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Abstract: This paper presents a gesture-controlled robotic arm system designed for agricultural
harvesting, utilizing a data glove equipped with bending sensors and OptiTrack systems. The system
aims to address the challenges of labor-intensive fruit harvesting by providing a user-friendly and
efficient solution. The data glove captures hand gestures and movements using bending sensors
and reflective markers, while the OptiTrack system ensures high-precision spatial tracking. Machine
learning algorithms, specifically a CNN+BiLSTM model, are employed to accurately recognize hand
gestures and control the robotic arm. Experimental results demonstrate the system’s high precision
in replicating hand movements, with a Euclidean Distance of 0.0131 m and a Root Mean Square Error
(RMSE) of 0.0095 m, in addition to robust gesture recognition accuracy, with an overall accuracy of
96.43%. This hybrid approach combines the adaptability and speed of semi-automated systems with
the precision and usability of fully automated systems, offering a promising solution for sustainable
and labor-efficient agricultural practices.

Keywords: gesture control; robotic arm; agricultural harvesting; data glove; bending sensors;
OptiTrack; machine learning; CNN+BiLSTM; spatial tracking; ergonomic design

1. Introduction

With the continuous growth of the global population, food issues around the world
are becoming increasingly severe. The United Nations Department of Economic and Social
Affairs reported that the world population reached 7.942 billion in 2022, with projections
indicating increases to 8.512 billion by 2030 and 9.687 billion by 2050 [1]. Concurrently, data
from the International Labor Organization reveal a downward trend in the employment in
agriculture, forestry, and fishing, decreasing from approximately 968.475 million in 2010
to about 855.386 million by 2020 [2]. This decline is further compounded by demographic
shifts in developed nations, particularly the aging population issue, which is steadily
eroding the agricultural workforce. A case in point is Japan, where, based on Agricultural
Census data, the number of individuals engaged in agriculture dropped from 1.757 million
in 2015 to 1.363 million in 2020, and the percentage of those aged 60 and above rose from
78.7% to 79.9% [3]. The confluence of a shrinking and aging agricultural workforce, against
the backdrop of a burgeoning global population, portends a looming food crisis.

Mechanization and automation have emerged as pivotal solutions to the crisis faced
in agriculture. Statistical analysis reveals a significant reduction in labor requirements
for China’s three principal cereal crops, decreasing from 13.80 labor days per mu (a unit
of area measurement commonly used in China equivalent to approximately 666.67 m2)
in 1998 to 4.81 labor days per mµ in 2018, marking a substantial decline of 65.14%. In
contrast, advancements in the mechanization and automation of the fruit sector lag behind
those of the grain industry. Labor inputs per mu for apple production saw a decrease
from 48.70 labor days in 1998 to 33.85 labor days in 2018 (a reduction of 14.85 labor days),
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translating to a modest decline of 30.49%. The Ministry of Agriculture and Rural Affairs
of China estimates that the comprehensive mechanization rate for major cereal crops
surpassed 80% in 2018 [4].

At this moment, fruit production is still significantly dependent on human labor,
despite the potential for mechanization in specific segments of the process. The stages that
demand the highest amount of labor include pruning, pollination, bagging, and harvesting,
with the latter being the most labor-intensive. The necessity for such extensive manual
labor stems, mainly due to the irregular spatial growth patterns of many fruits, hinders
the widespread adoption and effectiveness of mechanization and automation technologies.
Although numerous studies have been aimed at developing automated systems for fruit
production, the operational speed of these systems significantly lags behind human per-
formance, and they often come with a steep learning curve [5]. Therefore, this research
focuses on the development of a user-friendly robotic arm controller that enables efficient
fruit harvesting, among other agricultural tasks, through gesture recognition for remote
control, effectively mimicking human actions.

To achieve the aforementioned objectives, efforts must be concentrated on three fronts.
First, we must define and recognize easily executable human hand gestures to control
certain behaviors of the robotic arm, such as power on/off or opening/closing of the end
effector. Second, it is imperative to accurately capture the movement distance of the human
hand and replicate its coordinates for the robotic arm. Third, a system must be established
that processes the aforementioned data and sends control commands to the robotic arm.

Initially, to identify human hand gestures, we fabricated a data glove equipped with
bending sensors at the joints of the hand. This glove is capable of measuring the voltage
changes in the bending sensor detection circuit and transmitting the data to a server. Subse-
quently, by placing three reflective markers on the glove, we employed an OptiTrack system
to acquire motion data. The associated Motive (Body 3.0.1 Final) software computes the
coordinate data and dispatches them to the server. Finally, by executing custom-developed
data transmission and processing software on the server, machine learning and deep learn-
ing algorithms are utilized to recognize the bending sensor data transmitted by the data
glove. This recognition process identifies hand gestures and sends the corresponding
control commands to the robotic arm. Concurrently, the coordinate data received from
the OptiTrack system are converted and relayed as coordinate control commands to the
robotic arm.

Existing solutions and their limitations can be summarized as follows:

• Fully automated systems: These systems promise reduced human labor but suffer
from slow operational speeds, inefficiencies in adapting to various crop types and
environmental conditions, and high initial and maintenance costs.

• IMU-based data gloves: While enhancing interactivity between human operators and
robotic systems, these gloves are prone to drift errors and require complex calibration,
affecting precision crucial for tasks like fruit harvesting.

