Development of a Portable Residual Chlorine Detection Device with a Combination of Microfluidic Chips and LS-BP Algorithm to Achieve Accurate Detection of Residual Chlorine in Water
Abstract
:1. Introduction
2. Experiments
2.1. Development of the Portable Residual Chlorine Detection Device
2.2. Methods
2.3. Fluid Simulation Mechanics Model
2.4. Parameterized Design of Microfluidic Chip
2.5. The Principle of Dual-Channel Signal Reading Method
2.6. The Construction of LS-BP Algorithm
2.7. Characterizations
3. Results and Discussion
3.1. Influence of Microfluidic Chip Structure Parameters on Liquid Mixing Efficiency of Microfluidic Chip
3.2. Calibration and Evaluation of the LS-BP Algorithm
3.3. Performance Evaluation the Portable Residual Chlorine Detection Device
4. Conclusions
- (1)
- A microfluidic chip that can achieve efficient mixing of two-phase flow was studied. The results indicate that channel amplitude A, channel width α, the channel angular frequency ω have an impact on mixing efficiency. The increase in channel amplitude A and channel width α is beneficial for improving the mixing efficiency, and the increase in channel width is not beneficial for improving the mixing efficiency. When channel amplitude A is 1.8 mm, channel width α is 0.7 mm, and channel angular frequency ω is 0.7 rad·s−1, the microfluidic chip has good mixing efficiency. This microfluidic chip can also be used for liquid mixing in other detection devices, reducing device volume and cost and achieving efficient and fast mixing.
- (2)
- An LS-BP algorithm was proposed, which is based on the least squares method and the BP neural network. The LS-BP algorithm was used to predict the residual chlorine concentration in water, and it has good accuracy. The average absolute percentage error of the prediction result is 0.24%, the average of the prediction residuals is 1.781 × 10−4 mg·L−1, and the variance of the prediction residuals is 1.019 × 10−4. This algorithm is also applicable to the detection of other substances in water and still has good detection accuracy and reliability, which will be further confirmed in future research.
- (3)
- The limit of detection of the portable residual chlorine detection device is 0.01 mg·L−1, the relative standard deviation is 3.2%, the detection reagent is 50 s, the detection liquid consumption is 5 mL, and the construction and maintenance costs are low. Compared with other residual chlorine detection devices and methods, the portable residual chlorine detection device has relatively high detection accuracy, fast detection speed, a low cost, and is more convenient. The portable residual chlorine detection fills the gap in the absence of a device that can accurately, rapidly, and conveniently detect residual chlorine in water at low cost. It can also be used to detect residual chlorine in other types of water, such as drinking water, swimming pools, and aquaculture. It can also be used to detect residual chlorine in water, such as drinking water, swimming pools, and aquaculture.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- : 0.41161614839205645788.~:
141.2504359 | −141.4011525 | −141.2519994 | −141.1017039 |
−141.4005702 | 141.4032695 | 141.3956747 | 141.4083927 |
141.0236009 | 141.2978612 | −141.3844829 | 141.4103766 |
141.2957102 | −141.4001036 | 141.4004749 | 141.2828344 |
−141.3854709 | 141.3970232 | 141.3189413 | −141.3990541 |
141.4186759 | 141.4169222 | −141.3299803 | 141.3952249 |
−141.5110642 | 141.4827488 | 141.4018716 | 141.3853218 |
141.4001668 | −141.4079296 | 141.4004309 | 141.3478875 |
