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Abstract: Fluorescence microscopic images of cells contain a large number of morphological features
that are used as an unbiased source of quantitative information about cell status, through which
researchers can extract quantitative information about cells and study the biological phenomena
of cells through statistical and analytical analysis. As an important research object of phenotypic
analysis, images have a great influence on the research results. Saturation artifacts present in the image
result in a loss of grayscale information that does not reveal the true value of fluorescence intensity.
From the perspective of data post-processing, we propose a two-stage cell image recovery model
based on a generative adversarial network to solve the problem of phenotypic feature loss caused by
saturation artifacts. The model is capable of restoring large areas of missing phenotypic features. In
the experiment, we adopt the strategy of progressive restoration to improve the robustness of the
training effect and add the contextual attention structure to enhance the stability of the restoration
effect. We hope to use deep learning methods to mitigate the effects of saturation artifacts to reveal
how chemical, genetic, and environmental factors affect cell state, providing an effective tool for
studying the field of biological variability and improving image quality in analysis.

Keywords: microscope image; deep learning; image inpainting; saturation artifacts

1. Introduction

Fluorescence microscopy is a microscopic technique that leverages the phenomenon
of fluorescence for the observation of biological samples. It excites fluorescent dyes or
fluorescent protein-tagged organisms or tissues with specific wavelengths of light, causing
them to emit visible light. The resulting fluorescence microscope images contain many
biologically relevant phenotypic features, enabling experimental characterization of gene
expression.protein expression, and molecular interactions in a living cell [1]. The ap-
plication of cell analysis based on fluorescence microscopy images is diverse, including
identifying disease phenotypes, gene functions, and mechanisms of action, toxicity, or
targets of drugs [2]. Analysis methods based on fluorescence microscope images, such
as cell classification, segmentation, colocalization analysis, and morphological analysis,
require high-quality microscopic images. However, the situation arises where proteins
bind to an excessive amount of fluorescent dyelong exposure times, and inhomogeneous
illumination [3], there are usually artifacts such as blurs, boundary shadows, and saturation
artifacts that can interfere with the extraction of phenotypic features, thereby affecting the
accuracy of the research findings. For example, uneven illumination increases the error
detection and missed detection of yeast cell images by 35% via CellProfiler V2.2.0 [1], and
saturation artifacts make the measurement of protein position invalid in colocalization
location analysis. Therefore, investigating effective image processing and analysis meth-
ods to enhance the quality of fluorescence microscopic images and ensure the precision
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of phenotypic feature analysis holds significant importance for advancing the field of
cell biology.

At present, the research on processing fluorescence image artifacts mainly focuses
on inhomogeneous illumination, super-resolution reconstruction, and denoising. Smith
et al. [4], Goswami et al. [5], and wang et al. [6] use prospective methods or retrospective
methods to correct illumination between different fluorescence images and reduce abiotic
structural differences between different images. These methods reduce abiotic structural
differences between different images or remove the artifact noise from a single microscopic
image. However, none of them can eliminate saturation artifacts in a single microscopic
image. Saturation artifacts can be regarded as extreme illumination imbalances. Excessive
exposure makes the artifact area blank, and a large area of biological structure information is
missing. Often, these microphotographs with a large amount of missing biological structure
information will be screened out in quantitative analysis experiments [7]. Among existing
techniques for addressing saturation artifacts, approaches like those of Li et al. [8] and Hu
et al. [9] predominantly employ a one-stage network to produce image characteristics. Yet,
these networks face challenges in accurately reconstructing the intricate texture details
present in the images.