• OptiTrack systems: Despite offering superior accuracy and lower latency, they face
challenges in environments with potential obstructions to the line of sight, leading to
inaccuracies in gesture recognition.

The contributions in this paper can be summarized as follows:

• An integrated system combining bending sensors and an OptiTrack system was
developed for precise gesture recognition and spatial tracking.

• The convenience and accuracy of robotic control were enhanced through advanced
hand gesture recognition.

• By leveraging the complementary strengths of bending sensors and the OptiTrack
system, issues associated with IMU-based data gloves, such as spatial coordinate
drift, were mitigated, and the keypoint loss problem in OptiTrack’s hand movement
tracking was addressed.
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The remainder of this paper is structured as follows. This work is compared with other
data gloves and robotic arm control systems, discussing the systematic design choices made
in both hardware and software aspects. Moreover, the paper evaluates the gesture accuracy
of several research subjects and the response speed of the robotic arm to movement and
gesture recognition, followed by a discussion of the results. The final chapter summarizes
the main findings in this work and provides an outlook on future research.

2. Related Works

The automation of fruit harvesting has seen various technological interventions, pri-
marily categorized into fully automated systems and semi-automated systems that incor-
porate human operators. The development of fully automated fruit harvesting robots,
such as those discussed by Yoshida et al. (2022) [5] and Majeed et al. (2022) [6], has pri-
marily focused on providing a complete mechanization solution that promises to reduce
human labor. However, these systems are often hampered by slow operational speeds and
inefficiencies, particularly when adapting to diverse types of crops or varying environmen-
tal conditions. The high initial setup and maintenance costs, coupled with their limited
flexibility, render these systems less feasible for widespread adoption.

In contrast, data gloves equipped with Inertial Measurement Units (IMUs) represent
a significant advancement in enhancing the interactivity between human operators and
robotic systems. Lu et al. (2023) [7] provided detailed hand-tracking capabilities such de-
vices, which offer real-time spatial tracking and have been utilized in various applications,
ranging from virtual reality to interactive robotics. Despite their versatility, IMUs are prone
to drift errors and often require complex calibration procedures to maintain accuracy, as
highlighted by Lin et al. (2018) [8] and Rodić et al. (2023) [9]. These limitations significantly
impact the precision required for tasks like fruit harvesting, where delicate handling and
exact positioning are crucial.

To address the spatial tracking issues inherent in IMU systems, OptiTrack systems
have been employed due to their use of high-precision cameras and reflective markers
for motion tracking. This technology offers superior accuracy and lower latency com-
pared to IMU-based systems, making it suitable for applications requiring high precision.
However, as noted by the Comparative Analysis of OptiTrack Motion Capture Systems
(2018) [10], these systems can face challenges in environments where the line of sight can
be obstructed, leading to inaccuracies in gesture recognition. Such occlusions, common in
outdoor agricultural settings, can significantly reduce the efficacy of tracking systems.

Table 1 below provides a comparison of various data gloves based on their perfor-
mance metrics for hand gesture recognition. It includes details about the type of sensors
used for detecting hand gestures and positioning, the cost of the gloves, and the correspond-
ing references. While commercial systems such as HaptX, Manus Meta, and TactGlove DK2
may appear more robust, they are not necessarily smaller or cheaper. Our glove costs ap-
proximately USD 100 and could be even more affordable in mass production. Additionally,
it is important to note that TactGlove DK2, while being the least expensive option, does not
inherently possess any gesture recognition or positioning capabilities. It relies entirely on
external VR cameras for these functions, which contributes to its lower price.

Table 1. Comparison of data gloves for hand gesture recognition.

Data Glove Hand Gesture Sensor Hand Position Sensor Glove Costs Reference

MIMU data glove IMU sensor IMU sensor USD 200 [7]
Inertial sensor-based
data glove IMU sensor IMU sensor USD 500 [8]

HaptX Gloves G1 (HaptX Inc., Seattle, WA, USA) IMU sensor Magnetic capture
system USD 5495 [11]
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Table 1. Cont.

Data Glove Hand Gesture
Sensor

Hand Position
Sensor Glove Costs Reference

XSENS PRIME 3 (MANUS Meta., Eindhoven, The Netherlands) IMU and
bending sensor

VR device
camera USD 4000 [12]

TactGlove DK2 (bHaptics, Daejeon, Republic of Korea) VR device
camera

VR device
camera USD 250 [13]

Bending sensor and
OptiTrack-based data glove Bending sensor OptiTrack

system USD 100 This work

In recent years, deep learning algorithms have made significant breakthroughs in
sensor-based gesture recognition. For instance, Guan Yuan et al. [14] proposed a hand
gesture recognition system using a deep feature fusion network based on wearable sen-
sors. This glove includes two armbands and an integrated three-dimensional bending
sensor capable of capturing fine-grained movements of the entire arm and all finger
joints, with an LSTM model using fused feature vectors as input, yielding excellent results.
Yongfeng et al. [15] proposed a dynamic gesture recognition algorithm (DGDL-GR), which
achieved promising results by capturing finger movements and bending data. Jiawei Wu
et al. [15] further advanced this field by introducing a gesture recognition method that
combines Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term
Memory networks (BiLSTMs), incorporating an attention mechanism to enhance recog-
nition accuracy and robustness. Additionally, Yang Song et al. [16] utilized a wearable
wrist sensor made from flexible pressure sensors integrating CNN and BiLSTM models for
gesture recognition, demonstrating the potential of this approach. These methods not only
capture complex finger movements and bending degrees but also achieve precise gesture
recognition through deep learning algorithms. The combination of the powerful feature
extraction capabilities of CNNs and the sensitivity of BiLSTMs to temporal information
significantly enhances the performance of gesture recognition systems based on bending
sensors. These advancements highlight the crucial role of deep learning algorithms in
improving the accuracy and robustness of gesture recognition systems.

