
Citation: Chen, N.; Wen, Z.; Rong, J.;

Tian, C.; Liu, X. Design, Modeling,

and Testing of a Long-Stroke Fast Tool

Servo Based on Corrugated Flexure

Units. Micromachines 2024, 15, 1039.

https://doi.org/10.3390/mi15081039

Academic Editors: Zebing Mao,

Hong Ding and Dong Han

Received: 27 July 2024

Revised: 13 August 2024

Accepted: 14 August 2024

Published: 15 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Design, Modeling, and Testing of a Long-Stroke Fast Tool Servo
Based on Corrugated Flexure Units
Ning Chen 1,2 , Zhichao Wen 1 , Jiateng Rong 1, Chuan Tian 1,3,* and Xianfu Liu 4

1 School of Mechanical and Electronic Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; chenning3456@163.com (N.C.); wen_zhichao2000@163.com (Z.W.);
rjiateng@163.com (J.R.)

2 School of Mechanical Engineering, Shandong University, Jinan 250061, China
3 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
4 School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China;

lxfu2015@163.com
* Correspondence: tianxueningchuan@163.com

Abstract: To further enhance the performance of the fast tool servo (FTS) system in terms of stroke, load
capacity, and application area, this paper proposes a novel fast tool servo device driven by a voice coil
motor (VCM), based on a three-segment uniform corrugated flexure (CF) guiding mechanism, with a
large stroke, high accuracy, and high dynamics. To describe the unified static characteristics of such
device, the compliance matrix method is applied to establish its model, where the influence of CF beam
structural parameters on the FTS device is investigated in detail. Furthermore, resolution and positioning
accuracy tests are conducted to validate the features of the system. The testing results indicate that the
maximum stroke of the FTS device is up to 3.5 mm and the positioning resolution values are 3.6 µm and
2.4 µm for positive and negative stroke, respectively, which further verifies the device’s effectiveness
and promising application prospect in ultra-precision microstructure machining.

Keywords: compliant mechanism; corrugated flexure units; fast tool servo; micromachining;
microstructure

1. Introduction

With the continuous advancement of precision, complexity, and high efficiency in opti-
cal imaging, precision machining, and high-end equipment manufacturing areas, this has
put forward higher requirements for micro and nanomachining manufacturing technolo-
gies [1,2] applied in optical lens surfaces [3,4], asymmetric surfaces [5], and micro/nano
complex structures [6,7]. In particular, fast tool servo (FTS) is widely recognized as an
effective method for ultra/high-precision machining due to its advantages such as rapid
response speed, high processing efficiency, and excellent surface roughness [8], where
precision driving methods encompass piezoelectric driving [9], magnetostrictive force
driving [10], Maxwell force driving [11], voice coil motor (VCM) driving [12], and so on.

The piezoelectric-driven FTS system offers high precision and a fast response [13–15].
However, the limited output of its drive components restricts the stroke to typically tens to
one or two hundred microns [16–18], posing challenges in processing the micro-structure
of large-sized and large-curvature parts, for example, engine elliptical piston skirts with
non-circular surfaces and deep groove optics that are not axisymmetric. Conversely, the
FTS system driven by VCMs features a longer processing stroke [19,20].

Common FTS systems driven by VCMs usually use linear guides or flexible hinges as
guiding mechanisms. For instance, the long-stroke FTS system using rolling guides and
VCMs can reach a maximum stroke of ±4 mm [21]. The long-stroke FTS system with air
bearing guiding and VCM driving achieves a 1% tracking error and a ±1 mm stroke [22–24].
The application of the VCM and linear guide rail can even increase the maximum stroke
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to 30 mm [25,26]. It should be pointed out that although the FTS systems actuated by
VCMs, rolling guide rail, or air bearing can achieve a large stroke, there are large friction
disturbances and guiding mechanism wear in the process of high-frequency machining,
which deteriorates both the machining accuracy and the use life.

Obviously, a reasonable flexible mechanism design can not only avoid friction and
wear, but also ensure that the micro-motion platform achieves very high motion accuracy
and bandwidth [27,28]. The long-stroke FTS system with four flexible leaf springs has a
maximum stroke of 2 mm [29], and the trajectory tracking error has reached 0.15% [30].
However, flexure hinges are typically arranged in a single plane, leading to system vibra-
tions and compromised machining accuracy when subjected to significant vertical loads
due to inadequate stiffness.