Generative adversarial networks (GANs) were proposed by Goodfellow et al. [10] in
2014 as a tool for generating data. GANs and improved GAN algorithms have been widely
used in image generation, image inpainting, and other fields by data-driven approaches in
recent years and have excellent performance. Zhang et al. [11] used a GAN to provide an
effective method for medical image data enhancement and forgery detection, effectively
improving the accuracy and reliability of computer-aided diagnostic tasks. GANs have also
had stunning success in the image processing of fluorescence microscopy. Chen et al. [12]
used the GAN method to realize the super-resolution reconstruction of fluorescence mi-
croscope images, making the biological structure information stand out clearly from the
artifact. In this paper, we propose a method to restore the missing biological structure
information caused by saturation artifacts in each image. To our best knowledge, this is
the first study to deal with this lost biological information. Belthangady et al. [13] showed
that CNN-based techniques for inpainting missing image regions are well positioned to
address the problem of losing information. Their work inspired us to believe that the
deep learning method is a good way to solve the problem of losing biological information
through saturation artifacts.

In this work, we further explore GAN-based methods to solve the problem of missing
biological information due to saturation artifacts in fluorescence microscope images. The
method is based on EdgeConnect GAN [14]; we call it Two-stage Cell image GAN (TC-
GAN). To obtain more stable and credible inpainting results, the model adopts a two-step
progressive repair method. In the first stage, the shape features of the cell and the context
features between cells are restored using the proposed Edge-GAN. In the second part, the
texture features and intensity-based features of the cell are restored using the proposed
Content-GAN based on the edge information. We introduce contextual attention [15] archi-
tecture into the model to learn where to borrow or copy feature information from known
background patches to generate missing patches. Using this model, images that have lost
information can have their phenotypic features re-stored based on their existing phenotypic
traits, thereby supplementing the scarce samples in morphological analysis experiments.

The structure of the paper is as follows. Section 2 describes the structure and loss
function of the model. Section 3 introduces the data and processing methods. The image
inpainting experiment and verification experiment are presented in detail in Section 4. The
conclusion is made in Section 5.

2. Methodology

This chapter describes in detail the structure of the proposed fluorescence microscope
cell image inpainting model and the loss function used.
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2.1. Generative Adversarial Networks

GANs were proposed by Goodfellow et al. [10] in 2014 to generate signals with the
same feature distribution as the training set. A typical GAN consists of a generator and a
discriminator, where the generator tries to generate data that matches the distribution of
the training set; the discriminator determines whether the input signal is the original signal
or the signal generated by the generator.

However, the content generated based on a GAN usually has the problem of blurred
edges of restored content or semantic mismatch between restored content and background
content. We focus on the performance of the restoration results on four numerical features of
a cell fluorescence microscopic image and use a two-stage GAN with a contextual attention
layer to restore different feature contents.

2.2. Feature Restoration

The phenotypic features of cells provide the raw data for profiling. They can be
extracted to quantitatively describe complex cell morphology phenotypes. Here, these
phenotypic features can be separated into four categories [1,16]: (1) Shape features, which
represent boundaries, size, or the shape of nuclei, cells, or other organelles. (2) Microen-
vironment and context features, including the distribution among cells and subcellular
structures in the field of view. (3) Texture features, which describe the distribution of
pixel intensity values within the cellular structure. These features can intuitively display
the fluorescent protein structure of a single cell. (4) Intensity-based features, which are
computed from actual intensity values on a single-cell basis. Intensity-based features are
closely related to texture features. The intensity-based features dominate when analyzing a
few pixels; as the number of distinguishable, discrete intensities increases within a small
area, the texture features will dominate [17]. In fluorescence microscope images, saturation
artifacts will cause sparse texture features.

We used a two-stage network (from Edge-GAN to Content-GAN) to restore the above
four features from saturated artifacts. Edge-GAN is used to generate the phenotypes
of shape and contextual features, including cell morphology and the direction of the
cell’s centroid, thereby establishing the fundamental morphology of the cell phenotype.
After determining this most basic and important information in saturation artifacts, the
texture features can be further restored using the Content-GAN, and they are typically
represented as the protein structure, organelle structure, and cytoplasm of the cell in our
eyes. Contextual attention architecture [15] is added to the network structure to make the
boundary and texture features of the patched area consistent with the surrounding cells
in morphology.