Furthermore, recent advancements in machine learning and sensor technology
have opened new avenues for enhancing these hybrid systems. As demonstrated
by Ran Bi (2023) [17], integrating machine learning algorithms with sensor data can
significantly improve the adaptability and efficiency of gesture recognition systems,
paving the way for more responsive and intuitive control mechanisms in agricultural
robotics.This hybrid approach addresses the critical shortcomings of fully automated
systems, such as adaptability and speed, while overcoming the spatial accuracy and
occlusion issues prevalent in traditional data glove systems. For example, combining
vision and bending sensor data can enhance recognition performance. The multi-modal
fusion gesture recognition system proposed by Lu et al. (2021) [18] successfully inte-
grates camera data and data glove data, improving the recognition rate of gestures
under occlusion. However, the introduction of video data results in higher compu-
tational costs. The integration of these technologies presents a promising avenue for
developing more efficient and flexible robotic solutions for fruit harvesting, potentially
transforming agricultural practices to be more sustainable and less labor-intensive.

Moreover, the human–robot interaction (HRI) aspect of semi-automated systems,
which is crucial for tasks requiring high levels of precision and adaptability, has not been
fully explored. Current systems often do not account for the ergonomic and cognitive loads
placed on human operators, which can affect the overall efficiency and adoption of these
technologies. As highlighted by Rodić et al. (2023) [9], enhancing the intuitive aspects of
human–machine interfaces and reducing the cognitive burden through better design and
integration of feedback mechanisms are critical areas needing attention.
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In light of these challenges, this study proposes a novel hybrid approach that combines
the OptiTrack system with bending sensors integrated into a data glove. This method not
only leverages the high spatial accuracy of OptiTrack but also incorporates the flexibility
and resilience of bending sensors to provide robust gesture recognition. even in complex
and dynamic agricultural environments. This approach effectively bridges the gap between
the adaptability and speed of fully automated systems and the accuracy and usability of
semi-automated systems.

3. System Architecture and Design
3.1. Overview

Figure 1 shows the system architecture, which consists of the following three main
components: the robotic arm controller, the server, and the robotic arm. The robotic arm
controller consists of the data glove, six OptiTrack cameras, and a video monitor. The
data glove has ten bending sensors for gesture recognition and three reflective markers for
captured hand coordinates. The server side consists of three different programs; Motive is
responsible for processing the video data from the OptiTrack camera and converting it into
coordinate data, the gesture recognition program is responsible for decoding the received
data and sending the recognized results to the data processing program, the data processing
program sends the control commands to the robotic arm based on the recognized results,
and the data between the programs are exchanged through sockets. The arm is controlled
by a built-in Raspberry Pi, which operates six joint motors and end effectors after receiving
the control commands. The robotic arm is also equipped with a Wi-Fi camera, which is
used to remotely transmit the real-time image to the video monitor of the controller.

Figure 1. System block diagram. Solid arrows means that the data are transmitted through a wire,
dashed arrows mean that the data are transmitted wirelessly, and dotted arrows mean that the data
are transmitted within the system.

3.2. Hardware Design
3.2.1. Data Glove

The data glove contains ten BS-65 bending sensors from Sensia Technology, three
reflective markers provided by the OptiTrack system, and a custom-built board with
resistance detection and charging/discharging circuits powered by an ESP32-S3 micro-
controller (Espressif Systems, Shanghai, China) .

The response curve of the BS-65 bending sensor is shown in Figure 2. Its resistance
is 20 kΩ ± 10% when unbent and changes from about +250% to −40% when bent. We
followed the method described by A. K. Bose et al. [19] to test the impact of stress on this
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bending sensor. The calculated results are presented as follows: at 5 N, ∆R/R = 0.585;
at 10 N, ∆R/R = 1.269; at 15 N, ∆R/R = 2.253; at 20 N, ∆R/R = 3.194. To avoid the
influence of stress on the bending sensor’s readings, we fixed only one end of the sensors to
the glove during its fabrication, allowing the sensor to move freely within a certain range.

(a) (b)
Figure 2. BS-65 bending sensor response curve. When bent in the direction that stretches the sensor
surface, the resistance increases. When bent in the direction that compresses the sensor surface, the
resistance decreases. (a) Tensile strength of the sensor surface. (b) Compressive strength of the sensor
surface.

Figure 3 shows the custom-designed ESP32 board, which includes battery charg-
ing/discharging management, Wi-Fi data transmission, Real-Time Clock (RTC), and
Analog-to-Digital Conversion (ADC) functions. The board’s through holes are specially
designed. It has larger, oval-shaped solder pads and holes to facilitate easy attachment to
the data glove through sewing.