Similar to FTS systems, many precision micro-positioning platforms use a VCM-driven
and flexible mechanism-guided design. For example, a two-degree of freedom flexible
micro-positioning platform based on VCMs has a working space of 1.4 mm × 1.2 mm [31].
A flexible micro-clamp driven by a VCM, with an 8 mm grasp range and a 1 µm displace-
ment resolution, accurately achieves the operation task [32]. Notably, the micro-positioning
platform, utilizing the VCMs and the CF beam, exhibits a significantly expanded operational
range (2 mm/28 N) compared to conventional micro-positioning platforms constructed
with ordinary flexible hinges [33,34].

In summary, a long-stroke FTS system using a VCM and a flexible guiding mechanism
is ideal for machining complex parts, such as deep groove optics and elliptical piston skirts
for engines, and different flexible hinge types and arrangement structures can significantly
affect the working performance of the guiding mechanism. However, the existing flexible
mechanisms and hinge arrangement structures do not work well as guiding mechanisms
for long-stroke FTS systems. The common flexible lever mechanism can amplify the
driving stroke, but it generates motion hysteresis and tracking errors; the conventional
straight beam flexible mechanism and the right circular hinge flexible mechanism have
relatively small motion strokes. The CF mechanism, on the other hand, not only has a longer
traveling stroke, but also has the potential to vary the stiffness over a wide range in order
to modulate the intrinsic frequency of the system. In addition, the three-section uniformly
arranged flexible beams have a higher guiding stiffness compared to the conventional
planar arrangement of flexible beams.

In order to further enhance the stroke capability and load-carrying capacity of the
flexible guiding mechanism of the FTS system, this paper adopts a VCM as the actuator and
innovatively utilizes an assembly-type three-section uniform CF guide plate to construct a
long-stroke and high-stiffness FTS system. To describe the unified static characteristics of such
device, the compliance matrix method is applied to establish its model, and the influence of
CF beam structural parameters on the FTS device is investigated. Moreover, an experimental
platform based on the five-link long-stroke precision FTS system is built, enabling a series of
tests for function and performance verification. Compared with the traditional FTS system,
it has a longer machining stroke and motion stability, which provides novel insights into
designing flexible guiding mechanisms for long-stroke FTS systems.

2. Design of FTS Platform with CF Guiding Mechanism

As shown in Figure 1, the novel FTS device presented in this paper mainly con-
sists of a tool, a three-segment uniformly distributed CF guiding mechanism (three CF
beams distributed at an angle of 120◦), a voice coil motor, and a grating sensor, where
the performance of the device (e.g., stroke and intrinsic frequency) can be user-defined by
replacing the appropriate flexible guide plate with different structural parameters, allowing
for adjustments in the working stroke and natural frequency to meet various processing
requirements in different scenarios. Moreover, the CF guiding mechanism is actuated
by the VCM to achieve a reciprocating motion, with the grating detector serving as the
displacement sensor to detect the displacement of the tool in real time.
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Figure 2. Semi-circle flexure unit under plane force: (a) external force Fx; (b) external force Fy; (c) 
bending moment Mz. 

Figure 1. Long-stroke FTS device based on assembled three-segment homogeneous CF guide plate.

3. Static Modeling of CF Guiding Mechanism

The present study focuses on the modeling approach for a CF guiding mechanism
with multiple semi-circle flexure units. Specifically, the compliance matrix method is
employed to perform static modeling of the CF guiding mechanism, enabling the solution
of mathematical expressions that describe the relationship between driving force and
motion displacement in the FTS system. Moreover, this paper discusses in detail the
derivation process of the statics model from semi-circle flexure units to encompassing the
entire CF guiding mechanism and presents a general mechanical model applicable to CF
beams with any number of links.