141.4001615 | 141.3980244 | −141.4000452 | −141.4001779 |
141.387853 | −141.4248409 | 141.3097943 | −141.3686975 |
−141.4009656 | 141.3900592 | −141.4443236 | −141.6041695 |
141.3983219 | 141.4583967 | −141.364381 | −141.4000618 |
141.399928 | −141.4044611 | −141.3999539 | −141.3983195 |
141.4000332 | −141.4164973 | 141.3796423 | −141.3935644 |
141.4000267 | 141.3997814 | −141.3260521 | 141.3830316 |
−141.3973547 | 141.4085095 | −141.42645 | 141.3979954 |
−141.407349 | 141.7166441 | −141.4025577 | −141.3686268 |
−141.400651 | −141.4022892 | 141.4186206 | 141.3995125 |
141.6725111 | −141.0832039 | −141.158267 | 141.4372117 |
141.3955837 | −141.4321767 | 141.3992102 | −141.394406 |
−141.3997424 | 141.4889649 | −141.3986888 | −141.3880851 |
141.3999823 | 141.3815284 | −141.4059837 | 141.3999221 |
−141.5019556 | 141.4128821 | 141.4047919 | −141.3550851 |
141.4107121 | 141.3992634 | −141.4421445 | 141.3994286 |
−141.3928016 | 141.1657684 | 141.3325874 | −141.3782855 |
141.3725278 |
- :
−141.5495561 | 138.5708301 | 135.8964638 | 133.235595 |
130.0873913 | −127.2563324 | −124.436855 | −121.5940636 |
−119.2216235 | −116.0728196 | 113.1396911 | −110.2783401 |
−107.6002023 | 104.6358647 | −101.8073212 | −99.14758398 |
96.17323234 | −93.32856251 | −90.62383791 | 87.66946598 |
−84.80842559 | −81.97993806 | 79.30590321 | −76.36422959 |
73.30863683 | −70.53344465 | −67.86826849 | −65.07673529 |
−62.21579933 | 59.36866503 | −56.5587362 | −53.86808869 |
−50.90359181 | −48.08181082 | 45.24786731 | 42.41936384 |
−39.63526448 | 36.66826693 | −34.2976312 | 31.24359466 |
28.27499773 | −25.50520587 | 22.32961384 | 18.32477447 |
−16.97813676 | −13.53824327 | 11.74839349 | 8.483250626 |
−5.659624622 | 2.612233058 | 0.002251331 | −2.911993138 |
5.655440015 | −8.222086563 | 11.56792804 | −14.20761648 |
16.96771089 | 19.79735228 | −23.08138955 | 25.54066884 |
−28.28966285 | 31.06715509 | −33.82812811 | 36.77241999 |
−39.56654237 | 41.37493514 | −45.23900074 | −48.17033354 |
−50.90221943 | −53.72581801 | 56.51344655 | 59.38911505 |
61.59619678 | −65.73613663 | −68.37304638 | 70.62467543 |
73.53619354 | −76.29577652 | 79.18539572 | −82.02150246 |
−84.83987405 | 87.52412377 | −90.49802383 | −93.34243536 |
96.15202239 | 99.00606884 | −101.7995551 | 104.636101 |
−107.331144 | 110.2747684 | 113.1139801 | −116.0031577 |
118.7632339 | 121.6048347 | −124.3839212 | 127.2606559 |
−130.0956288 | 133.1645088 | 135.8147141 | −138.5941523 |
141.4274495 |
- ~:
−0.408021378 | −0.443543769 | −0.056335236 | 1.243239318 |
−0.310122142 | 0.300648953 | 0.593338153 | 0.007278645 |
0.128387282 | −0.563887928 | −0.365094037 | −0.307482713 |
−0.347895502 | −0.244299305 | 0.542084498 | −0.53668857 |
−0.278636514 | 0.256257735 | −0.615811048 | 0.031489501 |
−0.003125461 | 0.083573569 | 0.039385908 | 0.031559314 |
0.109285293 | −0.847466461 | 0.415077107 | 1.096385917 |
−0.169989554 | −0.140180424 | −0.147377868 | −0.709785718 |
0.419910783 | 0.278136388 | 0.340071645 | −0.363530583 |
−0.3105091 | −0.276485619 | −0.403120783 | 0.403613555 |
−1.161046593 | −0.17926388 | 0.186199256 | 0.0951566 |
0.272933021 | −0.422003839 | 0.859023141 | −0.350774225 |
0.865547226 | 0.544845546 | −0.009180248 | −0.698944579 |
−0.182356484 | 0.122776662 | −0.220465477 | −0.042581537 |
0.129502124 | 0.273089463 | 0.640719077 | 0.072663101 |
0.037388001 | 0.663734977 | 0.866908298 | 1.134975611 |
−0.247231174 | −1.293483487 | −0.318937347 | 0.660760734 |
−0.592936776 | −0.322754685 | −0.249880331 | 0.278402255 |
−0.223195168 | −0.336272916 | 0.433576425 | −0.122935128 |
0.082938506 | −0.331092961 | −0.304524849 | 0.141388732 |
