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Abstract: High-precision displacement sensing has been widely used across both scientific research
and industrial applications. The recent interests in developing micro-opto-electro-mechanical systems
(MOEMS) have given rise to an excellent platform for miniaturized displacement sensors. Advance-
ment in this field during past years is now yielding integrated high-precision sensors which show
great potential in applications ranging from photoacoustic spectroscopy to high-precision position-
ing and automation. In this review, we briefly summarize different techniques for high-precision
displacement sensing based on MOEMS and discuss the challenges for future improvement.

Keywords: MOEMS; displacement; optical sensing

1. Introduction

The measurement of displacement is a fundamental activity in various areas of dimen-
sional metrology, which are highly required in both scientific research (e.g., photoacoustic
spectroscopy, optical force measurement) and industrial applications (e.g., high-precision
positioning, navigation) [1–4]. In past decades, different technologies have been reported for
displacement sensing, which can be generally divided into two categories: optical methods
(e.g., laser interferometers, time-of-flight sensors and grating interferometers) and electri-
cal methods (e.g., capacitive sensors, inductive sensors and Eddy current sensors) [5–8].
Benefiting from properties including non-contact measurement, high resolution, wide
bandwidth and long measuring range, the optical approaches have become the preferred
methods for ultra-precision displacement measurement in many applications [9]. Despite
the great achievement reported in past decades, the optical displacement sensors generally
suffer from a relatively larger volume and lower integration compared to the electrical ap-
proaches, resulting from a requirement for miniaturized high-performance optical sources
and detectors as well as careful alignment between multiple optical components [2,8,9].
Considering the recent interest in developing miniaturized devices and systems with much
less power consumption, lower cost and higher functionality, there is a competing need for
developing ultra-compact displacement sensors that can provide comparable performances
or even unique functions compared to traditional devices [10].

MOEMS have given rise to an excellent platform for miniaturized displacement sen-
sors, which combines the merits of optical measurement and micro-electro-mechanical
systems to enable both high performance and compactness [11,12]. In past decades, a wide
range of MOEMS sensors has been demonstrated, including displacement sensors, spec-
trometers, pressure sensors, temperature sensors, accelerometers and gyroscopes [13–20].
In past decades, MOEMS displacement sensors based on different principles, such as optical
interference, optical reflection, grating diffraction, evanescent coupling and bandgap modu-
lation, have been reported [21–25]. The advantages of these MOEMS displacement sensors
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involve their small volume, low weight, low power consumption, high resolution and high
repeatability in fabrication, making these devices highly promising in applications such
as defense, consumer electronics and medical equipment [26]. However, a systematical
analysis of the reported MOEMS displacement sensing techniques has not been found yet.

This paper aims to address the pressing issue of the current lack of systematic review
for MOEMS displacement sensing. According to different optical measurement principles,
we divide MOEMS displacement sensing techniques into two categories: the guided-
wave-based and the free-space-based (as shown in Figure 1). The guided-wave-based
sensors include the evanescent coupling scheme, the interference scheme and the bandgap
modulation scheme. And the guided-wave-based types can be further categorized into the
reflection scheme and the transmission scheme. The principles, structures, performances,
advantages and disadvantages of state-of-the-art MOEMS displacement sensing techniques
are discussed. This paper also presents the development tendency to meet the ever-
increasing demand for integrated high-precision displacement measurement.
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Figure 1. Classification of MOEMS displacement sensing techniques [25,27–35].

2. Definition of MOEMS Displacement Sensing

Since displacement measurement is the basis for the measurement of different phys-
ical quantities such as distance, surface profile, velocity, vibration, accelerated velocity
and rotation, many other MOEMS sensors (e.g., pressure sensors, accelerometers and
gyroscopes) are also operated based on measurement of displacement [5,11,36]. For ex-
ample, the angular rate can be calculated from the linear displacement of a proof mass
in a Coriolis-effect-based MOEMS gyroscope [36]. In this review, we mainly focus on
MOEMS displacement sensors. Other relative MOEMS devices, such as accelerometers
and gyroscopes, may also be mentioned to help understand the principles, structures,
performances and applications of MOEMS displacement sensing techniques. However,
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only the parameters related to displacement sensing are presented and discussed. The
devices mentioned below are typically fabricated by standard CMOS processes, which are
beyond the scope of this review. The authors refer readers to the works of H. Qu (2016)
and J. Zhu et al. (2020) [26,37]. These papers contain the expressions for the fabrication of
relative devices.