ESP32S3-WROOM1
(Wi-Fi and ADC)

Operational Amplifier

RTC

Battery Management

specially designed
through-holes

Figure 3. The custom-designed ESP32 board. The board features an ESP32S3-WROOM1 module (left)
for Wi-Fi and ADC functionalities, operational amplifiers (U7, U8, and U9), a real-time clock (U5),
and a battery management system (U3).

Figure 4 shows the data glove equipped with bending sensors and OptiTrack reflective
markers. The reflective markers, small spheres made of reflective material, efficiently reflect
infrared light emitted by the OptiTrack system’s cameras, allowing for precise position
tracking. These markers are attached to the data glove using Velcro straps. The glove
itself is integrated with bending sensors sewn into the fabric to accurately measure hand
movements.
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Figure 4. Bending sensor data glove, consisting of ten bend sensors fixed on cloth.

Figure 5 shows the resistance measurement circuit on the ESP32 board; Figure 5a is
an inverted signal amplifier circuit used to convert the change in measured resistance to a
change in voltage for easy measurement with the following formula:

Vout = −
R f b

Rbs
× Vre f (1)

where Vout represents the output voltage, which is directly connected to the AD conversion
pin of the ESP32; Rbs is the resistance of the bending sensor; R f b is the feedback resistor of
the inverting signal amplification circuit; and Vre f is the reference voltage at the output of
the circuit shown in Figure 5b.

The reference voltage circuit consists of a resistor divider circuit and a voltage follower,
and the value of Vre f is calculated by the following formula:

Vre f =
R1

R1 + R2
× Vdd (2)

where Vdd is 3.3 V, serving as the system’s supply voltage. The system is powered by a
battery and includes an LDO chip (Texas Instruments TLV75733). R1 and R2 are the resistors
in the voltage divider circuit, with resistance values of 1.8 kΩ and 200 Ω, respectively.

(a) (b)
Figure 5. The resistance measurement circuit; these circuits are used to measure and convert resistance
changes in the bending sensor to voltage changes for easy measurement. (a) The inverting signal
amplifier circuit. (b) The reference voltage circuit.

The circuit depicted in Figure 5 was simulated using PSpice for TI 17.4-2023, with the
results presented in Figure 6. The simulations varied the feedback resistor (R f b) at values
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of 90 kΩ, 110 kΩ, and 130 kΩ, while the bending sensor resistance (Rbs) ranged from 10 kΩ
to 60 kΩ. The output voltage (Vout) exhibited significant differences under these conditions.
Given that the minimum resistance of Rbs is approximately 14 kΩ, utilizing a 130 kΩ R f b
might position the operating point within a cutoff region, while a 90 kΩ R f b could result in
insufficient sensitivity when R f b exceeds 50 kΩ. After a comprehensive evaluation, an R f b
value of 110 kΩ was determined to optimize both the measurement range and sensitivity,
ensuring a balanced operational profile.

10k 20k 30k 40k 50k 60k
0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
ou

t (
V

)

Rbs (Ω)

 Rfb=90kΩ
 Rfb=110kΩ
 Rfb=130kΩ

Figure 6. The output voltage (Vout) versus the resistance of the bending sensor (Rbs) for different
feedback resistor values (R f b) in the inverting signal amplifier circuit. The graph shows the response
curves for R f b values of 90 kΩ (black), 110 kΩ (red), and 130 kΩ (blue).

3.2.2. Robotic Arm

The utilized robotic arm is a commercially available model from Elephant Robotics.
As illustrated in Figure 7, myCobot 320 Pi adopts a Raspberry Pi microprocessor. Its body
weights 3 kg with a load of 1 kg and a working radius of 320 mm. A total of six degrees
of freedom can be achieved using this robotic arm. The end effector shown in Figure 10
would be considered an additional degree of freedom, as it can close its claws there by
cutting in the desired way.

3.3. Software Design

As illustrated in Figure 8, due to variations in sampling rates across different devices,
linear processing methods can lead to significant latency. To reduce the overall system
delay, the software design is segmented into four specialized programs.

The ESP32 board program (C#, Visual Studio 2022 IDE) leverages the ADC functional-
ity of the ESP32 and the circuit detailed in Figure 5 to read voltage values from bending
sensors and transmit them to the server. The deep learning program(Python 3.12.4) is
tasked with importing real-time data into a pre-trained model and exporting the outcomes.
The data process program(C, Arduino IDE 2.3.2) oversees data processing and exchange
within the entire system, transmitting sensor data from the data glove to the deep learning
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program and converting the results from the deep learning program into control commands
for the robotic arm program. Additionally, it translates coordinate data from OptiTrack
into further control commands. The robotic arm program forwards these commands to the
motor and end effector, calculating delays via a connected RTC. All four components are
designed to operate simultaneously upon system startup.

(a) (b)
Figure 7. Schematic diagram of the robotic arm showing its dimensions and range of motion. (a) The
figure illustrates the lengths of each segment of the robotic arm and their respective joints (J1 to J6),
with measurements provided in millimeters. (b) The figure illustrates the range of motion.

Figure 8. System architecture and data flow for the gesture-controlled robotic arm. The architecture
comprises the following four main programs: the ESP32 board program, data processing program,
deep learning program, and robotic arm program.

3.4. Proportion Calculation for Elimination of Systematic Errors

To address and eliminate systematic errors in the robotic arm, it is essential to account
for any potential delay between the coordinates of the human hand and the robotic arm.
This delay can be calculated based on the sampling frequency and time differences observed
in the data.
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First, the data are aligned by shifting the robotic arm’s coordinate data forward by
the calculated number of frames. This temporal alignment ensures that the data from the
robotic arm correspond accurately to the data from the human hand.