3.1. Flexibility Model for Semi-Circle Flexure Units

The force in the working process of a CF beam is entirely in the plane force, thus
necessitating a planar approach for modeling the flexibility of each component of the CF
beam. The Mohr’s Integral Method is employed in this paper to derive the compliance
matrix of the semi-circle flexure element in the plane, as shown in Equation (1), which is
used to calculate the vertical displacement δx, horizontal displacement δy, and rotation
angle θz at the free end of the semi-circle flexure unit, where one end of the semi-circle
flexure unit is fixed and the other end is applied with the conditions of vertical force Fx,
horizontal force Fy, and bending moment Mz, respectively, as shown in Figure 2. Since the
CF beam mainly undergoes bending deformation after being stressed, the effects of axial
force and torque on the displacement of the free end can be neglected when applying the
Mohr’s Integral Method for calculation.
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Next, the radius of the semi-circle flexure unit is set to be r, and the polar angle is θ.
The distance between any point on the semi-circle flexure unit and the origin of the X2,
Y2 coordinate system can be calculated by x = r(1 + cosθ), y = rsinθ. Taking the force in
Figure 2a as an example, the bending moment at any position is M(θ), and then, assuming
that the unit force vertically downward and horizontally rightward and the unit bending
moment counterclockwise are applied to the free end, the bending moments of the semi-
circle flexure unit under the action of different units of force are expressed as M(θ)x, M(θ)y,
and M(θ)m, respectively, as shown in Equation (2).

∆ =
∫

l

M(x)·M(x)
EI

dx (1)


M(θ) = r(1 + cos θ)Fx
M(θ)x = r(1 + cos θ)
M(θ)y = −r sin θ

M(θ)m = −1

(2)

The elastic modulus of the semi-circle flexure unit is denoted as E, and its moment of
inertia is represented by I, where the moment of inertia can be calculated by I = (b × h3)/12,
with b and h being the section width and thickness of the semi-circle flexure unit. The
displacements δx1, δy1, and θ1 generated at the free end of the semi-circle flexure unit are
calculated using the Mohr’s Integral Method, as shown in Equation (3), where dl can be
expressed by Equation (4).

δx1 =
∫ π

0
M(θ)x·M(θ)

EI
dl =

3πr3

2EI
Fx

δy1 =
∫ π

0
M(θ)y·M(θ)

EI
dl = −2r3

EI
Fx

θ1 =
∫ π

0
M(θ)m·M(θ)

EI
dl = −πr2

EI
Fx

(3)

dl =

√
(

dx
dθ

)
2
+ (

dy
dθ

)
2
dθ = rdθ (4)

Similarly, the displacements δx2, δy2, and θ2 and δx3, δy3, and θ3 at the free end of the
semi-circle flexure unit can be calculated under the conditions of the horizontal force Fy
and the bending moment Mz applied at the free end of the semi-circle flexure unit.

The relationship between displacement ∆, flexibility C, and force F can be obtained
from the equation ∆ = C·F, and then, the compliance matrix C12 of the semi-circle flexure
unit can be derived, as shown in Equation (5).

C12 =

 3πr3

2EI − 2r3

EI −πr2

EI
− 2r3

EI
πr3

2EI
2r2

EI
−πr2

EI
2r2

EI
πr
EI

 (5)

3.2. Flexibility Modeling of CF Units

The CF unit can be considered as comprising the semi-circle flexure unit O1O2 and the
semi-circle flexure unit O2O3, as illustrated in Figure 3, where the semi-circle flexure unit
O2O3 can be obtained by rotating O1O2 around the node O2 by 180◦. Therefore, the semi-
circle flexure units O1O2 and O2O3 have an equal compliance matrix in their respective
coordinate systems O2X2Y2 and O′

2X′
2Y′

2, that is, C12 = C23. After this, the compliance ma-
trix C′

12 and C′
23 of the semi-circle flexure units O1O2 and O2O3 in the O3X3Y3 coordinate

system can be obtained by the corresponding coordinate transformations (translations and
rotations) as follows:

C′
12 = T12

T·R12
T·C12·R12·T12, (6)
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C′
23 = T23

T·R23
T·C23·R23·T23. (7)

Among them, the translation matrix T12 and rotation matrix R12 of the semi-circle flexure
unit O1O2 are shown in Equations (8) and (9), respectively; the translation matrix T23 = T12
and rotation matrix R23 of the semi-circle flexure unit O2O3 are shown in Equation (10).
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T12 =

 1 0 0
0 1 0

∆y −∆x 1

 =

 1 0 0
0 1 0
2r 0 1

 (8)

R12 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 =

−1 0 0
0 −1 0
0 0 1

 (9)

R23 =

1 0 0
0 1 0
0 0 1

 (10)

Subsequently, the compliance matrix of the two semi-circle flexure units in the O3X3Y3
coordinate system can be superimposed to obtain the compliance matrix C123 of the CF
unit O1O2O3, as follows:

C123 = C′
12 + C′

23 =

 11πr3

EI − 4r3

EI
4πr2

EI
− 4r3

EI
πr3

EI 0
4πr2

EI 0 2πr
EI

 (11)