3. Performance Indexes

Technical specifications, including resolution, sensitivity, accuracy and measuring
range, are the most important performance indexes of displacement sensing [38]. The
resolution is defined as the smallest change in the displacement being measured that
causes a perceptible change in the corresponding output (e.g., voltage). It corresponds
to the limitation of detecting. Typically, the resolution depends on the internal noises
in a MOEMS sensor, including electronic, mechanical and optical noises [39]. Since the
output of most MOEMS displacement sensors is electrical, it is common practice to express
the noises in m/Hz1/2 [40]. In past decades, resolution down to 0.1–10 fm/Hz1/2 level
has been reported in MOEMS sensors (as shown in Figure 2) [41,42]. The sensitivity is
the linear correlation coefficient between the output signal and the input displacement,
which is typically expressed in units such as V/nm, nm/nm or %/nm. A larger sensitivity
generally leads to a higher signal-to-noise ratio, related to a higher resolution [36]. The
accuracy is defined as the closeness of agreement between a measured quantity value
and a true quantity value for the measured displacement, which is typically quantified
by measuring error. The measuring range refers to the variation between the lower and
the upper limits of indication, generally limited by geometries such as the length of the
optical path. Considering the ultra-compact structure and small size of MOEMS sensors,
the measuring range of these sensors typically ranges from sub-micrometer to millimeter
level.
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Figure 2. Displacement resolution with corresponding measuring range for MOEMS displacement
sensing techniques based on different principles, including evanescent coupling, waveguiding Fabry-
Perot (FP) resonance, geometrical overlapping and reflective FP resonance. (a-[41], b-[27], c-[43],
d-[44], e-[42], f-[28], g-[23], h-[24], i-[45], j-[46], k-[47], l-[48], m-[29], n-[49]).

It is worth mentioning that, for displacement measurement, the performance indexes
mentioned above can hardly be treated independently [5]. For example, the noise not
only determines the value of resolution but also influences the accuracy. And the relative
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accuracy is highly related to measuring range. For example, the same accuracy of 1 nm
for two different measuring ranges of 1 µm and 1 mm refers to a different relative error of
0.1% and 0.0001%, differing in three orders of magnitude. As a result, the accuracy and
resolution are recommended to be compared within a comparable measuring range for
different MOEMS displacement sensors [9].

4. Classifications

The MOEMS displacement sensing technologies mentioned in this review are cate-
gorized into a guided-wave-based scheme and a free-space-based scheme according to
different working principles. The guided-wave-based techniques can further be categorized
into different schemes, including the evanescent coupling scheme, the interference scheme
and the bandgap modulation scheme. Similarly, the free-space-based techniques can also
be categorized into the reflection scheme and the transmission scheme. Both the measuring
principles, structures and performances for different schemes are discussed in this chapter.

4.1. Guided-Wave Based Techniques

The guided-wave-based MOEMS displacement sensing techniques are generally based
on optical waveguides such as slab waveguides, optical fibers and photonic crystal waveg-
uides. Using optical coupling between different waveguides or optical resonance in micro-
cavities, displacement can be measured by detecting the change of optical transmission or
reflection caused by the change of geometries, such as coupling length and cavity length. A
high resolution (e.g., going down to 0.1–10 fm/Hz1/2 level) within a small measuring range,
typically less than 1 mm, has been demonstrated [41,42]. In these cases, high-precision
control of waveguiding properties such as waveguiding modes and resonant frequencies is
generally required.

4.1.1. Evanescent Coupling Scheme

As the size of optical waveguides goes down to be comparable to or less than the
wavelength of guided light, a large amount of the light will propagate outside the waveg-
uides as evanescent waves, which makes nano-/microwave-guides being excellent plat-
form for optical sensing [50,51]. A tunable coupling efficiency between different nano-
/microwave-guides has been demonstrated by changing overlapping lengths, indicating
the possibility for displacement measurement by detecting the optical transmission or
reflection of an optical coupler consisting of nano-/microwave-guides [52]. The displace-
ment sensing techniques based on evanescent coupling can be achieved by using either a
non-resonant structure or a resonant structure. In the non-resonant cases, multiple parallel
nano-/microwave-guides are generally used, showing a relatively simple structure with
a large optical bandwidth [27]. Both the relative displacement between the waveguides
in the axial or the lateral direction can be measured by detecting the optical transmission
or reflection. For the resonant scheme, microcavities are typically used. Pumping light is
coupled into/out an optical cavity by using a nano-/microwave-guide [53]. With a relative
displacement between the cavity and the waveguide, the optical transmission/reflection
changes. Despite the high sensitivity, the resonant nature of the cavity response intrinsically
limits the dynamic range and optical bandwidth [27,54].

The evanescent coupling process between different optical nano-/microwave-guides
has been studied in both theory and experiment, showing an optical sensitivity for the
change in coupling efficiency to overlapping length at 10%/µm level with a maximum
coupling efficiency over 95% [52,55–57]. In 2020, T. Liu et al. demonstrated an integrated
MOEMS displacement sensor (as shown in Figure 3a) [27]. By using a three-dimensional
directional coupler fabricated on an InP/InGaAsP multi-layer stack grown by metalorganic
vapor-phase epitaxy, the sensor showed a displacement imprecision down to 45 fm/Hz1/2

within a measuring range of ~32 nm. Benefiting from the non-resonant operating, an
ultra-wide optical bandwidth of ~80 nm was obtained, which can greatly release the high
requirements on high-performance read-out systems (as shown in Figure 3b). Later, C.