To further eliminate systematic errors, the proportion factors between the coordi-
nates of the robotic arm and the human hand are computed using linear regression.
This method involves finding the best-fitting line that minimizes the sum of squared
differences between the observed values and the values predicted by the model. The
linear regression equations are

xm = kx · xh + bx

ym = ky · yh + by

zm = kz · zh + bz,

(3)

where xm, ym, and zm are the coordinates of the robotic arm; xh, yh, and zh are the coordi-
nates of the human hand; kx, ky, and kz are the proportion factors; and bx, by, and bz are the
biases for the X, Y, and Z coordinates, respectively.

The linear regression model is fitted to determine the proportion factors and biases.
This fitting process helps to precisely model and correct the relationship between the
coordinates of the robotic arm and the human hand, thereby eliminating systematic errors
in the robotic arm’s movements.

3.5. Deep Learning Models for Gesture Recognition

In the development of the hand gesture recognition system for robotic control, experi-
ments were conducted with three deep learning structures, namely LSTM, BiLSTM, and a
combination of CNN with BiLSTM.

LSTMs are ideal for this application because they handle sequences, such as the
readings from the glove’s bend sensors, by retaining information for extended durations.
This capability is crucial for predicting sequences of hand positions.

BiLSTMs build on LSTMs by analyzing sequences both from the beginning to the end
and vice-versa. This two-way analysis is better for recognizing complex gestures, as it
considers what comes before and after in a sequence.

This combined model, CNN+BiLSTM, starts with CNN layers that pull out important
spatial features from sensor data, then passes these on to BiLSTM layers. This mix is
particularly effective at capturing patterns related to both space and time, which helps
make recognition more accurate and reliable.

As shown in Figure 9, the sensor data first pass through a 1D CNN layer, which detects
important spatial patterns, specifically the relationship between the curved sensors in a
frame. Batch normalization ensures that the model learns efficiently and consistently.

Next comes a Leaky ReLU activation function, which introduces non-linearity. This
means the network can learn more complex patterns, which is essential for differentiating
subtle hand movements.

Two BiLSTM layers form the core of the setup. They are adept at understanding
long-term patterns in the sensor data, considering what comes both before and after in a
sequence. This provides a strong foundation for accurately classifying gestures.

Another batch normalization and Leaky ReLU set up the final BiLSTM layer. This is
crucial when recognizing complex gestures that change significantly over time. This hybrid
approach effectively captures both spatial and temporal features, significantly improving
the recognition accuracy and robustness against noisy data. However, due to the increase
in model expressiveness, the risk of overfitting is exacerbated.
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Figure 9. CNN+BiLSTM network architecture.

4. Experiments and Results

The system primarily achieves the following two functions: following the trajectory of
hand movements with the end effector of the robotic arm and recognizing hand gestures to
execute corresponding functions. Therefore, the validation of the two experiments focuses
on the spatial trajectory error between the hand and the robotic arm and the accuracy of
hand gesture recognition.

4.1. Experiment 1: Spatial Trajectory Error

In this experiment, data were collected for one minute of back-and-forth movement
along each motion axis, as shown in Figure 10, totaling 3 min and including 1800 frames of
data. For the spatial trajectory, the displacement ratio between the hand and the robotic
arm was adjusted to be one to one. A marker was also placed on the end-effector of the
robotic arm to track its trajectory. The errors between the trajectories of the hand and the
robotic arm were then compared.
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Figure 10. Experimental setup showing a hand wearing the data glove and the robotic arm.

To address and eliminate systematic errors in the robotic arm, as shown in Figure 11, it
is essential to evaluate the stability of the delay between the coordinates of the human hand
and the robotic arm. Based on the collected delay data, several statistical measures were
computed to assess this stability. The mean delay was found to be 0.325 s, representing the
average time difference between the movements of the human hand and the corresponding
response of the robotic arm. The standard deviation of the delays was 0.0625 s, indicating
the amount of variation or dispersion from the average delay. A lower standard deviation
suggests that the delays are more consistent. Additionally, the interquartile range (IQR) of
the delays was calculated to be 0.09 s, reflecting the range within which the middle 50% of
the delay values fall. The IQR is a robust measure against outliers, providing a clear picture
of the variability in the delays. The first quartile (Q1) was 0.275 s, and the third quartile
(Q3) was 0.365 s. These statistical measures collectively demonstrate the effectiveness of
the delay correction process in achieving stable and predictable synchronization between
the human hand and the robotic arm.

To evaluate the spatial trajectory error between the hand and the mechanical hand, the
following three metrics were calculated: mean Euclidean distance, the standard deviation
of the Euclidean distance, and root mean square error (RMSE). These metrics provide a
quantitative assessment of the accuracy and precision of the mechanical hand’s movements
in replicating the intended hand gestures.

The Euclidean distance measures the straight-line distance between corresponding points
on trajectories of the hand and the mechanical hand. It is a direct measure of the deviation at
each time point. The Euclidean distance is calculated using the following formula:

E =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (4)

RMSE provides an aggregated measure of the overall error by considering the squared
differences between the trajectories of the hand and mechanical hand, thereby giving more
weight to larger errors. RMSE is calculated using the following formula:

RMSE =

√
1
n

n

∑
i=1

[(x1i − x2i )
2 + (y1i − y2i )

2 + (z1i − z2i )
2] (5)
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where (x1, y1, z1) are the coordinates of the hand and (x2, y2, z2) are the coordinates of the
end effector.

