the Ni-foam substrate is shown in Figure 1a,b at
different magnifications, exploring the different orientations of the nanolayers. Further,
the nanolayered morphology of Cu-MoS2 is described in Figure 1a,b, where the outermost
portions of the nanolayers can be seen in various directions, enabling a greater chance
for engagement with the alkaline electrolyte, which can be beneficial for improving the
electrocatalytic water-splitting activities. Also, the surface area of Cu-MoS2 can be signif-
icantly expanded by these multilayered architectures, and thus, these unique nanolayer
structures create ideal sites of interaction on the Cu-MoS2 surface for hydrogen and oxygen
evolution reaction procedures. Moreover, Cu-doping in Cu-MoS2 boosts the number of
engaged reaction sites and their area of interface with the KOH electrolyte, which can
enhance the catalytic capabilities of the hydrogen and oxygen evolution reaction. In ad-
dition, this unique Cu-MoS2 morphology can also promote the transfer of electrons due
to the highly conductive nature of Cu in the Cu-MoS2. However, the surface structure of



Micromachines 2024, 15, 876 4 of 14

the Cu-MoS2 also indicates that it is able to transfer hydrogen and oxygen molecules and
improve adsorption and desorption to accelerate kinetics for the development of hydrogen
and oxygen in overall water splitting.
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Figure 1. (a,b) The SEM pictures of the Cu-MoS2 on 3D Ni-foam at different magnifications.

Additionally, Figure 2a,b depict the transmission electron microscopy (TEM) images of
the Cu-MoS2 to further study morphology on the nanoscale at different magnifications. It
is observed that the synthesized Cu-MoS2 illustrates the agglomerated nanolayers. It is also
important that the nanoscale shape of the Cu-MoS2 plays a significant role in the creation
of the catalytically active sites on the catalyst surface, which can be beneficial for overall
water-splitting applications. Interestingly, crumbled nanolayers of Cu-MoS2 also offer more
exposure area for the KOH electrolyte during oxygen, hydrogen, and overall water-splitting
tests. Consequently, it is expected that the TEM images will support the SEM results, as
depicted in Figure 1. Furthermore, the structural examination of the Cu-MoS2 is studied
using high-resolution TEM (HRTEM) and FFT, as portrayed in Figure 3a–e. Figure 3a shows
the HRTEM image of the Cu-MoS2, illustrating several small crystallites, which show the
lattice fringes of the Cu-MoS2. Interestingly, these small crystallites merge together to form
the nanolayers of Cu-MoS2, which have a significant impact on the creation of various
lattice strains in the Cu-MoS2 nanolayers. Figure 3b,d display the zoomed portion of the
HRTEM image of Cu-MoS2 to reveal 0.265 nm lattice spacing. Figure 3c,e present the FFT
images of the Cu-MoS2 from the HRTEM area, as shown in Figure 3b,d. The FFT images
of the Cu-MoS2 show the lattice plane (100) corresponding to 0.265 nm lattice spacing.
Moreover, the lattice spacing (0.265 nm) and lattice plane (100) of the synthesized Cu-MoS2
are consistent with those of the JCPDS card no. 37-1492, which confirms the hexagonal
crystal structure [41]. In addition, to verify the Cu-doping, color mapping of the Cu-MoS2
is performed and the results are shown in Figure 4a–d. Figure 4a reveals the high-angle
annular dark field-scanning (HAADF) image of the Cu-MoS2, which is used for the color
mapping of Mo, S, and Cu elements. Figure 4b–d exhibit the color mapping of Cu, Mo, and
S elements, which confirms the doping of Cu atoms in the Cu-MoS2.