Micromachines 2024, 15, 1011 5 of 24

Xin et al. designed a MOEMS accelerometer based on displacement measurement using
evanescent coupling through silicon nano-waveguides in the year 2022 [58]. A sensitivity
of 32.8%/µm was obtained in the simulation. Photonic crystal waveguides have also
been used. In 2007, the relationship between the input displacement to the output of a
photonic crystal co-directional coupler was discussed, indicating the possibility of photonic
crystals in displacement sensing [59]. In 2012, A.G. Krause et al. reported a MOEMS
accelerometer making use of ultrasensitive displacement read-out with noise imprecision
down to 4 fm/Hz1/2 based on a photonic crystal nanocavity [60]. In 2019, E. Soltanian et al.
demonstrated a differential MOEMS accelerometer based on the displacement-induced
transmission change of an optical coupler formed by a two-dimensional photonic crystal
structure [61]. An optical sensitivity of ~3.3%/nm within a range of ±15 nm was demon-
strated. An end-to-end structure has also been used to measure tiny displacement. In
2009, M. Li et al. reported the measurement of relative displacement between nanocan-
tilevers [43]. Two nanocantilevers, which were also used as two optical waveguides, were
located end-to-end with a 200 nm gap between them. With an out-of-plane displacement
on one of the nanocatilevers, the transmission from one cantilever to another changed,
resulting in a measurement with a sensitivity of 40 fm/Hz1/2.
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Figure 3. (a) Scanning electron microscope (SEM) image of a nanomechanical directional coupler
consisting of two nano-waveguides [27]. (b) Simulated transmission and electric field distribution
before and after a displacement of 55 nm for the coupler shown in (a) [27]. (c) Three-dimensional
schematic illustration of a substrate-coupled free-standing waveguide [41]. Inset is the SEM im-
age correspondingly.

By using evanescent coupling to a substrate, the displacement measurement can also
be operated by using only one single nano-waveguide, leading to a simpler structure
and higher compactness [62,63]. In 2008, M. Li et al. reported their remarkable work
on the detection and exploitation of transverse optical forces in an integrated silicon
photonic circuit through the displacement measurement of a nano-waveguide (as shown in
Figure 3c) [41]. The device was fabricated by standard electron beam lithography and dry
etching processes on silicon-on-insulator wafers. By using evanescent coupling between
a single mode strip nano-waveguide to a dielectric substrate, transmission amplitude
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changed as an optical force arising from the waveguide. In this way, only one waveguide
was needed. A displacement sensitivity of 18 fm/Hz1/2 was obtained experimentally with
a tiny displacement of ~2.5 nm.

By using resonant enhancement (as shown in Figure 4), resolution can be significantly
improved [42,64,65]. In 2009, G. Anetsberger et al. demonstrated a near-field cavity op-
tomechanical system formed by a silica microcavity, in which a resolution at sub-fm/Hz1/2

level was reported [42]. In 2012, a micro-electro-mechanically controlled cavity-based
optomechanical sensing system was demonstrated by H. Miao et al., reporting a displace-
ment resolution of 4.6 fm/Hz1/2 [23]. In 2016, R. Schilling et al. proposed a monolithic
integration of a high SiN resonator and a SiO2 microdisk cavity by using a chemical-
mechanical-polishing process [28]. Without deteriorating the intrinsic Q of the resonator
and the cavity, a displacement noise down to 10 fm/Hz1/2 was demonstrated. MOEMS
accelerometers based on the displacement measurement by using ring resonators have also
been designed and simulated. The change in acceleration can be read out by detecting the
relative displacement of the proof mass as a shift in the resonant wavelength [66]. In 2022,
R. Gholamzadeh et al. designed a light-intensity modulated MOMS accelerometer [67].
The effective refractive index of the resonator changed with an acceleration-induced dis-
placement of the proof mass, leading to a wavelength shift in spectra. An optical sensitivity
of 0.7%/nm was obtained in the simulation. In 2023, Y. Feng et al. reported a MOEMS
accelerometer by mode localization for high-sensitivity measurement using cascaded ring
resonators [68]. The acceleration was measured from the change in coupling length caused
by the inertial displacement through a spring–mass system.
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Figure 4. Displacement sensing based on a near-field coupled optical cavity [42]. (a) Schematic
diagram of an optical cavity coupled with a nano-waveguide. Inset is the SEM image of the cavity.
The experimental relationship of the linewidth (red) and the negative optical frequency shift (blue)
of the cavity on x0, which is the distance between the optical cavity to (b) a Si3N4 string and (c) a
sheet, respectively.

It is worth mentioning that an ultracompact MOEMS sensor has been demonstrated
by placing a double-layer structure on the tip of an optical fiber (as shown in Figure 5) [44].
An InP double-layer photonic crystal structure was fabricated on the tip of a single-mode
fiber. The evanescent fields of the two photonic crystal modes overlapped with each other
and formed a coupled system in which the resonant frequencies of the modes were affected
by the separation between two photonic crystal layers. With no need for coupling optics,
this device shows high functionality, ultra-small footprint, low-cost read-out as well as a
displacement imprecision down to 10 fm/Hz1/2.
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driven measurements.

4.1.2. Interference Scheme

For the interference scheme, incoming light is generally divided into two parts by a
beam splitter. The relative displacement causes a change in path length or refractive index,
leading to an additional difference in phases between the two optical paths. This change in
the phase can be read out by an optical interference process. Different interference structures
such as FP interferometer, Michelson interferometer and Mach–Zehnder interferometer
have been demonstrated for MOEMS displacement sensing.