−0.234651742 | −0.443891949 | −0.243050278 | 0.906897894 |
0.299165659 | 0.689577838 | 0.360606383 | 0.023650694 |
−0.795369982 | 0.005526423 | −0.446438409 | −0.341361915 |
−0.275427569 | 0.160497631 | 0.358515343 | 1.289239667 |
0.305641027 | −0.911761932 | 0.227717189 | −0.078282132 |
−0.078005239 |
References
- Mesquita, R.B.R.; Noronha, M.L.F.O.; Pereira, A.I.L.; Santos, A.C.F.; Torres, A.F.; Cerdà, V.; Rangel, A.O.S.S. Use of Tetramethylbenzidine for the Spectrophotometric Sequential Injection Determination of Free Chlorine in Waters. Talanta 2007, 72, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.M.; Sivaganesan, M. Predicting Chlorine Residuals in Drinking Water: Second Order Model. J. Water Resour. Plan. Manag. 2002, 128, 152. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Wang, C.; Huang, J.; Zhou, M. Chlorination in the Pandemic Times: The Current State of the Art for Monitoring Chlorine Residual in Water and Chlorine Exposure in Air. Sci. Total Environ. 2022, 838, 156193. [Google Scholar] [CrossRef]
- Kunigk, L.; Gedraite, R.; Kunigk, C.J. Efficacy of Chlorine Dioxide and Sodium Hypochlorite in Reuse Water Disinfection. Environ. Eng. Manag. J. 2018, 17, 711–720. [Google Scholar] [CrossRef]
- Van Haute, S.; Tryland, I.; Escudero, C.; Vanneste, M.; Sampers, I. Chlorine Dioxide as Water Disinfectant During Fresh-Cut Iceberg Lettuce Washing: Disinfectant Demand, Disinfection Efficiency, And Chlorite Formation. LWT-Food Sci. Technol. 2017, 75, 301–304. [Google Scholar] [CrossRef]
- Vargas, T.F.; Baía, C.C.; da Silva Machado, T.L.; Dórea, C.C.; Bastos, W.R. Decay of Free Residual Chlorine in Wells Water of Northern Brazil. Water 2021, 13, 992. [Google Scholar] [CrossRef]
- Murray, A.; Lantagne, D. Accuracy, Precision, Usability, And Cost of Free Chlorine Residual Testing Methods. J. Water Health 2015, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Tanb, J.; Wang, C.; Wub, J.; Wang, Q.; Chenb, J.; Fang, S.; Duana, M. A Miniaturized Evanescent-Wave Free Chlorine Sensor Based on Colorimetric Determination by Integrating on Optical Fiber Surface. Sens. Actuators B Chem. 2017, 245, 674–682. [Google Scholar] [CrossRef]
- Onyutha, C.; Kwio-Tamale, J.C. Modelling Chlorine Residuals in Drinking Water: A Review. Int. J. Environ. Sci. Technol. 2022, 19, 11613–11630. [Google Scholar] [CrossRef]
- Salvadori, M.I.; Sontrop, J.M.; Garg, A.X.; Moist, L.M.; Suri, R.S.; Clark, W.F. Factors that led to the Walkerton tragedy. Kidney Int. 2009, 75, S33–S34. [Google Scholar] [CrossRef]
- Hrudey, S.E.; Payment, P.; Huck, P.M.; Gillham, R.W.; Hrudey, E.J. A Fatal Waterborne Disease Epidemic in Walkerton, Ontario: Comparison with Other Waterborne Outbreaks in the Developed World. Water Sci. Technol. 2003, 47, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gao, B.; Ma, D.; Rong, H.; Sun, S.; Wang, F.; Yue, Q.; Wang, Y. Effects of Chlorination Operating Conditions on Trihalomethane Formation Potential in Polyaluminum Chloride-Polymer Coagulated Effluent. J. Hazard. Mater. 2015, 285, 103–108. [Google Scholar] [CrossRef]
- Simpson, K.L.; Hayes, K.P. Drinking Water Disinfection By-Products: An Australian Perspective. Water Res. 1988, 32, 1552. [Google Scholar] [CrossRef]
- Mosteo, R.; Miguel, N.; Martin-Muniesa, S.; Ormad, M.P.; Ovelleiro, J.L. Evaluation of Trihalomethane Formation Potential in Function of Oxidation Processes Used During the Drinking Water Production Process. J. Hazard. Mater. 2009, 172, 661–666. [Google Scholar] [CrossRef]