The results of this experiment demonstrate that the mean Euclidean distance between
the hand and the mechanical hand is 0.0131 m, while the root mean square error (RMSE) is
0.0095 m. Additionally, the standard deviation of the Euclidean distance is 0.0100 m.

These results indicate a high level of precision in the mechanical hand’s ability to
replicate the intended hand movements, with minimal deviation and error.

Figure 11. Data comparison before and after eliminating systematic errors. (a) Discrepancies between
the robotic arm and human hand coordinates. (b) Corrected data demonstrating improved alignment
after addressing systematic errors.

4.2. Experiment 2: Hand Gesture Recognition Accuracy

In the second experiment, the accuracy of hand gesture recognition was evaluated. A
dataset was amassed comprising seven types of hand gestures with a temporal dimension,
as shown in Figure 12. These gestures include rest, show 1 (index finger up), show 2 (index
and middle fingers up), claw, fist, pinch with index finger and thumb, and all-finger pinch.
Each gesture was recorded at a sampling rate of 100 Hz for a 2 s duration, ensuring a variety
of temporal states and initiating positions were captured. Each gesture was performed
ten times under ten distinct conditions, resulting in 100 data samples per gesture and a
comprehensive total of 1400 s of data.

The collected data were meticulously divided into training, validation, and testing
sets with a ratio of 6:2:2. This split was designed to provide a robust training framework
while retaining sufficient data for effective model validation and testing.

In terms of model training, a low learning rate of 0.00001 was set to fine tune the
network’s adjustments during learning. ’Sparse categorical cross entropy’ was utilized
as the loss function due to its suitability for multi-class classification tasks. The Adam
optimizer facilitated the learning process over 300 epochs, with dropout implemented to
combat overfitting. The model learned to discern the subtleties between different hand
gestures, which is critical for accurate classification.
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Figure 12. Gestures: ① rest, ② show 1, ③ show 2, ④ claw, ⑤ fist, ⑥ pinch with index finger and thumb,
and ⑦ all-finger pinch.

This meticulous approach to data collection and the deliberate choice of model pa-
rameters were fundamental in developing a hand gesture recognition system capable of
interpreting nuanced human gestures for the control of robotic hands.

In this experimental setup, each model was trained and validated on a dataset compris-
ing seven distinct hand gestures. The CNN+BiLSTM model outperformed the standalone
LSTM and BiLSTM models in terms of accuracy and processing speed. This superior
performance can be attributed to its ability to leverage both spatial and temporal dynamics,
which is critical for dynamic and accurate gesture recognition in real-time applications.

The performance of three different models for hand gesture recognition was compared,
namely CNN+BiLSTM, BiLSTM, and LSTM. The CNN+BiLSTM model exhibited the high-
est performance, achieving an accuracy of 0.9500, a precision of 0.9531, a recall of 0.9500,
and an F1 score of 0.9503. As shown in Table 2, this model, with 365,511 total parameters,
effectively recognized and classified the various hand gestures. The combination of convo-
lutional neural networks (CNNs) for feature extraction and bidirectional long short-term
memory (BiLSTM) networks for temporal dependencies allowed the model to capture the
intricate details of hand gestures, thus demonstrating its superior capability in this task.

Table 2. Performance metrics of different models for hand gesture recognition.

Accuracy Precision Recall F1-Score Total Parameters

CNN+BiLSTM 0.9643 0.9669 0.9643 0.9642 365,511
BiLSTM 0.8857 0.8908 0.8857 0.8821 80,071
LSTM 0.6929 0.7229 0.6929 0.6878 19,655

The BiLSTM model was less complex than the CNN+BiLSTM model yet still main-
tained high classification performance. The reduction in model complexity did not sig-
nificantly compromise its accuracy, making it a viable option for applications requiring a
balance between performance and computational efficiency.

In contrast, the LSTM model, having only 19,655 parameters, demonstrated the limita-
tions of a simpler architecture in accurately recognizing hand gestures. While it required
less computational power, its significantly lower performance highlights the necessity
of more sophisticated models like CNN+BiLSTM or BiLSTM for tasks demanding high
precision and reliability in gesture recognition.

The confusion matrix shows that the CNN+BiLSTM model achieves high accuracy
across most hand gesture categories, with gestures 0, 4, 5, and 6 classified correctly 100% of
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the time. Minor misclassifications occur in gestures 1, 2, and 3, indicating similarities that
make them harder to distinguish. Overall, the model demonstrates robust performance,
with a majority of gestures being accurately classified.

As shown in Figures 13 and 14, the confusion matrix shows that the CNN+BiLSTM
model achieves high accuracy across most hand gesture categories, with gestures 0, 4, 5,
and 6 classified correctly 100% of the time. Minor misclassifications occur for gestures 1,
2, and 3, indicating similarities that make them harder to distinguish. Overall, the model
demonstrates robust performance, with a majority of gestures being accurately classified.

Figure 13. CNN+BiLSTM confusion matrix. (The darker the blue, the higher the recognition rate
percentage).