For FP interferometers, a cavity is generally fabricated by using two reflectors consist-
ing of the sidewall of a mass proof and the end of a cleaved optical fiber. The optical fiber
is hybrid integrated into on-chip structures. The resonance wavelength (λres) shifts with a
change in the cavity length (∆L), which can be given by [69]

∆Φ =
4πn∆L

λres
(1)

where n is the refractive index of the cavity medium, ∆Φ is the phase difference. As the dis-
tance between the cleaved optical fiber and the sidewall changing, the power coupled back
into the fiber changes as well. As a result, displacement can be measured in an amplitude-
modulated process [70,71]. Benefiting from the FP resonance, a high resolution can be
obtained [48,72]. In 2018, Y. Kim et al. proposed an optical fiber FP micro-displacement sen-
sor for MEMS in-plane motion stage [73]. By using polished optical fiber and the sidewall
to form an optical cavity, both the magnitude and the direction of the displacement can
be obtained from interferometric signals. An accuracy below 35 nm within a range larger
than 3 µm was obtained. The optical fiber was assembled inside a trench to be integrated
with on-chip structures (as shown in Figure 6a). Similar principles have also been used
in MOEMS accelerometers and gyroscopes [36,74,75]. For example, in 2016, O. Kilic et al.
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reported a MOEMS vibratory gyroscope based on two hybrid FP cavities consisting of
gold-coated optical fibers and a reflective surface on a substrate [54]. An equivalent
displacement of Brownian noise was calculated to be 1.4 × 10−4 nm/Hz1/2. In 2021, a dual-
axis MOEMS accelerometer was demonstrated experimentally by M. Taghavi et al. [30].
By using two cleaved optical fibers located perpendicularly, two freedom-of-degree mea-
surements were demonstrated within a range of ~190 nm. In the next year, M. Rahimi
et al. reported a differential MOEMS accelerometer based on two FP micro-cavities formed
between the proof mass and the optical fiber end faces [76]. Two optical fibers were located
on opposite sides of the device, leading to a differential output. Consequently, the mea-
sured spectral shift doubled the sensitivity compared to the single-cavity cases. An optical
sensitivity of ~0.4%/nm within a range of ±130 nm was demonstrated.
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Figure 6. (a) The SEM image of a MOEMS FP interferometer. Inside is the optical image of an
assembled optical fiber [73]. (b) Optical image of a MOEMS Mach–Zehnder interferometer [47].

For Michelson and Mach–Zehnder interferometers, the waveguides need to be care-
fully designed to obtain a maximum difference in phase between two optical paths. In
these cases, ∆Φ can be given by [74]

∆Φ =
2π

λ0
ne f f ∆D (2)

where ne f f is the effective refractive index of the optical waveguides, ∆D is the change of
difference in optical paths, λ0 is the wavelength of the input light. In 2022, P. Sun et al.
obtained an optical displacement sensitivity of 13.7%/nm in a MOEMS accelerometer by
using an on-chip Michelson interferometer [25]. In 2014, M.W. Pruessner et al. reported an
unbalanced Mach-Zehnder interferometer for chip-scale displacement sensing (as shown
in Figure 6b) [47]. Associated with a substrate-coupling design, a displacement sensitivity
of 0.75 mV/nm within a range of 40 nm was obtained. And the displacement noise was
123 pm/Hz1/2.

4.1.3. Bandgap Modulation Scheme

Recently, displacement sensing techniques based on photonic crystals have been devel-
oped based on different principles, including evanescent coupling, resonant enhancement
and bandgap modulation [22,60,77,78]. Among the techniques mentioned above, the ap-
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proaches based on bandgap modulation have shown high compactness with a simple
waveguiding structure. Typically, the displacement measurement is operated by wave-
length modulation of a photonic bandgap with an optical sensitivity ranging from 0.1 to
1 nm/nm level. The photonic bandgap is defined as a range of wavelengths that cannot
be propagated in a photonic crystal. Arising from the destructive interference occurring
between the emitting and reflective waves on the boundaries where the refractive in-
dex changes, it can be greatly influenced by the geometries of photonic crystals [79,80].
Introducing certain defects by changing the materials or the geometries of photonic crys-
tals, transmitted defect modes can be observed within the photonic bandgap by breaking
the periodicity of the structure [31]. The wavelength of these modes is related to the
displacement-induced changes (e.g., cavity length and thickness of air gap) in the photonic
crystal [81]. Generally, MOEMS displacement sensing techniques based on bandgap modu-
lation can be divided into two categories by different structures, such as quasi-FP cavities
and finger-associated filters.

For the quasi-FP cavities, a double-layer photonic crystal structure is generally used.
Although somewhat similar to the traditional FP cavities, this structure shows some dif-
ferences: (1) less perpendicular leakage; (2) different transmission properties; (3) a much
smaller operating distance, indicating a high sensitivity without long operating distance
and high reflectivity [82,83]. Quasi-FP cavities were first reported for displacement sensing
based on a free-space structure by using evanescent tunneling between two photonic crystal
slabs [84]. After that, waveguiding quasi-FP schemes were proposed for higher sensitivity
and compactness. Both two-dimensional (2D) lattice arrays and one-dimensional (1D)
waveguides have been reported. For the lattice-array-based cases, the waveguides were
fabricated by moving certain lattices in a 2D array. For example, using a line-defect resonant
cavity consisting of two co-planar photonic crystal waveguides, in-plane displacement
sensing has been demonstrated (as shown in Figure 7a,b) [83,85]. A quasi-linear relation-
ship of the relative displacement (∆d) between the two waveguides on the transmission
was found within a range of up to a few micrometers. The change of the transmission (∆T)
can be given by [83]

∆T =
3
√

3QM
4ω0

∆d (3)

M =
∆ω

∆d
(4)

where Q is the quality factor, ω0 is the resonant frequency, ∆ω is the shift of the resonant
frequency. A simulated sensitivity of ~1.15/a, where a is the lattice constant, was obtained.