3.3. Flexibility Modeling of Five-Link CF Beams

The compliance matrix of the five-link CF beam is derived. As depicted in Figure 4, the
CF beam consists of the CF units O1O2O3 and O3O4O5 and the semi-circle flexure unit O5O6 in
series, and the compliance matrices of the CF units O1O2O3 and O3O4O5 are equivalent within
their respective coordinate systems O3X3Y3 and O5X5Y5. Similarly, the compliance matrices
for the semi-circle flexure units O5O6 and O1O2 are equal within their respective coordinate
systems O2X2Y2 and O6X6Y6, namely, C345 = C123, C56 = C12. Consequently, by converting the
compliance matrix from each coordinate system on the plane to the corresponding coordinates
in the system (O6X6Y6), we can obtain the compliance matrix for each unit.
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In particular, the rotation matrix R36 = R12 and translation matrix T36 of the CF unit
O1O2O3 are shown in Equation (12); the rotation matrix R56 = R12 and translation matrix
T56 of the CF unit O3O4O5 are shown in Equation (13); the semi-circle flexure unit O5O6
does not necessitate coordinate transformation.

T36 =

 1 0 0
0 1 0

−6r 0 1

 (12)

T56 =

 1 0 0
0 1 0

−2r 0 1

 (13)

The final compliance matrix C16 for the CF beam is derived as follows:

C16 = T36
T·R36

T·C123·R36·T36 + T56
T·R56

T·C345·R56·T56 + C56

=

 335πr3

2EI − 10r3

EI − 25πr2

EI
− 10r3

EI
5πr3

2EI
2r2

EI
− 25πr2

EI
2r2

EI
5πr
EI

 (14)

3.4. Static Modeling of the FTS System

In order to derive the compliance matrix of the CF guiding mechanism, the displace-
ment of the guide mechanism is influenced by three pairs of mirror-image-arranged CF
beams, which can be categorized into three groups (I, II, and III) for research purposes, as
illustrated in Figure 5. The compliance matrices for each set of coordinate systems (OXYZ,
OX′Y′Z′, OX′′Y′′Z′′) are denoted by C1, C2, and C3, respectively. It should be noted that all
three coordinate systems share an X-axis.
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In the following, the compliance matrix of a pair of CF beams in the overall coordinate
system OXY of Figure 6 (in which the Z-axis is perpendicular to the paper surface outward)
is investigated by taking the CF beams in the mirror arrangement of Group I as an example.
It can be observed that the compliance matrix C16 of the CF beam O1O6 in the coordinate
system O6X6Y6 is equal to the compliance matrix C′

16 of the CF beam O′
1O′

6 in the
coordinate system O′

6X′
6Y′

6, that is, C16 = C′
16.
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Then, the compliance matrix of the CF beams O1O6 and O′
1O′

6 under the overall
coordinate system OXY can be obtained by coordinate transformation. It is worth noting
that there is a parallel structure between O1O6 and O′

1O′
6; therefore, the stiffness model of

a set of CF beams under the overall coordinate system OXY can be expressed as follows:

K1 = (T1
T·R1

T·C16·R1·T1)
−1 + (T2

T·R2
T·C′

16·R2·T2)
−1 (15)

Moreover, the rotation matrix R1 of the CF beam O1O6 is a unit matrix, and the
translation matrix T1 is shown in Equation (16); for the rotation matrix R2 = R12 of the CF
beam O′

1O′
6, the translation matrix T2 is shown in Equation (17).

T1 =

 1 0 0
0 1 0

−∆y ∆x2 1

 (16)

T2 =

 1 0 0
0 1 0

−(∆y + 10r) ∆x1 + ∆x2 1

 (17)

The compliance matrix (C1) and stiffness matrix (K1) of Group I are inversely propor-
tional to each other, and the compliance matrix of the three groups of CF beams is the same
in their respective coordinate systems, namely, C1 = C2 = C3.



Micromachines 2024, 15, 1039 8 of 18

Hence, the compliance matrices of the three groups in their respective coordinate
systems are unified into the overall coordinate system OXYZ, where the rotation matrix RII
of the coordinate systems OX′Y′Z′ to OXYZ can be expressed by Equation (18), the rotation
matrix RIII of the coordinate systems OX′′Y′′Z′′ to OXYZ can be expressed by Equation (19),
and the overall stiffness K of the CF guiding mechanism can be calculated by Equation (20).