2.3. Model Structure

The modules of our network are shown in Figure 1. The model is divided into two
parts; we use Edge-GAN and Content-GAN, respectively, in these two parts. The Edge-
GAN consists of a generator G1 and discriminator D1. The original grayscale image, the
imaging mask, and the masked edge image obtained from the region of saturation artifacts
using the Canny operator are the input of the Edge-GAN, generator G1, and discriminator
D1. By learning the distribution of the features extracted from the input image, the Edge-
GAN outputs the edge image. The Content-GAN consists of G2 and D2. The original
grayscale image and edge grayscale image are the input of Content-GAN. By learning the
texture features from the original image and the shape features from the edge image, the
output is the restored image without saturation artifacts.

The generator of Edge-GAN, G1, is composed of an encoder–decoder convolution
architecture with a contextual attention architecture [15]. Specifically, the encoder–decoder
architecture consists of the encoder, ResNet module, and decoder. The contextual attention
architecture is parallel to the encoder architecture. The discriminator of Edge-GAN, D1,
follows the same architecture of 70 × 70 PatchGAN [18]; the detailed structures of G1 and
D1 are shown in Table 1.
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Figure 1. The modules of the proposed TC-GAN networks. G1 and D1 compose Edge-GAN; G2 and
D2 compose Content-GAN.

Table 1. The structures of G1 and D1.

Input Filter Channel/Stride/Padding Act Output

G1

Encoder
Architecture

X Conv 7 × 7 64/1/0 S/I/ReLU
Conv 4 × 4 128/2/1 S/I/ReLU
Conv 4 × 4 256/2/1 S/I/ReLU Encoder X1

Contextual
Attention

Architecture

X Conv 5×5 32/1/2 ELU
Conv 3 × 3 32/2/1 ELU
Conv 3 × 3 64/1/1 ELU
Conv 3 × 3 128/2/1 ELU
Conv 3 × 3 128/1/1 ELU
Conv 3 × 3 128/1/1 ReLU

Contextual Attention Layer
Conv 3 × 3 128/1/1 ELU
Conv 3 × 3 128/1/1 ELU Feature X2

ResNet
Architecture

X1 + X2 Conv 3 × 3 384/1/0 S/I/ReLU
Conv 3 × 3 384/1/0 S/I

(ResNet Block × 8) Feature X3

Decoder
Architecture

X3 TransposeConv 4 × 4 128/2/1 S/I/ReLU
TransposeConv 4 × 4 64/2/1 S/I/ReLU

Conv 7 × 7 1/1/0 Sigmoid Y

D1
Encoder

Architecture

Y Conv 4 × 4 64/2/1 S/LReLU
Conv 4 × 4 128/2/1 S/LReLU
Conv 4 × 4 256/2/1 S/LReLU
Conv 4 × 4 512/1/1 S/LReLU
Conv 4 × 4 1/1/1 LReLU/Sigmoid 1 × 32 × 32

Conv = Convolution filter, S = Spectral normalization, I = Instance normalization, LReLU = LeakyReLU. X is the
input image of G1, which consists of three channels: the original grayscale image, the imaging mask, and the
masked edge image. X1, X2, and X3 are the feature maps calculated using the middle layer. Y is the input image
of D1, which is the output image of G1. The structure of G2 is almost the same as G1, except the ResNet of G2 has
4 layers instead of 8 layers, and the loss function of G2 is different from G1. The structure of D2 is the same as D1.

The architecture of the generator of Content-GAN, G2, is the same as G1, except all the
spectral normalization is removed from G2. And, the architecture of the discriminator of
Content-GAN, D2, is the same as D1. D2 is used to judge whether the semantic information
of the content generated by G2 is reasonable or not.