Compared to the lattice-array-based approaches, most of the works focused on 1D
photonic crystal waveguides. In these cases, only a few periodical lattices are required to be
fabricated inside a waveguide, resulting in a much higher compactness and functionality.
The wavelength of the left (λl) and the right (λr) band edge of the photonic bandgap can be
given by [80]

λl = (πnHdH + nLdL)/ cos−1(−ρ) (5)

λr = (πnHdH + nLdL)/ cos−1(ρ) (6)

where nH and nL is the refractive index of high-index and low-index materials used in
the waveguide, respectively, dH and dL is the thickness of one single cell fabricated by
the two materials respectively, and ρ = (nH − nL)/(nH + nL). In 2019, K. Huang et al.
proposed a MOEMS accelerometer with one single-proof mass [86]. Simulated results show
an optical sensitivity of 1.23 nm/nm within a range over 1 µm. In the next year, the same
group improved the optical sensitivity to 1.41 nm/nm [87]. A broad optical bandwidth
from 1.2 µm to 2.7 µm was also demonstrated in the simulation. In 2012, K. Zandi et al.
reported a MOEMS accelerometer based on a photonic crystal resonant cavity formed by
two distributed Bragg reflectors [77]. In 2024, Z. Zhang et al. designed a MOEMS gyroscope
using a similar structure (as shown in Figure 7c,d) [32]. A simulated optical sensitivity of
1.2 nm/nm was obtained.
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Figure 7. (a) Schematic diagram of a line-defect photonic crystal cavity [83]. (b) Simulated relationship
between the normalized intensity to the operating frequency with different input displacements in
the line-defect cavity [83]. (c) Schematic diagram of a MOEMS gyroscope based on photonic crystal
resonant cavity formed by two distributed Bragg reflectors [32]. (d) Simulated output spectra of the
MOEMS gyroscope [32].

For the finger-associated filters, a movable finger is usually located inside a photonic
crystal cavity. As a result, optical defect modes appear within the transmitted spectra.
The wavelength of these modes is modulated by the displacement of a finger rather than
the length of the cavity in this case [88]. The influence of a single point defect inside a
photonic crystal waveguide between two reflectors on resonant wavelengths has been
investigated in theory [89]. In 2016, A. Sheikahaleh et al. designed a MOEMS accelerometer
in which a silicon finger attached to a proof mass was located inside a 1D photonic crystal
waveguide [88]. The guided light passing through the waveguide was detected. The
periodicity of the photonic crystal was broken by the movable finger, leading to a defect
mode within the photonic bandgap in the transmission spectra. Later, they improved the
device by using a multi-layer graphene finger [90]. With a lateral displacement of the
graphene finger, the overlap between the finger and the photonic crystal changed. Using
the optical absorption of the graphene, the transmission of the photonic crystal decreased.
An optical sensitivity of ~1.5%/µm was obtained theoretically. In the next year, in-plane
displacement measurement based on a similar graphene-based design was also reported
by a wavelength modulation process, showing an optical sensitivity of ~0.46 nm/nm [91].
In 2021, K. Huang et al. improved the optical sensitivity to 4.42 nm/nm in a double-mode
MOEMS accelerometer by using double fingers (as shown in Figure 8) [92,93]. As the width
of the silicon/air layer was determined by a quarter of the primary wavelength of the
coupled light, the simulated photonic bandgap reached a high value across wavelength
from 1.1 µm to 2.75 µm. In 2024, X. Yang et al. proposed a MOEMS gyroscope with a
simulated optical sensitivity of 1.11 nm/nm within a measuring range of ±350 nm [20].
Other structures, such as WGM cavities, have also been used for displacement sensing by
introducing a movable defect inside the cavities [31,94]. However, the optical bandwidth
and optical sensitivity (e.g., at 0.01–0.1 nm/nm level) is generally lower than that in the
quasi-FP case.
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4.2. Figures, Tables and Schemes

MOEMS displacement sensors based on a free-space structure generally consist of a
displacement-sensing chip, which translates displacement to optical signals, and a reading
head formed by an optical source and detector. The displacement-sensing chips are usually
fabricated from plane components such as gratings, mirrors and photonic crystal slabs.
The displacement induces a change of geometries such as air gap, in-plane distance and
overlapping area, leading to a different intensity of reflected, diffracted or transmitted light.
A relatively large measuring range of up to several millimeters has been reported [95].
Considering an intensity modulation used in most cases, light-emitting diodes or vertical-
cavity surface-emitting lasers are widely used. Divided by the location of the reading
head, these sensors can be classified into two categories: the transmission scheme and the
reflection scheme.

4.2.1. Transmission Scheme

For the transmission scheme, the optical source and detector are generally located on
opposite sides of the displacement-sensing chip. The exposing light from the optical source
is detected after passing through the sensing chip. Benefiting from a structure based on a
coaxial optical path, the transmission scheme usually shows a simple multi-layer structure.
The displacement of the proof mass changes the optical transmission based on different
principles, such as geometrical overlapping and the Talbot effect.