- Wu, Q.-Y.; Tang, X.; Huang, H.; Li, Y.; Hu, H.-Y.; Ding, Y.-N.; Shao, Y.-R. Antiestrogenic Activity and Related Disinfection By-Product Formation Induced by Bromide During Chlorine Disinfection of Sewage Secondary Effluent. J. Hazard. Mater. 2014, 273, 280–286. [Google Scholar] [CrossRef]
- Rajasekharan, V.V.; Clark, B.N.; Boonsalee, S.; Switzer, J.A. Electrochemistry of Free Chlorine and Monochloramine and Its Relevance to the Presence of Pb in Drinking Water. Environ. Sci. Technol. 2007, 41, 4252–4257. [Google Scholar] [CrossRef]
- Saputro, S.; Takehara, K.; Yoshimura, K.; Matsuoka, S.; Narsito. Differential Pulse Voltammetric Determination of Free Chlorine for Water Disinfection Process. Electroanalysis 2010, 23, 2765–2768. [Google Scholar] [CrossRef]
- Shin, H.; Jung, D. Determination of Chlorine Dioxide in Water by Gas Chromatography–mass Spectrometry. J. Chromatogr. A 2006, 1123, 92–97. [Google Scholar] [CrossRef]
- Shin, H.-S. Simple and Simultaneous Determination of Free Chlorine, Free Bromine and Ozone in Water by LC. Chromatographia 2010, 71, 647–651. [Google Scholar] [CrossRef]
- Lee, W.; Westerhoff, P.; Yang, X.; Shang, C. Comparison of Colorimetric and Membrane Introduction Mass Spectrometry Techniques for Chloramine Analysis. Water Res. 2007, 41, 3097–3102. [Google Scholar] [CrossRef] [PubMed]
- Hallaj, T.; Amjadi, M.; Manzoori, J.L.; Shokri, R. Chemiluminescence Reaction of Glucose-Derived Graphene Quantum Dots with Hypochlorite, And Its Application to the Determination of Free Chlorine. Microchim. Acta 2015, 182, 789–796. [Google Scholar] [CrossRef]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in Optical-Sensing Strategies for the On-Site Detection of Pesticides in Agricultural Foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Yen, Y.-K.; Lee, K.-Y.; Lin, C.-Y.; Zhang, S.-T.; Wang, C.-W.; Liu, T.-Y. Portable Nanohybrid Paper-Based Chemiresistive Sensor for Free Chlorine Detection. ACS Omega 2020, 5, 25209–25215. [Google Scholar] [CrossRef]
- Dou, J.; Shang, J.; Kang, Q.; Shen, D. Field analysis free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and accuracy. Microchem. J. 2019, 150, 104200. [Google Scholar] [CrossRef]
- Yin, J.; Gao, W.; Yu, W.; Guan, Y.; Wang, Z.; Jin, Q. A batch microfabrication of a self-cleaning, ultradurable electrochemical sensor employing a BDD film for the online monitoring of free chlorine in tap water. Microsyst. Nanoeng. 2022, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Li, T.; Xing, C.; Liu, Y.; Zhao, H. Membrane-Based Portable Colorimetric Gaseous Chlorine Sensing Probe. Anal. Chem. 2021, 93, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Kodera, F.; Saito, R.; Ishikawa, H.; Miyakoshi, A.; Umeda, M. Electrochemical Detection of Free Chlorine Using Ni Metal Nanoparticles Combined with Multilayered Graphene Nanoshells. Electroanalysis 2019, 31, 1245–1248. [Google Scholar] [CrossRef]
- Onyutha, C. Multiple Statistical Model Ensemble Predictions of Residual Chlorine in Drinking Water: Applications of Various Deep Learning and Machine Learning Algorithms. J. Environ. Public Health 2022, 2022, 7104752. [Google Scholar] [CrossRef]
- Mu, L.; Yue, S.; Ye, J. Microfludic system for residual chlorine detection based on spectrophotometry. Food Sci. Technol. 2018, 43, 336–339. [Google Scholar]
- Song, S.; Lee, K.Y. Polymers for Microfluidic Chips. Macromol. Res. 2006, 14, 121–128. [Google Scholar] [CrossRef]