The oxygen evolution reaction (OER) has a high energy barrier for its four-electron
transfer mechanism, hindering the rate of electrocatalytic reaction kinetics. The electro-
chemical performance of the MoS2 and Cu-MoS2 electrocatalysts for OER is studied by a
three-electrode arrangement in a 1.0 M KOH alkaline medium. Figure 5a depicts the linear
sweep voltammetry (LSV) plots, comparing the characteristics of the MoS2 and Cu-MoS2
catalysts at 5 mV s−1. The LSV plots noticeably elucidate that the Cu-MoS2 catalyst reveals
remarkably higher OER performances than the MoS2 catalyst. Moreover, Figure 5b divulges
the overpotentials of the Cu-MoS2 and MoS2 electrocatalysts. Stimulatingly, the Cu-MoS2
catalyst specifies a smaller overpotential of 290 mV than the MoS2 catalyst of 380 mV. This
reduction in the overpotential of the Cu-MoS2 electrocatalyst is due to the doping of Cu,
which improves electron transport and favorable adsorption energies and reduces the
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energy barrier during the OER process [42,43]. Figure 5c elucidates the Tafel plots of the
Cu-MoS2 and MoS2 electrocatalysts to examine the reaction rate kinetics. It is observed that
the Tafel slope of the Cu-MoS2 electrocatalyst is 101.5 mV dec−1, which is smaller than that
of the MoS2 electrocatalyst at 106.3 mV dec−1. In addition, Figure 5d discloses results of a
stability test performed to estimate the robustness of the Cu-MoS2 catalyst. It is observed
that the initial potential of stability of the Cu-MoS2 catalyst is 1.52 V, which upsurges to
1.54 V after 12 h of the chronopotentiometry test at a current density of 10 mA cm−2. The
outstanding stability of the Cu-MoS2 electrocatalyst is due to its various features, such
as the strong interaction between the Cu-doping atom and host MoS2, the high surface
area, its low susceptibility to structural breakdown, and the decreased deactivation of the
active sites on the Cu-MoS2 electrocatalyst surface [44,45]. The structural stability, such
as mechanical stress; well-created active sites; lack of significant degradation during the
long-term stability test for 12 h; and excellent thermal stability of the nanolayered Cu-MoS2
catalyst were significant [46,47].
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The HER catalytic activities of the Cu-MoS2 and MoS2 electrocatalysts are investigated
using the simple three-electrode process in an alkaline 1.0 M KOH. Figure 6a displays the
linear sweep voltammetry (LSV) plots of the MoS2 and Cu-MoS2 catalysts at a scan rate of
5 mV s−1. As depicted in the LSV plots in Figure 6a, the Cu-MoS2 catalyst unveils superior
hydrogen evolution activities to the MoS2 catalyst. Interestingly, the onset potential of the
Cu-MoS2 catalyst is lower than that of the MoS2 catalyst, which necessitates low energy use
to initiate the electrocatalytic hydrogen evolution reaction [48,49]. Therefore, it is expected
that the Cu-MoS2 catalyst can offer a greater rate of hydrogen generation than the MoS2
catalyst at the same applied potential. Further, Figure 6b presents overpotential plots of the
MoS2 and Cu-MoS2 catalysts, providing vital insight into their electrocatalytic efficiency.
The Cu-MoS2 catalyst illustrates a lower overpotential of 167.7 mV than the MoS2 catalyst,
which has one of 193.4 mV. It is supposed that the Cu-doping might be responsible for the
increased presence of active sites on the Cu-MoS2 electrocatalyst surface [50]. Also, Cu-
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doping in MoS2 can create structural changes in the electronic properties of the Cu-MoS2
catalyst, leading to reduced overpotential [42]. Fascinatingly, Tafel slopes are vital factors in
electrocatalytic hydrogen evolution reactions, offering insightful indications regarding the
reaction kinetics and mechanism [51]. Figure 6c elucidates the Tafel plots of the Cu-MoS2
and MoS2 electrocatalysts to examine their reaction rate kinetics and mechanisms. It is ob-
served that the Tafel slope value of the Cu-MoS2 electrocatalyst is lower, at 121.5 mV dec−1,
than that of the MoS2 catalyst at 124.4 mV dec−1. This reduces the Tafel slope value of the
Cu-MoS2 catalyst, suggesting that low overpotential is necessary to reach −10 mA cm−2.
Interestingly, the doping of the Cu atom can increase the electron transfer capability of
the Cu-MoS2 electrocatalyst and further lower the energy barrier during the HER process.
Moreover, Figure 6d reveals the results of a stability test of the Cu-MoS2 catalyst, performed
to inspect its durability at −10 mA cm−2. Using the chronopotentiometry test, it is observed
that the initial potential of the Cu-MoS2 electrocatalyst is 166.8 mV, and it reaches up to
173.2 mV after 12 h of stability. Excitingly, it can be the intrinsic properties of the 2D-layered
Cu-MoS2 catalyst, such as outstanding chemical stability, surface area, and resistance to
corrosion, which influence the adsorption and desorption process during the 12 h stability
test [52–54].
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10 mA cm−2 for 12 h.