For displacement sensing based on geometrical overlapping, the input displacement
changes the overlapping area between different components (as shown in Figure 9a). With
a different overlapping, the different fraction of light is blocked, resulting in a change of
optical transmission. A linear relationship between the transmission and the displacement
is generally presented as [29]

∆U ∝ ∆A = L·∆d (7)

where ∆U is the output of the photodetector, ∆A is the change in the overlapping area,
and L is the length of the optical aperture. For example, in 2009, M. Beyaz et al. reported
a miniaturized positioner using integrated photodiode sensors [95]. The light passed
through an array of through holes located on a movable substrate. After that, it was
detected by a photodiode array. As the substrate slid linearly, the alignment between the
through holes and the photodiode array changed, resulting in a different output from
the photodiodes. A relatively large measuring range of up to 4 mm was obtained with
a resolution at the micrometer level. In 2011, W. Hortschitz et al. reported a MOEMS
sensor for relative displacement measuring (as shown in Figure 9b) [29]. Two-dimensional
rectangle arrays with a period of 40 µm were fabricated on two substrates, respectively. The



Micromachines 2024, 15, 1011 12 of 24

relative displacement between the two substrates resulted in a linear change of overlapping
area. A noise of 8 pm/Hz1/2 was obtained. Later, they improved the device by using a
triangle array [49]. A non-linear transfer characteristic was achieved by pairing the triangle
array with a rectangular array. Both the static displacement and the vibration of the proof
mass were obtained by using different harmonics of the output signals. A resolution down
to 3.67 nm with a noise of 3.41 nm/Hz1/2 was demonstrated. In 2022, S. Abozyd et al.
designed a MOEMS accelerometer for three freedom-of-degree measurements based on
optical blocking of a proof mass (as shown in Figure 9c) [96]. The proof mass was held
between a light-emitting diode and a quadrant photodetector. By analyzing the output
intensities of different detectors, displacement measurement with a range of up to 3 mm
was achieved.
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Optical gratings have been widely used in displacement sensing. Optical interferome-
ters and encoders based on optical gratings have been reported in past decades [38,97]. In
recent years, displacement sensing based on the Talbot effect of micro-gratings has attracted
continuous attention. Optical gratings with a period comparable to the wavelength of the
exposing light are preferred for a higher resolution [98]. A periodical optical field behind
the first grating is modulated by the second grating with the same period as the first one (as
shown in Figure 10a) [99]. The complex amplitude distribution behind the second grating
can be defined as [100]

U(x, z, ∆d) = exp(ikz)∑∞
n=−∞ ∑∞

m=−∞ CnCm exp

[
i2π

( n
cos θ

)
+ m

Λ
x

]
exp

[
i2π

n
cos θ

Λ
∆d

]
(8)

where θ is the relative rotating angle between the two gratings, Λ is the period of the
gratings. As a result, a sinusoidal signal can be obtained from a photodetector as the
gratings move relatively to each other in the in-plane direction perpendicular to the grating
lines (as shown in Figure 10b). Generally, an interpolation circuit is used to translate the
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sinusoidal signal into square signals. The displacement can be calculated by counting the
square signals. The resolution (S) is given by [97]

S =
Λ

C
(9)

where C is the subdividing factor of the interpolation circuit. With a smaller grating period,
there is a smaller resolution as well. By using a simple coaxial, optical structure consisting
of a laser source, double-layer gratings and a quadrant detector, this method shows an
ultracompact structure and high stability compared to traditional diffractive interference
optical grating encoders [101]. In 2018, M. Li et al. discussed displacement measurement
based on a double-grating model, showing a simulated sensitivity of 0.29%/nm and
1.63%/nm for in-plane and out-of-plane displacement, respectively [102]. Later, the same
group reported a single-axial MOEMS accelerometer based on the Talbot effect of 4 µm-
period gratings with a sensitivity over 0.02%/nm (as shown in Figure 10c) [33,103]. The
double-layer gratings were fabricated by a photolithography process. In 2024, L. Jin et al.
demonstrated a tri-axial MOEMS accelerometer [104]. Using three groups of grating pairs
located on two substrates respectively, this device can be used to measure the acceleration
in three different directions synchronously. A simulated sensitivity of 0.036%/nm and
0.006%/nm for in-plane and out-of-plane directions were obtained, respectively.
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4.2.2. Reflection Scheme

Despite a simple coaxial structure, the transmission scheme suffers from a configu-
rational nature in that the components (e.g., optical source and detector) of the reading
head have to be located at opposite sides of a displacement sensing chip. It brings in
deleterious consequences in some applications because the displacement can only be input
from the sidewall [105]. By using a reflective structure, a more compact reading head can
be achieved for higher functionality [106]. Microgratings, membranes and metal films are
usually used as reflectors. Based on different principles, including FP resonance, diffracted
interference, Wood’s anomalies, triangulation measuring and evanescent tunneling, the
MOEMS displacement sensing using reflective structures has been demonstrated.