Figure 14. CNN+BiLSTM loss and accuracy.
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The training and validation loss and accuracy graphs indicate effective learning with
minimal overfitting. Both training and validation loss decrease smoothly, while the accuracy
curves rise and stabilize close to each other, reflecting strong generalization to unseen
data. These results highlight the model’s capability for accurate and reliable hand gesture
recognition, making it suitable for real-world applications.

5. Discussion and Conclusions

The results of this study indicate that combining bending sensors and OptiTrack sys-
tems in a data glove to control a robotic arm in agricultural harvesting offers significant
advantages over traditional methods. This hybrid approach addresses the critical short-
comings of fully automated systems, such as adaptability and speed, while overcoming
the spatial accuracy and occlusion issues prevalent in traditional data glove systems. The
integration of these technologies presents a promising avenue for developing more efficient
and flexible robotic solutions for fruit harvesting, potentially transforming agricultural
practices to be more sustainable and less labor-intensive.

Experiment 1 demonstrated that the spatial trajectory error between the hand and the
robotic arm was minimal. By evaluating the Euclidean distance and root mean square error
(RMSE), it was found that the robotic arm was able to closely follow the hand movements
with a mean Euclidean distance of 0.0131 m, a standard deviation of the Euclidean distance
of 0.0100 m, and an RMSE of 0.0095 m. This high level of precision indicates that this
system can accurately replicate intended hand movements, which is crucial for delicate
tasks like fruit harvesting.

The CNN+BiLSTM model outperformed both the standalone LSTM and BiLSTM
models, achieving the highest accuracy, precision, recall, and F1-score in Experiment 2.
This superior performance can be attributed to the model’s ability to leverage both spatial
and temporal dynamics, which is crucial for dynamic and accurate gesture recognition in
real-time applications. Confusion matrix analysis revealed high accuracy across most hand
gesture categories, with minor misclassifications occurring in gestures that are inherently
similar, indicating the robustness of the model.

One of the key insights from this study is the necessity to balance model complexity
and computational efficiency. While the CNN+BiLSTM model demonstrated the highest
performance, the BiLSTM model, despite being less complex, maintained high classification
performance, making it a viable option for applications where computational resources are
limited. In contrast, the LSTM model, with its simpler architecture, was less effective in
accurately recognizing hand gestures, highlighting the need for more sophisticated models
in tasks demanding high precision and reliability.

The ergonomic aspect of the data glove was also a critical consideration. By integrating
OptiTrack systems with bending sensors in a user-friendly design, the goal was to minimize
the cognitive load on operators while maximizing the system’s adaptability and efficiency.
This integration not only improved gesture recognition accuracy in complex environments
but also enhanced the ergonomic experience, making it more practical for everyday use by
agricultural workers.

In conclusion, this research demonstrates that a gesture-controlled robotic arm using a
data glove with bending sensors and OptiTrack systems is a feasible and effective solution
for agricultural harvesting. The hybrid approach leverages the strengths of both technolo-
gies, offering high precision, adaptability, and user-friendly operation. The CNN+BiLSTM
model proved to be the most effective in gesture recognition, underscoring the importance
of combining spatial and temporal analysis for accurate and reliable performance.

Future research should focus on further refining the ergonomic design of the data
glove to reduce operator fatigue and enhance usability. Additionally, exploring other ma-
chine learning models and integrating advanced sensor technologies could further improve
the system’s accuracy and efficiency. Future work should aim to integrate OptiTrack with
IMUs, enabling the system to switch to IMU-based operation when visual localization is
lost, ensuring continuous functionality. In addition to this integration, the system might
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face challenges such as occlusion and varying light conditions, affecting the reflective
markers within the indoor environment. For instance, equipment or other objects might
block the line of sight to the markers, or shadows cast by moving equipment could impact
marker visibility. To overcome these challenges, employing multi-sensor fusion technology,
such as by combining data from IMUs and cameras, could enhance the system’s robustness.
Furthermore, integrating temperature and humidity sensors to provide real-time calibration
of the MEMS bending sensors can help eliminate the influence of environmental factors on
sensor accuracy, ensuring consistent performance. Finally, field trials in diverse agricul-
tural environments are essential to validate the system’s performance under real-world
conditions and identify any areas for improvement.

By addressing these aspects, more sophisticated, reliable, and user-friendly robotic so-
lutions can be developed that will significantly contribute to the automation of agricultural
tasks, thereby addressing labor shortages and increasing the efficiency and sustainability of
food production.

Author Contributions: Conceptualization, Z.Y. and L.J.; methodology, Z.Y.; software , Z.Y., C.L., and
Y.Z.; validation, Z.Y. and C.L.; data curation, C.L.; writing—original draft preparation, Z.Y. and C.L.;
writing—review and editing, L.J.; visualization, Z.Y.; supervision, L.J.; project administration, L.J.;
funding acquisition, L.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number 22K12114, the JKA Foundation,
and NEDO Intensive Support for Young Promising Researchers Grant Number JPNP20004.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of

Results. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/
wpp2022_summary_of_results.pdf (accessed on 13 February 2024).

2. International Labour Organization. ILO Modelled Estimates Database. 2022. Available online: https://ilostat.ilo.org/data/
(accessed on 14 February 2024).

3. Ministry of Agriculture Forestry and Fisheries. Census of Agriculture and Forestry in Japan Census Results Report. 2020.
Available online: https://www.e-stat.go.jp/en/stat-search/files?stat_infid=000032172307 (accessed on 14 February 2024).