Micromachines 2024, 15, 876 8 of 14

Micromachines 2024, 15, x FOR PEER REVIEW 8 of 14 
 

 

to reach −10 mA cm−2. Interestingly, the doping of the Cu atom can increase the electron 
transfer capability of the Cu-MoS2 electrocatalyst and further lower the energy barrier 
during the HER process. Moreover, Figure 6d reveals the results of a stability test of the 
Cu-MoS2 catalyst, performed to inspect its durability at −10 mA cm−2. Using the chronopo-
tentiometry test, it is observed that the initial potential of the Cu-MoS2 electrocatalyst is 
166.8 mV, and it reaches up to 173.2 mV after 12 h of stability. Excitingly, it can be the 
intrinsic properties of the 2D-layered Cu-MoS2 catalyst, such as outstanding chemical sta-
bility, surface area, and resistance to corrosion, which influence the adsorption and de-
sorption process during the 12 h stability test [52–54]. 

 
Figure 6. Electrocatalytic hydrogen evolution reaction (HER). (a) LSV plots, (b) overpotential, and 
(c) Tafel plots of the MoS2 and Cu-MoS2 catalysts. (d) Stability test of the Cu-MoS2 catalyst at −10 mA 
cm−2 for 12 h. 

Further, we investigated the electrocatalytic activities of the MoS2∥MoS2 cell and Cu-
MoS2∥Cu-MoS2 cell in a two-electrode arrangement (overall water splitting) in 1.0 M KOH 
alkaline. Figure 7a displays the linear sweep voltammetry (LSV) plots of the MoS2∥MoS2 
cell and Cu-MoS2∥Cu-MoS2 cell at 5 mV s−1 in overall water splitting. It is observed that 
Cu-doping in the MoS2 plays a significant role in the shift of the LSV curve toward the 
low-potential side. Figure 7b displays the cell potential in the overall water splitting of the 
MoS2∥MoS2 cell and Cu-MoS2∥Cu-MoS2 at 10 mA cm−2. Fascinatingly, the Cu-MoS2∥Cu-
MoS2 cell shows a small cell potential of 1.69 V compared to the MoS2∥MoS2 cell’s potential 
of 1.81 V in overall water splitting. The low cell potential of the Cu-MoS2∥Cu-MoS2 cell 
compared with MoS2∥MoS2 cell is ascribed to the synergistic influence of Cu-doping in the 
host MoS2. Curiously, the stability of the MoS2∥MoS2 cell is vital for everyday applications 
in overall water-splitting applications, where enduring practical productivity is essential. 

Figure 6. Electrocatalytic hydrogen evolution reaction (HER). (a) LSV plots, (b) overpotential, and
(c) Tafel plots of the MoS2 and Cu-MoS2 catalysts. (d) Stability test of the Cu-MoS2 catalyst at
−10 mA cm−2 for 12 h.