RII =



1 0 0 0 0 0
0 − 1

2 −
√

3
2 0 0 0

0
√

3
2 − 1

2 0 0 0
0 0 0 1 0 0
0 0 0 0 − 1

2 −
√

3
2

0 0 0 0
√

3
2 − 1

2


(18)

RIII =



1 0 0 0 0 0
0 − 1

2

√
3

2 0 0 0
0 −

√
3

2 − 1
2 0 0 0

0 0 0 1 0 0
0 0 0 0 − 1

2

√
3

2

0 0 0 0 −
√

3
2 − 1

2


(19)

K = C1
−1 + (RII

T·C2·RII)
−1

+ (RIII
T·C3·RIII)

−1
(20)

Finally, the static model of the FTS system based on the compliance matrix method is
established as follows:

δ = C·F (21)

where δ represents the stroke of the FTS system.

3.5. Static Modeling of FTS Systems with Arbitrary Number of Links

The purpose of this section is to derive the general statics model of an FTS system with
any number of links in order to further investigate its displacement range. This derivation
assumes that the total length of the CF beam, denoted as L, remains constant.

(1) When the number of links n is odd, as shown in Figure 7, the CF beam can be
regarded as composed of (n − 1)/2 CF units and a semi-circle flexure unit in series, and
the radius r of the links can be expressed by L/(2n) at this time. Therefore, the compliance
matrix in each local coordinate system can be converted to the overall coordinate system
(On+1Xn+1Yn+1) at the end of the CF beam and superimposed. At this time, the translation
matrix T2k+1 n+1 of the kth CF unit is shown in Equation (22). Meanwhile, we can derive the
compliance matrix Cn n+1 = C12, and Cn−2 n−1 n = . . .. . . = C345 = C123. Hence, the compliance
matrix C1 n+1 of CF beams under an odd number of links can be obtained by superposition
of the compliance matrix, as shown in Equation (23).

T2k+1 n+1 =

 1 0 0
0 1 0

−
{[

(n−1)
2 − k

]
·4r + 2r

}
0 1

 n = 1, 3, 5, 7 . . . . . .
k ≤ n−1

2
(22)

C1 n+1 = T3 n+1
T·R3 n+1

T·C123·R3 n+1·T3 n+1 + T5 n+1
T·R5 n+1

T·C345·R5 n+1·T5 n+1 + . . .
+Tn n+1

T·Rn n+1
T·Cn−2 n−1 n·Rn n+1·Tn n+1 + Cn n+1

=


πr3

EI

(
4
3 n3 + 1

6 n
)

− 2nr3

EI − n2πr2

EI

− 2nr3

EI
nπr3

2EI
2r2

EI
− n2πr2

EI
2r2

EI
nπr
EI

 n= 1, 3, 5, 7 . . . . . .
(23)
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(2) When the number of links n is even, as shown in Figure 8, the CF beam can be
regarded as consisting of n/2 CF units connected in series, with the radius r represented
in the same way as the odd-numbered links, and Cn−1 n n+1 = . . .. . . = C345 = C123 in the
respective coordinate system. Similarly, the translation matrix T2k+1 n+1 of the kth CF unit
is shown in Equation (24), and the compliance matrix of the CF beam with an even number
of links can be expressed by Equation (25).

T2k+1 n+1 =

 1 0 0
0 1 0( n

2 − k
)
·4r 0 1

 n = 2, 4, 6, 8 . . . . . .
k ≤ n

2
(24)

C1 n+1 = T3 n+1
T·R3 n+1

T·C123·R3 n+1·T3 n+1 + T5 n+1
T·R5 n+1

T·C345·R5 n+1·T5 n+1 + . . .
+Tn+1 n+1

T·Rn+1 n+1
T·Cn−1 n n+1·Rn+1 n+1·Tn+1 n+1

=


πr3

EI

(
4
3 n3 + 1

6 n
)

− 2nr3

EI
n2πr2

EI

− 2nr3

EI
nπr3

2EI 0
n2πr2

EI 0 nπr
EI

 n = 2, 4, 6, 8 . . . . . .
(25)
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Finally, the compliance matrix C′
1 in the OXY coordinate system can be obtained by

parallel superposition of a group of CF beams that are mirrored in the plane, as depicted
in Equation (26), where C′

1 n+1 = C1 n+1, T3 is shown in Equation (27), T4 is shown in
Equation (28), R3 = R12, and R4 is shown in Equation (29). Subsequently, the compliance
matrix of the three groups of CF beams is consolidated into the global coordinate system
OXYZ, yielding the compliance matrix C′ for any link within the CF guiding mechanism,
as shown in Equation (30), where C′

1 = C′
2 = C′

3.