Micromachines 2024, 15, 928 5 of 12

2.4. Contextual Attention

Contextual attention architecture is proposed by Yu et al. [13] to learn where to borrow
or copy feature information from known background patches to generate missing patches.
Its detailed structure is shown in the contextual attention architecture of Table 1. We use the
contextual attention layer to accelerate the convergence rate of model training and enhance
the semantic rationality of the generating region. The similarity of a patch centered in the
patch to be restored fx,y and the background patch bx′ ,y′ is defined as

Sx,y,x′ ,y′ = ⟨
fx,y∥∥ fx,y

∥∥ ,
bx′ ,y′∥∥∥bx′ ,y′

∥∥∥ ⟩ (1)

According to the calculated similarity score Sx,y,x′ ,y′ , the contextual attention layer can
learn which part of the background features should be used from the repaired
texture information.

2.5. Edge-GAN Loss Function

The Edge-GAN is trained with adversarial loss and feature-matching loss [19] as

min
G1

max
D1

LG1 = min
G1

(
λadv1max

D1
(Ladv1) + λFMLFM

)
(2)

where Ladv1 is adversarial loss, LFM is feature-matching loss, and λadv1 and λFM are
regularization parameters. The adversarial loss Ladv1 is defined as

Ladv1 = E(E,I)[log D1(E, I)] + EI log
[

1 − D1

(∼
Zpred, I

)]
(3)

where I is the ground truth images, E is the edge map of I, and
∼
Zpred is the predicted edge

map for the masked region.
The feature-matching loss LFM extracts the middle feature layer of the discriminator

for comparison. The LFM is defined as

LFM = E
[

∑L
i=1

1
Ni

∥∥∥∥D(i)
1 (E)− D(i)

1

(∼
Zpred

)∥∥∥∥
1

]
(4)

where i means the number of feature layers, L is the final layer of D1, Ni is the number of
elements in ith layer, and D(i)

1 is the ith layer of D1.
In our experiments, λadv1 = 1 and λFM = 10.

2.6. Content-GAN Loss Function

The Content-GAN is trained by four losses. The overall loss function is to min
G2

max
D2

LG1 ,

which is defined as

min
G2

max
D2

LG1 = min
G2

(
λ↕1

L↕1
+ λadv2max

D2
(Ladv2) + λpLprec + λsLstyle

)
(5)

where L↕1
is ↕1 loss, Ladv2 is adversarial loss, Lperc is perceptual loss [20], and Lstyle is style

loss [21]. L↕1
, Ladv2, λp, and λs are regularization parameters.

Adversarial loss, Ladv2, is defined as

Ladv2 = E
(I,

∼
Zcomp)

[
log D2

(
I,

∼
Zcomp

)]
+ E∼

Zcomp
log

[
1 − D2

(
Zpred,

∼
Zcomp

)]
(6)
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where the composite edge map
∼
Zcomp = E ⊙ (1 − M) +

∼
Zpred ⊙ M and the inpainting color

image Zpred = G2

(
Z,

∼
Zcomp

)
.

The perceptual loss is similar to the feature-matching loss, which extracts the middle
feature layer for comparison in D2. Using perceptual loss can avoid generating final content
that is the same as the input image, as long as the abstract features are the same. This is
defined as

Lperc = E
[

∑i=1
1
Ni

∥∥∥ϕi(I)− ϕi

(
Zpred

)∥∥∥
1

]
(7)

where ϕi is the activated feature map of the ith layer of D2. Here, we use the VGG-19
pre-trained parameter on the ImageNet dataset [22] to be the parameter of ϕi.

The style loss is used to punish the non-intensity affine transformation and reduce the
distortion of cell morphological transformation. It is defined as

Lstyle = Ej

[∥∥∥Gϕ
j

(
I ⊙ M + Zpred ⊙ M

)
− Gϕ

j (Z)
∥∥∥

1

]
(8)

where Gϕ
j is a Gram matrix constructed of Cj × Cj from feature maps ϕj, M = 1 − M.

3. Data and Processing
3.1. Data of Fluorescence Microscope Image

The data used in this study are obtained from the training set of RxRx1 in the
NeurIPS 2019 competition track (https://www.kaggle.com/c/recursion-cellular-image-
classification/data, accessed on 23 November 2021). This database contains fluorescence mi-
croscope images of cells collected from each well plate in high-throughput screening (HTS).