Further, we investigated the electrocatalytic activities of the MoS2∥MoS2 cell and Cu-
MoS2∥Cu-MoS2 cell in a two-electrode arrangement (overall water splitting) in 1.0 M KOH
alkaline. Figure 7a displays the linear sweep voltammetry (LSV) plots of the MoS2∥MoS2
cell and Cu-MoS2∥Cu-MoS2 cell at 5 mV s−1 in overall water splitting. It is observed
that Cu-doping in the MoS2 plays a significant role in the shift of the LSV curve toward
the low-potential side. Figure 7b displays the cell potential in the overall water splitting
of the MoS2∥MoS2 cell and Cu-MoS2∥Cu-MoS2 at 10 mA cm−2. Fascinatingly, the Cu-
MoS2∥Cu-MoS2 cell shows a small cell potential of 1.69 V compared to the MoS2∥MoS2
cell’s potential of 1.81 V in overall water splitting. The low cell potential of the Cu-
MoS2∥Cu-MoS2 cell compared with MoS2∥MoS2 cell is ascribed to the synergistic influence
of Cu-doping in the host MoS2. Curiously, the stability of the MoS2∥MoS2 cell is vital for
everyday applications in overall water-splitting applications, where enduring practical
productivity is essential. Figure 7c parades the stability results after 18 h of processing
the Cu-MoS2∥Cu-MoS2 cell at a 10 mA cm−2 current density in an overall water-splitting
process. Using the chronopotentiometry test, it is observed that the cell potential upsurges
from 1.726 V to 1.75 V during 18 h of testing at 10 mA cm−2. The inset in Figure 7c shows
an optical photograph of the overall water splitting. Remarkably, various factors, including
electrolyte composition, conductivity, ion exchange, corrosiveness, impurity atoms, and pH,
affect the overall water-splitting durability of the Cu-MoS2∥Cu-MoS2 cell during the 18 h
chronopotentiometry test. Furthermore, the doping of the Cu atom in the Cu-MoS2 catalyst
its reduces structural degradation over 18 h of stability and enhances its surface chemistry,
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which can decrease the corrosion of the catalyst, creating excellent synergy between Cu-
atom and MoS2 in the Cu-MoS2 catalyst, improving charge-transfer, and reducing the
energy required to complete the overall water-splitting reaction [55,56].
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(d) schematic presentation of the overall water-splitting mechanism of the Cu-MoS2∥Cu-MoS2

cell. (e) Schematic depiction of the impact of the HER and OER mechanisms on the Cu-MoS2

catalyst surface.

Further, in the Cu-MoS2∥Cu-MoS2 cell, the water-splitting mechanism implicates
both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The
HER mechanism is elaborated in the following Equations (1)–(3) [41,57] and illustrated in
Figure 7e.

Volmer process:
H2O + e− + ∗ → H∗ + OH− (1)
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Heyrovsky process:

H2O + e− + H∗ → H2 + OH− + ∗ (2)

Tafel process:
H∗ + H∗ → H2 (3)

Figure 7e shows the HER mechanism, which follows the Equations (1) and (2) because
the Tafel slope value lies in the range of the Heyrovsky process.

Fascinatingly, the oxygen evolution reaction (OER) is sluggish, and it needs to be
improved using different variations in the electrocatalysts. Generally, the OER is the
adsorption four-electron transfer process. The OER takes place in various steps in alkaline
electrolytes, as shown in the following, Equations (4)–(7) [58,59].

M + OH− → M − OH + e− (4)

M + OH− → M − OH + e− (5)

MO + OH− → MOOH + e− (6)

MOOH + OH− → M + O2 + H2O + e− (7)

In Equation (4), the adsorption of OH– with the active site M onto the Cu-MoS2 electro-
catalyst’s surface generates OH and an electron. In Equation (5), the interaction between OH
and OH– of the Cu-MoS2 electrocatalyst surface and then the bond-breaking process pro-
duce water molecules, oxygen, and an electron. Moreover, the second adsorption process is
discussed in Equation (6), which illustrates the intermediate state OOH, making bonds with
active site M on the Cu-MoS2 electrocatalyst’s surface. Furthermore, the intermediate state
OOH, adsorbed onto the active site M on the Cu-MoS2 surface, further interacts with OH,
which produces water molecules, creates oxygen, and releases an electron as discussed in
Equation (7). Figure 7d,e exposes the schematic illustration of the overall water splitting of
the Cu-MoS2∥Cu-MoS2 cell. Interestingly, the graphic depiction in Figure 7d,e explores the
understanding of the electrocatalytic developments occurring at both the anode (Cu-MoS2)
and cathode (Cu-MoS2) electrodes in 1.0 M KOH. Unusually, protons from electrolytes are
reduced at the cathode (Cu-MoS2) electrode to produce hydrogen energy. However, water
molecules are oxidized at the anode (Cu-MoS2) electrode to produce oxygen, protons, and
electrons. Moreover, Table 1 lists the electrocatalytic results reported works in the literature
for comparison with the present study. The Cu-MoS2 catalyst is observed to be better than
or comparable to the reported results.