C′
1 =


[
(T1

T·R1
T·C1 n+1·R1·T1)

−1 + (T3
T·R2

T·C′
1 n+1·R2·T3)

−1
]−1

n= 1, 3, 5, 7 . . . . . .[
(T1

T·R3
T·C1 n+1·R3·T1)

−1 + (T4
T·R4

T·C′
1 n+1·R4·T4)

−1
]−1

n= 2, 4, 6, 8 . . . . . .
(26)

T3 =

 1 0 0
0 1 0

−(∆y + 2n·r) ∆x1 + ∆x2 1

 (27)



Micromachines 2024, 15, 1039 10 of 18

T4 =

 1 0 0
0 1 0

−∆y ∆x1 + ∆x2 1

 (28)

R4 =

1 0 0
0 −1 0
0 0 −1

 (29)

C′ =
[
C′

1
−1

+ (RII
T·C′

2·RII)
−1

+ (RIII
T·C′

3·RIII)
−1]−1

(30)

In summary, the unified static model of the FTS system under arbitrary links can be
expressed as follows:

δ = C′·F (31)

4. Static Model Validation and Static Characteristic Experiments

This study involved the construction of a five-link FTS system experimental platform
based on the structural parameters provided in Table 1. The accuracy of the statics model
was validated by finite element analysis (FEA) and stroke testing, encompassing positioning
and repeated-positioning evaluations.

Table 1. Structural parameters of CF guiding mechanism.

Dimensional Parameters Value (mm)

Inner radius of semi-circle flexure unit in CF beams (r1) 3
Outer radius of semi-circle flexure unit in CF beams (r2) 4

Width of CF beams (b) 18
Thickness of CF beams (h) 1

Length of CF beams (L) 35
Distance between two CF beams (∆x1) 38

Distance between the end of the CF beam and
the tool mounting surface (∆x2) 4

Distance between the end of the CF beam and
the axis of the guiding mechanism (∆y) 17

4.1. Verification of the Accuracy of the Static Model

In this section, the displacements of the end of the semi-circle flexure unit, CF unit,
and CF beam under different forces were firstly simulated by using the software ABAQUS
and compared with the theoretical values of the modeled ones in order to validate the cor-
rectness. Concretely, the stroke of the FTS platform based on a three-section homogeneous
CF guiding mechanism was simulated under driving force (−200 N to 200 N). Finally,
the accuracy of the static model of the long-stroke FTS system was verified through the
comparison between the theoretical values, simulation results, and experimental data.

4.1.1. FEA Verification

The material parameters of the CF guiding mechanism are presented in Table 2. By
comparing the simulation values with the theoretical values, the semi-circle flexure unit
has a relatively small error of approximately 3.5% in the x direction, and a larger error
of around 10.4% in the y direction; the analytical solution of the CF unit is closer to the
simulation value in the x direction, with an error of 3.7%, while the error in the y direction
is 9.5%. Figure 9 shows the comparison between the theoretical and simulation results
of the displacement of the CF beam in the x and y directions under the force Fx, with the
error of the displacement in the x direction not exceeding 4.7% and that in the y direction
not exceeding 5.2%, which validates the derivation method proposed in this paper for
constructing a static flexibility model.
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Table 2. CF guiding mechanism material parameters.

Density
ρ/(kg/m3)

Young’s
Modulus E/Mpa

Poisson’s Ratio
µ

Tensile
Strength/Mpa

Yield
Strength/Mpa

2810 71,000 0.33 524 455
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Figure 9. Displacement and relative error of free end of CF beam. (a) Displacement and relative error
in x direction. (b) Displacement and relative error in y direction.