Using an asymmetric FP cavity formed by optical gratings or reflective films, the
distance between the two reflectors can be measured by detecting the optical reflection. As
an optical grating is exposed to a coherent light, a fraction of light passes through the grating
while the other is reflected. And the reflected light will be divided into several diffracted
orders. The light passing through the grating is reflected by another reflector, leading to
an additional phase. As the distance between the grating and the reflector changes, the
optical interference between the reflected lights causes a change in the intensity of the
diffracted beams (as shown in Figure 11a,b) [107]. The intensity of the zero (I0) and the first
(I1) diffracted order can be given by [45]

I0 = Iincos2
(

2πd0

λ0

)
(10)

I1 =
Iin
π2 sin2

(
2πd0

λ0

)
(11)

where Iin is the intensity of the input light, d0 is the distance between the grating and the
reflector, λ0 is the wavelength of the input light. For example, in 2002, C. Savran et al.
reported a differential MOMES sensor for nanoscale displacement measurement [46]. By
using two adjacent optical gratings with a period of 10 µm, a resolution defined by a noise of
0.8 pm/Hz1/2 was demonstrated. In the next year, N.A. Hall et al. reported a displacement
resolution down to 0.02 pm/Hz1/2 using an FP cavity consisting of a conductive membrane
and a reflective optical diffraction grating with a period of 4 µm (as shown in Figure 11c) [45].
Later, the same group improved the device by using a quadrature phase-shift dual grating
to replace the traditional regular grating (as shown in Figure 12a,b) [21]. Benefiting from
the quadrature outputs, the detecting range was expanded to be over λ0/4. In 2009,
B. Bicen et al. successfully applied this method for a directional optical microphone with
a dynamic range of up to 104 Hz [108]. In 2017, R.P. Williams et al. reduced the 0th-
order diffracted component by imparting a half-wavelength phase shift to a portion of
the reflected light (as shown in Figure 12c) [24]. In this way, an improved resolution
of 3.6 fm/Hz1/2 was obtained. MOEMS accelerometers and gyroscopes based on the
same principle have also been reported [109–112]. By using an improved mechanical
structure such as a gram-scale proof mass and a redesigned spring structure, the MOEMS
accelerometers with higher sensitivity are in highly expected [34,113]. In 2024, G. Li et al.
designed a wavelength-modulated MOEMS accelerometer by using a covering glass rather
than a grating as an optical splitter [114]. By measuring the transmitted spectra, an optical
sensitivity of 1.98 nm/nm was obtained in the simulation.
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Figure 12. Different optical gratings are used in the displacement sensing based on asymmetric FP
resonance. (a) Traditional regular grating [34]. (b) Quadrature phase-shift dual grating is used to
generate quadrature outputs [21]. (c) Four-region diffraction grating is used to eliminate the 0th-order
diffracted beam [24].

Interference between different diffracted orders of an optical grating can also be used
for displacement sensing. With an input displacement of ∆d, phase difference is generated
between different diffracted beams due to the Doppler effect. Assuming that ±1 th-order
diffracted breams are generated from an optical grating with a period of Λ, the phase
difference between ±1 th-order beams can be given by [105]

∆ϕ =
4π
Λ

∆d (12)
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Optical interference happens when the two beams are recombined by using a second
optical grating with a period of Λ/2, which translates the phase difference into a change of
intensity (as shown in Figure 13a,b). As shown in Equation (12), the phase difference in
the diffractive interference scheme, which is independent of the wavelength of the input
light, is only related to the period of the optical gratings and the input displacement. As
a result, a better resolution is usually expected with a smaller period of grating. In 2002,
Y. Jourlin et al. established a model for diffractive interferometric displacement sensing
by using multiple gratings, demonstrating the possibility for a miniaturized displacement
sensor based on a reflective structure (as shown in Figure 13c) [105]. Later, they reported a
silicon-integrated MOEMS displacement sensor using a standard 0.6 µm CMOS process,
achieving a high integration of the encoder [106]. In 2006, G.Y. Zhou et al. reported a
multi-freedom-of-degree MOEMS sensor associating the FP resonance with diffractive
interference [116]. A resolution of 0.23 nm/Hz1/2 and 0.03 nm/Hz1/2 for in-plane and
out-of-plane displacement sensing were obtained, respectively.
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Figure 13. (a) Principle of displacement sensing based on diffractive interference [105]. (b) Out-
put signal as a function of in-plane displacement [116]. (c) Schematic diagram of a miniaturized
displacement sensor based on diffractive interference [105].

Another method for displacement sensing is based on Wood’s anomalies of optical
gratings. A tremendous increase or decrease in the intensity of certain diffracted orders
can be observed due to a small variation in the physical parameters, such as relative
locations between two gratings (as shown in Figure 14a,b) [117,118]. As a result, the optical
sensitivity can be greatly enhanced to be at 1%/nm level by carefully setting the geometries
for a two-grating structure. In 2015, C. Wang et al. designed a MOEMS displacement
sensor using anomalous diffraction in a two-grating reflective structure [119]. An optical
sensitivity of 2.5%/nm was obtained in the simulation by carefully tuning the air gap
between the two gratings. In 2018, Q. Lu et al. designed a MOMES accelerometer (as
shown in Figure 14c) [120]. With a decrease of optical reflection over 80% within a small
lateral shift of less than 0.15 µm of a movable grating, an optical displacement sensitivity
of 1.8%/nm was demonstrated in simulation. In the next year, M. Li et al. designed a
micro-gyroscope based on a similar two-gratings structure [121]. The influence of the air
gap on the diffraction efficiency was analyzed in theory, showing a sensitivity of 0.22%/nm.