Table 1. Comparative study of the electrocatalytic activities of the Cu-MoS2 catalyst with other results
reported from the literature.

S. No. Catalysts Electrolyte Overpotential Stability Ref.

Oxygen Evolution Reaction

1 MoS2 quantum dots 1.0 M KOH 370 mV
(10 mA cm−2)

2 h
(10 mA cm−2) [60]

2 MoS2 nanosheets wrapped
MOF-based Co3O4

1.0 M KOH 230 mV
(10 mA cm−2)

13 h
(10 mA cm−2) [61]

3 Metal–organic-framework-derived
Co9S8-MoS2

1.0 M KOH 270 mV
(10 mA cm−2)

24 h
(10 mA cm−2) [44]

4 MoS2-based hybrid with N-doped
carbon-wrapped CoFe alloy 1.0 M KOH 337 mV

(10 mA cm−2)
24 h

(10 mA cm−2) [62]

5 Cu-MoS2 1.0 M KOH 290 mV
(10 mA cm−2)

12 h
(10 mA cm−2) This work
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Table 1. Cont.

S. No. Catalysts Electrolyte Overpotential Stability Ref.

Hydrogen Evolution Reaction

6 Cu-MoS2/NiS2 1.0 M KOH 105 mV
(−10 mA cm−2) -- [42]

7 W-1T MoS2-15 0.5 M H2SO4
292 mV

(−10 mA cm−2)
14 h

(−10 mA cm−2) [63]

8 Mix-phased 1 T/2 H MoS2 1.0 M KOH 145 mV
(−10 mA cm−2)

24 h
(−10 mA cm−2) [64]

9 AC/MoS2–F 0.5 M H2SO4
136 mV

(−10 mA cm−2)
24 h

(−10 mA cm−2) [65]

10 Cu-MoS2 1.0 M KOH 167.7 mV
(−10 mA cm−2)

12 h
(−10 mA cm−2) This work

Overall water splitting

11 CoS/MoS2||CoS/MoS2 1.0 M KOH
1.61 V

(cell potential)
(10 mA cm−2)

12 h
(10 mA cm−2) [66]

12 MoS2-CoFeLDH/NF||
MoS2-CoFeLDH/NF 1.0 M KOH

1.55 V
(cell potential)
(10 mA cm−2)

48 h
(10 mA cm−2) [23]

13 MoS2/NiFe2O4|| MoS2/NiFe2O4 1.0 M KOH
1.69 V

(cell potential)
(10 mA cm−2)

-- [67]

14 1T-MoS2/Ni3S2/LDH||
1T-MoS2/Ni3S2/LDH 1.0 M KOH

1.55 V
(cell potential)
(10 mA cm−2)

20 h
(10 mA cm−2) [68]

15 Cu-MoS2||Cu-MoS2 1.0 M KOH
1.69 V

(cell potential)
(10 mA cm−2)

18 h
(10 mA cm−2) This work

4. Conclusions

In conclusion, the Cu-MoS2 catalyst, which is synthesized by the simple and scalable
solvothermal method, shows remarkable electrocatalytic activities in the overall water-
splitting application. The Cu-MoS2 catalyst depicts low overpotential and small Tafel
slopes during HER and OER. We also investigate whether the Cu-MoS2 catalyst elucidates
the outstanding stability of OER (at 10 mA cm−2) and HER (at −10 mA cm−2) in a three-
electrode setup. The Cu-MoS2∥Cu-MoS2 cell illustrates excellent stability for 18 h and
a small cell potential of 1.69 V at 10 mA cm−2. Therefore, it is concluded that the Cu-
MoS2∥Cu-MoS2 cell shows enhanced electrocatalytic activities due to Cu doping, resulting
in a lower cell potential and outstanding stability in overall water splitting, which is crucial
for practical applications in renewable energy technologies. Furthermore, variations in the
Cu-doping concentration, the Mo and S precursor concentrations, and the solvothermal
reaction temperature and time need to be further optimized to tailor the morphology and
properties of the Cu-doped MoS2 for various applications, such as in sensors, memory
devices, supercapacitors, batteries, and photocatalysis.
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