Finally, the stroke of the FTS system under different driving forces can be obtained by
simulation, and the displacement cloud obtained by simulation is shown in Figure 10, while
the relationship between the simulation values and the theoretical values is shown in Figure 11.
It can be seen that the relative error is below 2%, thereby providing preliminary validation for
the statics model of the long-stroke FTS system based on the CF guiding mechanism.
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4.1.2. Stroke Test Experiments

In order to further validate the accuracy between the theoretical and actual displace-
ments of the static model of the FTS platform, a long-stroke FTS system was built with a
five-link flexible guiding mechanism, as depicted in Figure 12. The VCM was controlled by
the output test signal from the computer to achieve reciprocating motion in both forward
and backward directions, and the actual displacement output of the FTS platform was
detected using a grating ruler with a resolution of 20 nm. The experimental principle is
shown in Figure 13.
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The experimental results are shown in Figure 11. The average error of the negative
traveling direction is 5.4%, the average error of the positive traveling direction is 3.5%,
where the maximum error of both directions is not more than 5.9%, and the error of the
positive and negative directions gradually increases with the increase in the stroke. Notably,
this paper demonstrates that our established statics model for the long-stroke FTS system
exhibits proven accuracy and effectiveness through the comparison between the theoretical
values, simulation results, and experimental data.

4.2. Experiments on Static Characteristics under Open-Loop Control
4.2.1. System Resolution Test

In order to obtain the minimum resolution of positive and negative strokes, a step
signal with increasing amplitude was input into the FTS system until both positive and
negative strokes made a complete displacement response, as shown in Figure 14. The figure
illustrates that the overall displacement of the experiment is minimal, with a discrepancy in
resolution between the positive and negative directions. Upon increasing the amplitude of
the displacement signal to 2.4 µm, a complete response is observed in the negative direction
while lacking in the positive direction, as depicted in Figure 14a. Subsequently, by further
increasing the displacement signal to 3.6 µm, both positive and negative directions exhibit
full responsiveness to the displacement signal, as shown in Figure 14b.

Micromachines 2024, 15, x FOR PEER REVIEW 14 of 18 
 

 

  
(a) (b) 

Figure 14. Positive and negative stroke resolution test. (a) Negative stroke resolution. (b) Positive 
stroke resolution. 

4.2.2. Positioning Accuracy and Repeat Positioning Accuracy Test 
To evaluate the positioning accuracy and repeat positioning accuracy of the FTS sys-

tem under open-loop control, experiments were conducted as depicted in Figure 15. The 
experimental data were processed to generate images showing the deviation of the actual 
displacement from the theoretical displacement within a 2 mm working stroke. The FTS 
system moves 1 mm from the 0 mm position in 0.2 mm steps and returns to 0 mm in 
positive and negative traveling directions; Figure 15a shows the positioning and repetitive 
positioning test for negative travel and Figure 15b shows the positioning and repetitive 
positioning test for positive travel. 

By analyzing the data, it can be obtained that the positioning accuracy of the negative 
working stroke of the system is 12.8 µm/200 µm, and the repetitive positioning accuracy 
is 0.47 µm; the positioning accuracy of the positive working stroke is 7.9 µm/200 µm, and 
the repetitive positioning accuracy is 0.49 µm. Therefore, the positioning accuracy of the 
positive stroke is better than that of the negative stroke. In addition, the repeated position-
ing accuracy of the positive and negative strokes indicates that the CF guiding mechanism 
exhibits exceptional motion precision and ensures excellent workpiece consistency. 

  
(a) (b) 

Figure 15. Positive and negative stroke positioning accuracy and repeat positioning accuracy test. 
(a) Negative stroke positioning and repetitive positioning tests. (b) Positive stroke positioning and 
repetitive positioning tests. 

  

Figure 14. Positive and negative stroke resolution test. (a) Negative stroke resolution. (b) Positive
stroke resolution.



Micromachines 2024, 15, 1039 14 of 18

4.2.2. Positioning Accuracy and Repeat Positioning Accuracy Test

To evaluate the positioning accuracy and repeat positioning accuracy of the FTS
system under open-loop control, experiments were conducted as depicted in Figure 15.
The experimental data were processed to generate images showing the deviation of the
actual displacement from the theoretical displacement within a 2 mm working stroke. The
FTS system moves 1 mm from the 0 mm position in 0.2 mm steps and returns to 0 mm in
positive and negative traveling directions; Figure 15a shows the positioning and repetitive
positioning test for negative travel and Figure 15b shows the positioning and repetitive
positioning test for positive travel.
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By analyzing the data, it can be obtained that the positioning accuracy of the negative
working stroke of the system is 12.8 µm/200 µm, and the repetitive positioning accuracy is
0.47 µm; the positioning accuracy of the positive working stroke is 7.9 µm/200 µm, and
the repetitive positioning accuracy is 0.49 µm. Therefore, the positioning accuracy of the
positive stroke is better than that of the negative stroke. In addition, the repeated positioning
accuracy of the positive and negative strokes indicates that the CF guiding mechanism
exhibits exceptional motion precision and ensures excellent workpiece consistency.