- Filippidou, M.K.; Kanaris, A.I.; Aslanidis, E.; Rapesi, A.; Tsounidi, D.; Ntouskas, S.; Skotadis, E.; Tsekenis, G.; Tsoukalas, D.; Tserepi, A.; et al. Integrated Plastic Microfluidic Device for Heavy Metal Ion Detection. Micromachines 2023, 14, 1595. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.; Li, X.; Zhang, H. Development of a photothermal-sensing microfluidic paper-based analytical chip (PT-Chip) for sensitive quantification of diethylstilbestrol. Food Chem. 2023, 402, 134128. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Tang, Z.; Jiang, X.; Fu, Q.; Xu, D.; Zhang, L.; Qiu, X. A Highly Sensitive, Real-Time Centrifugal Microfluidic Chip for Multiplexed Detection Based on Isothermal Amplification. Talanta 2023, 268, 125319. [Google Scholar] [CrossRef]
- Venkatesalu, S.; Dilliyappan, S.; Kumar, A.S.; Palaniyandi, T.; Baskar, G.; Ravi, M.; Sivaji, A. Prospectives and Retrospectives of Microfluidics Devices and Lab-on-a-Chip Emphasis on Cancer. Clin. Chim. Acta 2023, 552, 117646. [Google Scholar] [CrossRef]
- Pang, H.; Xie, J.; Meng, X.; Sun, R.; Chen, J.; Guo, C.; Zhou, T. Portable Organophosphorus Pesticide Detection Device Based on Controllable Microfluidic and Luminol Composite Nanofibers. J. Food Eng. 2023, 364, 111810. [Google Scholar] [CrossRef]
- Hao, G.; Tian, H.; Zhang, Z.; Qin, X.; Yang, T.; Yuan, L.; Yang, X. A dual-channel and dual-signal microfluidic paper chip for simultaneous rapid detection of difenoconazole and mancozeb. Microchem. J. 2023, 190, 108674. [Google Scholar] [CrossRef]
- de Oliveira, R.A.G.; Camargo, F.; Pesquero, N.C.; Faria, R.C. A Simple Method to Produce 2d and 3D Microfluidic Paper-Based Analytical Devices for Clinical Analysis. Anal. Chim. Acta 2017, 957, 40–46. [Google Scholar] [CrossRef]
- Lu, Z.; Qin, J.; Wu, C.; Yin, J.; Sun, M.; Su, G.; Wang, X.; Wang, Y.; Ye, J.; Liu, T.; et al. Dual-channel MIRECL portable devices with impedance effect coupled smartphone and machine learning system for tyramine identification and quantification. Food Chem. 2023, 429, 136920. [Google Scholar] [CrossRef]
- Zheng, J.; Tan, F.; Hartman, R. Simple Spectrophotometry Method for the Determination of Sulfur Dioxide in an Alcohol-Thionyl Chloride Reaction. Anal. Chim. Acta 2015, 891, 255–260. [Google Scholar] [CrossRef]
- Bezuneh, T.T.; Bushira, F.A.; Ofgea, N.M.; Zhang, C.; Li, H.; Jin, Y. N/S-Gqds/Kmno4 Hybrid as a Colorimetric and Fluorescent Dual-Signal Readout Probe for Sensitive and Selective Detection of Ascorbic Acid. Microchem. J. 2024, 197, 109837. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, J.; Lei, J.; Huo, D.; Huang, Q.; Tan, J.; Li, Y.; Hou, C.; Tian, F. A Portable and Automatic Dual-Readout Detector Integrated with 3D-Printedmicrofluidic Nanosensors for Rapid Carbamate Pesticides Detection. Sens. Actuators B Chem. 2021, 346, 130454. [Google Scholar] [CrossRef]
- Yan, Z.; Peng, Z.; Lai, J.; Xu, P.; Qiu, P. Simplifying the Complexity: Single Enzyme (Choline Oxidase) Inhibition-Based Biosensor with Dual-Readout Method for Organophosphorus Pesticide Detection. Talanta 2023, 265, 124905. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. A Highly Sensitive, Dual-Readout Assay Based on Gold Nanoparticles for Organophosphorus and Carbamate Pesticides. Anal. Chem. 2012, 84, 4185–4191. [Google Scholar] [CrossRef] [PubMed]
- He, W.; He, H.; Wang, F.; Wang, S.; Lyu, R. Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network. J. Food Meas. Charact. 2021, 15, 4497–4507. [Google Scholar] [CrossRef]
- Ye, W.; Yan, T.; Zhang, C.; Duan, L.; Chen, W.; Song, H.; Zhang, Y.; Xu, W.; Gao, P. Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning. Foods 2022, 11, 1609. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Liu, N.; Shang, F. A Detection Method of Two Carbamate Pesticides Residues on Tomatoes Utilizing Excitation-Emission Matrix Fluorescence Technique. Microchem. J. 2021, 164, 105920. [Google Scholar] [CrossRef]