The original RxRx1 data contain four types of cells (HUVEC, RPE, HepG2, and U2OS).
There are 1108 different small interference RNAs (siRNAs) introduced into four types of
cells to create distinct genetic conditions. The experiment uses a modified cell painting
staining protocol that uses six different stains to adhere to different parts of the cell. The
stains fluoresce at different wavelengths and are, therefore, captured by different imaging
channels. Thus, there are six channels per imaging site in a well.

Different types of cell information are reflected in the morphological differences in flu-
orescence microscope images. The morphological analysis of cells is usually based on these
morphological features. The most significant influences on the features of morphological
differences are the saturation artifacts, which are shown in Figure 2.
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In the RxRx1 dataset, different strategies are adopted to select data that are significantly
affected by saturation artifacts and data that are free from saturation artifacts and rich
in edge information. Saturation artifacts in the images are characterized by clusters of
saturated pixels with pixel values reaching 255. When there is a high concentration of
saturated pixels gathering in the same area, it can lead to large areas of structural loss in
the image. This study screens the data based on the proportion of saturated pixels in the
entire image, selecting images where the mean and standard deviation of the overall pixel
values are both greater than 20, to identify the data significantly affected by saturation
artifacts. Data selected for being devoid of saturation artifacts and possessing abundant
edge information meet two specific criteria: firstly, there should be no pixels with a value
of 255 within the image, and secondly, the image must exhibit a discrete entropy value
exceeding 5. Discrete entropy is defined as

H = −∑iPilog2 Pi (9)

where Pi is the probability of the occurrence of a pixel with a grayscale value of i in
an image.

3.2. Training Set Preparation

The data used in this study were divided into three groups (T1, SET1, and SET2). The
data in T1 were selected from RxRx1 and did not contain saturation artifacts and were
morphologically rich. This ensures that the trained algorithm can fill with rich textures.
SET1 and SET2 are used to evaluate the validity of the restored feature. SET1 includes
100 images without saturation artifacts selected from original RxRx1 data, 100 masked
images that are masked in 20% of the area to simulate the saturated artifact, and 100 images
restored via TC-GAN. SET2 includes five images affected by saturation artifacts selected
from original RxRx1 data and five images restored using TC-GAN.

4. Training Strategy and Analysis

In this section, we first introduce the experimental progressive training strategy
and its ablation experiment results, and the training process and experimental results
of TC-GAN are introduced. We used peak signal-to-noise ratio (PSNR), structural simi-
larity index (SSIM), and Fréchet Inception Distance (FID) to evaluate the validity of the
restoration results.

4.1. Training Strategy

It is challenging to restore the phenotypic features directly, especially the shape features
and context features of cells in a large area of saturation artifacts. We use the method of
progressive generation in the process of Edge-GAN training. And, by using the results of
Edge-GAN, Content-GAN can restore apparent texture features.

Specifically, the Edge-GAN trains on low-resolution images for pre-training, and then,
we use transfer learning based on pre-training to train Edge-GAN on high-resolution
images. The results of shape feature and context feature restoration in stages are shown in
Figure 3. As it shows, the phenotypic features between cells are gradually restored.

In this study, an ablation experiment was carried out, and the experimental results
of progressive restoration and no progressive restoration were compared; the restoration
results shown in Figure 4 show the restoration results of missing edge information at the
50,000th step in Edge-GAN.
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4.2. Model Training and Result

The restoration TC-GAN models are trained using T1 data, which have rich phenotypic
features without saturation artifacts. Images in the training set, imaging mask, and the
masked edge consist of the input of TC-GAN. And, the final output of TC-GAN is the
restored image without saturation artifacts. Here, the training process for two-stage TC-
GAN can be described as follows:

1. Low-resolution original image, imaging mask, and masked edge consist of the input
of Edge-GAN;

2. Generator G1 outputs the edge image as the output of Edge-GAN;
3. Compute the LG1 and the gradient of G1 and D1 and return to step 1 until the training

of Edge-GAN finishes;
4. Replace the low-resolution image with the high-resolution image and return to step 1

until the training of Edge-GAN finishes;
5. The edge image and the original image consist of the input of Content-GAN;
6. Generator G2 outputs the restored image as the output of Content-GAN;
7. Compute the LG2 and the gradient of G2 and D2 and return to step 5 until the training

of Content-GAN finishes.
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For Edge-GAN, the optimizer is Adam [23] with a learning rate of α = 0.0001, β1 = 0,
β2 = 0.9. The total training iteration is 1,000,000. For Content-GAN, the optimizer is the
same as Edge-GAN, and the training iteration is 200,000.

The result of the two-stage restoration of the network is shown in Figure 5. As shown,
the restored image fills the lost phenotypic features in the original saturation artifacts area.
Additional examples have been provided in Section 4.3.3.
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4.3. Evaluation of Validity
4.3.1. Evaluation Indicators

We use several quantitative statistical features to verify the effectiveness of the method.
The peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM) [24], and
Fréchet Inception Distance (FID) [25] are used to evaluate the quality of generation
features quantitatively.

PSNR evaluates the quality of the generated features compared with the original
features. The higher the PSNR, the smaller the distortion of the generated features.

SSIM is an index to measure the similarity of features in two images. The closer the
SSIM is to 1, the closer the patched features are to the original cell.

4.3.2. Evaluation Methods

The PSNR, SSIM, and FID of SET1 are calculated to evaluate the validity of generation
features. We calculate the PSNR, SSIM, and FID between the 100 original images without
saturation artifacts and the 100 masked images after they are artificially covered in SET1 to
obtain the data of the mask group. Then, we calculate the PSNR, SSIM, and FID between
the 100 original images and the 100 restored images after being covered in SET1 to obtain
the restoration group data. Calculation results of the mask group and restoration group
can show the image quality before and after restoration. In addition, they can reflect the
similarity between the restoration area and the original cell.

To visually verify the effectiveness of the restoration results, this study selected five
images that were significantly affected by saturation artifacts and performed restoration on
them, resulting in five restored images. These images constitute the validation set known
as SET2.

4.3.3. Result

We use PSNR, SSIM, and FID to evaluate the validity of the generation features in
SET1. The index difference between the restored image and the masked image is shown in
Table 2. The PSNR and SSIM of the restored image are higher than those of the masked
image. This means the restored phenotypic features can effectively fill the gap of saturation
artifacts and make the restored image closer to the original image than the masked image.
The FID of the restored image is lower than that of the masked image, which means the
similarity between the restored image and the original image is higher than that between
the masked image and the original image. Two examples of the original image, the masked
image, and the restored image are shown in Figure 6.
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Table 2. Indices of masked and restored images.

Dataset PSNR SSIM FID

image with mask 9.101 0.725 609.154
image be repaired 25.948 0.854 50.345
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Figure 6. Two demos of (a) original images, (b) masked images, and (c) restored images of SET1.
The (b) masked images lose some of their original morphological features in (a), and these missing
morphological features are restored in the (c) restored images.

The results of image restoration in SET2 are shown in detail in Figure 7, which shows
the results of image restoration for images with real saturation artifacts. The large area of
saturation artifacts in the original image no longer exists in the restored image. The context
features between cells in the artifact areas and the intracellular texture features are restored
using TC-GAN.
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5. Conclusions

This paper introduces the TC-GAN model, a two-stage phenotypic feature restora-
tion approach addressing saturation artifacts in fluorescence microscopy images. The
model separately restores the shape and texture features of cells. Through ablation studies
and quantitative and qualitative experiments, the effectiveness of the network under pro-
gressive training is validated. The results demonstrate the model’s practical significance
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and its potential to enhance the qualitative and quantitative analysis of cell fluorescence
microscopy images.
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