5. Discussion

This study explores the impact of structure parameters of the CF guiding mechanism
on the platform stroke, which can be applied to the optimal design of the FTS system. In
particular, this article investigates the influence of three structural parameters, namely
width (b), thickness (h), and number of links (n), of the CF beam on the guide plate based
on a static model of the CF guiding mechanism with any number of links. The stroke of
the FTS system is examined under the condition that the total length (L) of the CF beam
remains fixed and the driving force is 200 N. The results are illustrated in Figure 16.
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The figure demonstrates the following laws:
(1) With a fixed number of links n, reducing the thickness h and width b of the flexible

hinge leads to an increased stroke in the FTS system. This is due to the fact that the reduction
in the thickness h and width b causes the moment of inertia I to decrease. From Equation
(14), it can be seen that the reduction in the moment of inertia I leads to an increase in the
compliance of the CF beam, which in turn leads to an increase in the traveling distance of
the FTS system.

(2) By maintaining the thickness h, width b, and total length of the hinge, increasing
the number of links n will reduce the stroke difference between the odd and even hinges
until it reaches a stable value. This is owing to the fact that when the total length of the
CF beam is kept constant, the radius of the semi-circle flexure unit gradually decreases as
the number of links n increases, and when the radius decreases to a sufficiently small size,
the CF beam can be approximated to a special straight beam, at which time the number of
links n does not have much influence on the stroke.

(3) Amongst these three structural designs influencing the stroke, thickness h has the most
significant impact on FTS system motion stroke. This is because, as seen from I = (b × h3)/12,
the thickness h is a cubic term in the calculation and has a greater effect than the width b. In
addition, the thickness h is of a different order of magnitude than the number of links n and
has the most significant effect on the stroke. This can also be visualized in Figure 16.

(4) The odd number of links n in CF beams is more favorable for enhancing platform
travel under the condition of a constant total length of the CF beam, which is verified by FEA.
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Based on the relationships between different structures and the motion stroke in
the FTS system, the structural design scheme with the best performance under different
working conditions can be obtained, and the suitable CF guide plate can be replaced to
meet processing requirements for different workpieces.

It is worth mentioning that CF guide plates with different configurations not only
affect the motion travel of the FTS system, but also change the dynamic characteristics of
the system, which is also crucial for the application of FTS in ultra-precision and micro-
cutting. For the same driving force, a guide plate with a smaller stroke has a larger intrinsic
frequency. The first-order intrinsic frequency of the long-stroke FTS system based on a
five-link guide plate is experimentally tested to be 83 Hz.

However, although the current design can be used to adjust the intrinsic frequency
of the FTS system by replacing the CF guiding plates with different structures, there are
still limitations in the adjustment method: the adjustment process is cumbersome, and
several sets of CF guiding plates with different structures need to be prepared to meet the
replacement requirements.

6. Conclusions

This paper proposed a long-stroke FTS system which leveraged the large deformation,
high precision, and frictionless characteristics of CF beams to design an innovative CF
guiding mechanism featured with a high load capacity. The static model of the system
was established using the compliance matrix method, and the validity of the model was
confirmed by the test of a five-link FTS system experimental platform. The test results
indicated that the maximum effective stroke was 3.5 mm, the resolution for positive and
negative strokes was 3.6 µm and 2.4 µm, respectively, the overall positioning accuracy
was 48.8 µm/200 µm, the repeated positioning accuracy was 1.6 µm, and the first-order
intrinsic frequency was 83 Hz. This study presented a novel concept and an accurate
statistical model for the design of the three-segment uniform CF guiding mechanism,
thereby achieving exceptional precision and simultaneously increasing its stroke length.
Future development plans involve the design of a long-stroke FTS system that utilizes the
unique properties of the CF beam to enable easy stiffness adjustment, allowing for a wide
range of variation in stiffness with an axial load.
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Nomenclature

C flexibility
CF corrugated flexure
E modulus of elasticity
F force
FEA finite element analysis
FTS fast tool servo
I moment of inertia
K stiffness
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M bending moment
n number of links
r radius of semi-circle flexure unit
Ri, Rij rotation matrix
Ti, Tij rotation matrix
VCM voice coil motor
θ polar angle
θz, θi rotation angle
δ, ∆ Displacement
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