- Sun, L.; Cui, X.; Fan, X.; Suo, X.; Fan, B.; Zhang, X. Automatic Detection of Pesticide Residues on the Surface of Lettuce Leaves Using Images of Featurewavelengths Spectrum. Front. Plant Sci. 2023, 13, 929999. [Google Scholar] [CrossRef]
- Lloyd, A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities1Adapted from the International Union of Pure and Applied Chemistry (IUPAC) document “Nomenclature in Evaluation of Analytical Methods including Detection and Quantification Capabilities”, which originally appeared in Pure and Applied Chemistry, 67 1699–1723 (1995)© 1995 IUPAC. Republication permission granted by IUPAC.1: (IUPAC Recommendations 1995). Anal. Chim. Acta 1995, 391, 105–126. [Google Scholar]
- Yuan, B.; Wang, X.; Yang, P.; Fang, Z.; Huang, Y.; Chen, J.; Ye, J. Fabrication and Analytical Application of Microfludic Chip for Rapid On-Site Detection of Pesticide Residues. Food Sci. 2016, 37, 198–203. [Google Scholar]
- Li, Z.; Li, J.; Chen, Z.; Wang, Y.; Hu, S.; Yang, X.; Wang, Y. Rapid Determination of Memantine Hvdrochloride in Memantine Hydrochloride Tablets by Contactless. Conductivity Method with Microfluidic Chip. J. Instrum. Anal. 2020, 39, 263–267. [Google Scholar]
- Nuh, S.; Numnuam, A.; Thavarungkul, P.; Phairatana, T. A Novel Microfluidic-Based OMC-PEDOT-PSS Composite Electrochemical Sensor for Continuous Dopamine Monitoring. Biosensors 2023, 13, 68. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Zhang, W.; Zhang, Z.; Wen, Z. Construction of Pretreatment Units with Esterified Silica Monolithic Column and Affinity Membrane onMicro-fluidic Chip. Chem. J. Chin. Univ. 2007, 5, 892–896. [Google Scholar]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A Statistical Overview of Standard (Iupac and Acs) and New Procedures for Determining the Limits of Detection and Quantification: Application to Voltammetric and Stnpping Techniques. Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Yuan, L.J.; Jia, Y.H.; Cheng, D.W. Study on Methods of Detection Limit in XRF Spectrometry. Spectrosc. Spectr. Anal. 2023, 43, 412–418. [Google Scholar]
- Hong, Y.; Xia, Z.; Su, J.; Wang, R.; Chang, Y.; Huang, Q.; Wei, L.; Chen, X. Multi-Sample Detection of Soil Nitrate Nitrogen Using a Digital Microfluidic Platform. Agriculture 2023, 13, 2226. [Google Scholar] [CrossRef]
- Nascimento, M.C.G.M.; Vieira, M.C.R.; Rocha, F.R.P.; Silva, T.A.; Suarez, W.T. Flow-Based Green Ceramics Microdevice with Smartphone Image Colorimetric Detection for Free Chlorine Determination in Drinking Water. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2023, 287, 122096. [Google Scholar]
- Pridmore, R.W. Complementary Colors: A Literature Review. Color Res. Appl. 2021, 46, 482–488. [Google Scholar] [CrossRef]
- Du, G.; Liu, Z.; Lu, H. Application of Innovative Risk Early Warning Mode Under Big Data Technology in Internet Credit Financial Risk Assessment. J. Comput. Appl. Math. 2021, 386, 113260. [Google Scholar] [CrossRef]
- Sargazi, M.; Kaykhaii, M. Application of a smartphone based spectrophotometer for rapid in-field determination of nitrite and chlorine in environmental water samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 1386–1425. [Google Scholar] [CrossRef]
- Uriarte, D.; Vidal, E.; Canals, A.; Domini, C.E.; Garrido, M. Simple-to-use and portable device for free chlorine determination based on microwave-assisted synthesized carbon dots and smartphone images. Talanta 2021, 229, 122298. [Google Scholar] [CrossRef]