For the methods mentioned above, multi-layer structures consisting of optical gratings
and metal films are typically required. Using triangulation measurement based on a
single reflective layer, many compact structures can be achieved. A divergent light beam
is typically used in this case. The beam from an optical source is detected by several
detectors located on the different positions of the same substrate after being reflected by
a reflector. The intensities of the light reaching different detectors change as the reflector
rotates or moves linearly (as shown in Figure 15a,b) [122,123]. For example, as the reflector
moves vertically towards the optical detectors, the size of the reflected beam decreases
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as a reason for a smaller optical path. The outputs of the detectors decrease as well for
less overlapping between the reflective beam and the detectors. In this way, I. Ishikawa
et al. fabricated an integrated micro-displacement sensor with a measuring range of up to
1.8 mm in 2007 [122]. And a resolution going down to 20 nm was also demonstrated. After
that, several works focused on a similar structure based on two-dimensional monolithically
integrated photodiodes (as shown in Figure 15c) [35,124,125]. In 2018, Y. Du et al. fabricated
a high-dynamic micro-vibrator with an integrated optical displacement detector for multi-
axial vibration [126]. The displacement detector was integrated into the top of the package
to measure the multi-degree-of-freedom vibration within a range of 500 µm. In 2020,
H. Zhan et al. reported an improved design by using a layout optimization and a shading
glass cover (as shown in Figure 15c) [127]. The glass cover located behind the vertical-cavity
surface-emitting laser was used to absorb interference light and help calibrate the long-term
signal drift.
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Evanescent tunneling between photonic crystals has also been reported for displace-
ment sensing. As two photonic crystal slabs are located close to each other, the guided
resonances in the slabs are coupled through an evanescent tunneling process in addition
to the free-space propagating (as shown in Figure 16a). As a result, the distance between
the two slabs changes the optical reflection. The measuring range, in this case, is usually
limited to no more than 1 µm by an evanescent coupling process. In 2003, W. Suh et al.
proposed a mechanically tunable photonic crystal structure consisting of coupled photonic
crystal slabs, demonstrating a distance-induced change of optical transmission [84]. In 2005,
the same group further analyzed the evanescent tunneling between guided resonances in
photonic crystal slabs [82]. The transmission properties were analyzed by using a temporal
coupled-mode theory. A Fano line shape of the transmission indicated the existence of a
guided resonance. The simulated results demonstrated a displacement measuring range
of 250 nm. In 2010, S. Hadzialic et al. fabricated a MOEMS displacement sensor using a
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double-layer reflective structure, showing a reflectivity change of over 80% for a displace-
ment of 115 nm [22]. The sensor was formed from a photonic crystal slab and a silicon
substrate with a pillar array on it. The reflectivity changed with a relative displacement
between the pillar array and the slab.
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5. Conclusions and Outlook

This review summarizes the development of MOEMS sensing techniques in past
decades. Two different categories are introduced: the guided-wave-based and the free-
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space-based scheme, respectively. The guided-wave-based approaches are generally
used for high-precision measurement within a small range from sub-micrometer to sub-
millimeter level. A resolution going down to 0.1–10 fm/Hz1/2 level has been demonstrated.
In contrast, the free-space-based types generally show a relatively larger measuring range
of up to several millimeters with a resolution ranging from sub-pm/Hz1/2 to nm/Hz1/2

level. The principle, structure and performance for different categories are discussed. By
taking advantage of both the MOEMS and optical sensing, these MOMES displacement
sensing techniques have been demonstrated as excellent solutions for applications such as
photoacoustic spectroscopy, high-precision positioning and automation.

Due to the rapid development of information techniques and industries, future MO-
MES displacement sensing techniques are facing several challenges and opportunities:

Full integration: Despite the great improvement achieved in past decades, full in-
tegration remains a challenge for most MOEMS displacement sensors. In most cases,
displacement measurement is operated by using a MOEMS sensing chip associated with
discrete components such as optical source, splitter and detector. The full integration
of the optical source, sensor and detector is the ultimate goal for MOEMS displacement
sensing. Considering the rapid development of heterogeneous integrating techniques
associated with optimized structures to simply the interrogation and read-out systems,
higher integration is expected.

Higher performance: Although high resolution with a measurement imprecision equal
to the standard quantum limit in a tiny range has been reported [42], ultrasensitive dis-
placement sensing with a relatively large measuring rang (e.g., sub-millimeter to millimeter
scale) is still in high demand. Techniques such as metamaterial and surface plasmon polari-
ton, which can introduce stronger optical confinement and matter-light interaction, may be
used for much higher sensitivity and integration for a long-rang measurement. Data-driven
approaches such as artificial neural networks can also be used in the linearization and
calibration processes of the sensors for ultrahigh precision.

Intelligence sensing: With the rapid development of information techniques and
industries, sensors with higher intelligence are in great demand. Higher functionality
for data processing and logic controlling is needed, requiring the integration of more
functional modules on a single chip. What is more, considering the big data needed
for ultra-sensitive sensing, machine learning may be used to dramatically promote the
development of intelligence displacement sensing.
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