4. Zhang, X.; Du, L.; Zhu, Q. The Changes in the Patterns of Labor Use, Supervision over Hired Labor, and Agricultural
Transformation: A Comparison between Grain and Fruit Production. Rural China 2022, 19, 159–180. [CrossRef]

5. Yoshida, T.; Onishi, Y.; Kawahara, T.; Fukao, T. Automated harvesting by a dual-arm fruit harvesting robot. Robomech J. 2022, 9,
19. [CrossRef]

6. Majeed, Y.; Zhang, Y. In-Depth Evaluation of Automated Fruit Harvesting in Unstructured Environments. Machines 2022, 12, 151.
[CrossRef]

7. Lu, C.; Dai, Z.; Jing, L. Measurement of Hand Joint Angle Using Inertial-Based Motion Capture System. IEEE Trans. Instrum.
Meas. 2023, 72, 9503211. [CrossRef]

8. Lin, J.; Lee, J. Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation. Sensors 2018, 18, 1545. [CrossRef]
9. Rodic, A.; Stancic, A. Analysis of Sensor Data and Machine Learning Models for Gesture Recognition. In Proceedings of the 2023

8th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 20–23 June 2023. [CrossRef]
10. Furtado, J.S.; Liu, H.H.T.; Lai, G.; Lacheray, H.; Desouza-Coelho, J. Comparative Analysis of OptiTrack Motion Capture

Systems. In Proceedings of the Symposium on Mechatronics, Robotics, and Control (SMRC’18)—Canadian Society for Mechanical
Engineering International Congress 2018, Toronto, ON, Canada, 27–30 May 2018.

11. HaptX Inc. HaptX Gloves G1. 2024. Available online: https://haptx.com/gloves-g1/ (accessed on 30 June 2024).
12. MANUS Meta. XSENS PRIME 3. 2023. Available online: https://www.manus-meta.com/products/prime-3-haptic-xr (accessed

on 30 June 2024).
13. bHaptics Inc. TactGlove DK2. 2024. Available online: https://www.bhaptics.com/tactsuit/tactglove/ (accessed on 30 June 2024).
14. Yuan, G.; Liu, X.; Yan, Q.; Qiao, S.; Wang, Z.; Yuan, L. Hand Gesture Recognition Using Deep Feature Fusion Network Based on

Wearable Sensors. IEEE Sensors J. 2021, 21, 539–547. [CrossRef]
15. Dong, Y.; Liu, J.; Yan, W. Dynamic Hand Gesture Recognition Based on Signals from Specialized Data Glove and Deep Learning

Algorithms. IEEE Trans. Instrum. Meas. 2021, 70, 2509014. [CrossRef]

https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
https://ilostat.ilo.org/data/
https://www.e-stat.go.jp/en/stat-search/files?stat_infid=000032172307
http://doi.org/10.1163/22136746-12341285
http://dx.doi.org/10.1186/s40648-022-00233-9
http://dx.doi.org/10.3390/machines12030151
http://dx.doi.org/10.1109/TIM.2023.3237821
http://dx.doi.org/10.3390/s18051545
http://dx.doi.org/10.23919/SpliTech58164.2023.10192932
https://haptx.com/gloves-g1/
https://www.manus-meta.com/products/prime-3-haptic-xr
https://www.bhaptics.com/tactsuit/tactglove/
http://dx.doi.org/10.1109/JSEN.2020.3014276
http://dx.doi.org/10.1109/TIM.2021.3077967


Micromachines 2024, 15, 918 18 of 18

16. Song, Y.; Liu, M.; Wang, F.; Zhu, J.; Hu, A.; Sun, N. Gesture Recognition Based on a Convolutional Neural Network–Bidirectional
Long Short-Term Memory Network for a Wearable Wrist Sensor with Multi-Walled Carbon Nanotube/Cotton Fabric Material.
Micromachines 2024, 15, 185. [CrossRef]

17. Bi, R. Sensor-based gesture recognition with convolutional neural networks. In Proceedings of the 3rd International Conference
on Signal Processing and Machine Learning, Wuhan, China, 31 March–2 April 2023; Volume 4.

18. Lu, C.; Kozakai, M.; Jing, L. Sign Language Recognition with Multimodal Sensors and Deep Learning Methods. Electronics 2023,
12, 4827. [CrossRef]

19. Bose, A.K.; Zhang, X.; Maddipatla, D.; Masihi, S.; Panahi, M.; Narakathu, B.B.; Bazuin, B.J.; Williams, J.D.; Mitchell, M.F.; Atashbar,
M.Z. Screen-Printed Strain Gauge for Micro-Strain Detection Applications. IEEE Sens. J. 2020, 20, 12652–12660. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/mi15020185
http://dx.doi.org/10.3390/electronics12234827
http://dx.doi.org/10.1109/JSEN.2020.3002388

	Introduction
	Related Works
	System Architecture and Design
	Overview
	Hardware Design
	Data Glove
	Robotic Arm

	Software Design
	Proportion Calculation for Elimination of Systematic Errors
	Deep Learning Models for Gesture Recognition

	Experiments and Results
	Experiment 1: Spatial Trajectory Error
	Experiment 2: Hand Gesture Recognition Accuracy

	Discussion and Conclusions
	References