- Kato, N.; Hirano, N.; Okazaki, S.; Matsushita, S.; Gomei, T. Development of an all-solid-state residual chlorine sensor for tap water quality monitoring. Sens. Actuators B Chem. 2017, 248, 1037–1044. [Google Scholar] [CrossRef]
- Huangfu, C.; Zhang, Y.; Jang, M.; Feng, L. A μPAD for simultaneous monitoring of Cu2+, Fe2+ and free chlorine in drinking water. Sens. Actuators B Chem. 2019, 293, 350–356. [Google Scholar] [CrossRef]
- Xiong, X.; Tang, Y.; Zhang, L.; Zhao, S. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters. Talanta 2015, 132, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhang, L.; Sun, M.; Deng, D.; Su, Y.; Lv, Y. Amino-Functionalized Metal-Organic Frameworks Nanoplates-Based Energy Transfer Probe for Highly Selective Fluorescence Detection of Free Chlorine. Anal. Chem. 2016, 8, 3413–3420. [Google Scholar] [CrossRef]
Sample Number | Detection Results of Blank Samples (mg·L−1) |
---|---|
1 | 0.012 |
2 | 0.011 |
3 | 0.008 |
4 | 0.007 |
5 | 0.009 |
6 | 0.008 |
7 | 0.011 |
8 | 0.014 |
9 | 0.012 |
10 | 0.011 |
Concentration of Residual Chlorine Standard Solution (mg·L−1) | First Detection | Second Detection | Third Detection |
---|---|---|---|
1 | 1.075 | 1.067 | 1.013 |
2 | 2.116 | 2.054 | 1.987 |
3 | 3.097 | 3.168 | 3.029 |
4 | 4.133 | 4.197 | 4.031 |
5 | 5.141 | 5.236 | 4.938 |
6 | 5.841 | 6.035 | 6.138 |
7 | 7.275 | 7.232 | 6.931 |
8 | 8.027 | 8.119 | 7.891 |
9 | 9.217 | 9.128 | 8.831 |
10 | 9.832 | 10.241 | 10.145 |
Item | Limit of Detection (mg·L−1) | Relative Standard Deviation | Detection Range (mg·L−1) | Detection Time (min) | Consumption of Detection Reagents (mL) |
---|---|---|---|---|---|
Sargazi et al., + 2020 [59] | 0.05 | 8.75% | 1–4 | 2 | 5 |
Uriarte et al., + 2021 [60] | 0.006 | 4.6% | 0.02–0.5 | -- | 5 |
Dou et al., + 2020 [23] | 0.161 | -- | 0.56–9.8 | 30 | 5 |
Yen et al., + 2019 [24] | 0.18 | -- | 0.1–500 | 5 | -- |
Kato et al., + 2017 [61] | 0.1 | -- | 0.3–1 | 4 | -- |
Huangfu et al., + 2019 [62] | 0.2 | -- | 0.2–5 | -- | 10 |
Xiong et al., + 2015 [63] | 0.035 | 4.2 | 0.056–56 | 20 | 0.12 |
Lu et al., + 2016 [64] | 0.028 | -- | 0.035–10.5 | 5 | 100 |
The portable residual chlorine detection device in this study | 0.01 | 3.2% | 0–10 | 0.8 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Niu, J.; Pang, H.; Meng, X.; Sun, R.; Xie, J. Development of a Portable Residual Chlorine Detection Device with a Combination of Microfluidic Chips and LS-BP Algorithm to Achieve Accurate Detection of Residual Chlorine in Water. Micromachines 2024, 15, 1045. https://doi.org/10.3390/mi15081045
Wang T, Niu J, Pang H, Meng X, Sun R, Xie J. Development of a Portable Residual Chlorine Detection Device with a Combination of Microfluidic Chips and LS-BP Algorithm to Achieve Accurate Detection of Residual Chlorine in Water. Micromachines. 2024; 15(8):1045. https://doi.org/10.3390/mi15081045
Chicago/Turabian StyleWang, Tongfei, Jiping Niu, Haoran Pang, Xiaoyu Meng, Ruqian Sun, and Jiaqing Xie. 2024. "Development of a Portable Residual Chlorine Detection Device with a Combination of Microfluidic Chips and LS-BP Algorithm to Achieve Accurate Detection of Residual Chlorine in Water" Micromachines 15, no. 8: 1045. https://doi.org/10.3390/mi15081045
APA StyleWang, T., Niu, J., Pang, H., Meng, X., Sun, R., & Xie, J. (2024). Development of a Portable Residual Chlorine Detection Device with a Combination of Microfluidic Chips and LS-BP Algorithm to Achieve Accurate Detection of Residual Chlorine in Water. Micromachines, 15(8), 1045. https://doi.org/10.3390/mi15081045