3D Simulation-Driven Design of a Microfluidic Immunosensor for Real-Time Monitoring of Sweat Biomarkers
Abstract
:1. Introduction
2. Overview
2.1. Problem Formulation
2.1.1. Unit I: Immunocomplex Formation and Pre-Concentration
2.1.2. Unit II: Selective Biomarker Detection and Quantification via Capacitive Sensing
- Electromagnetic Domain: This domain focuses on simulating the magnetic field distribution generated by the microcoil array. By solving Maxwell’s equations within this domain, we can accurately predict the magnetic forces acting on the functionalized MNPs, enabling us to optimize the coil design for efficient MNP trapping and concentration.
- Fluid Dynamics Domain: This domain simulates the behavior of the biofluid (sweat) within the microfluidic channels, considering the complex interactions between the fluid, MNPs, and channel walls. This simulation helps optimize channel geometry and flow conditions for efficient biomarker capture.
- Electrostatic Domain: The electrostatic domain models the electric field distribution between the electrodes and the capacitive response resulting from the presence of MNPs in the detection zone. Precise modeling of the electrical properties ensures accurate biomarker quantification.
2.2. Physics and Mathematical Framework of the Biosensor
2.2.1. Domain 1: Planar Coils
2.2.2. Domain 2: Microfluidic Platform
2.2.3. Domain 3: Capacitive Electrodes
2.3. Implementation Details
- AC/DC Module for Electromagnetic Field Simulation: This module was employed to rigorously solve Maxwell’s equations and accurately characterize the magnetic field distribution generated by the microcoil array and the electric field established between the electrodes. Accurate simulation of these fields is fundamental to understanding their influence on the behavior of the biological media and the MNPs, ultimately determining the efficacy of biomarker detection.
- CFD Module for Fluid Dynamics Analysis: To model the intricate flow of biofluids, specifically sweat, through the microchannels, we utilized the Computational Fluid Dynamics (CFD) Module. By solving the Navier-Stokes equations, we could accurately capture fluid behavior, including velocity profiles, pressure gradients, and shear stresses. This comprehensive understanding of fluid dynamics is essential for optimizing microchannel geometry and flow conditions to ensure efficient transport and interaction of biomarkers with the MNPs.
- Particle Tracing Module for Nanoparticle Dynamics Investigation: The Particle Tracing Module enabled the simulation of the dynamic behavior of magnetic nanoparticles within the microfluidic environment. By incorporating the forces acting on the MNPs, including magnetic forces and viscous drag, we could predict their trajectories and interactions with the surrounding fluid and channel walls. This analysis provided critical insights into the mechanisms governing MNP capture, concentration, and ultimately, biomarker detection.
3. Results and Discussion
3.1. Optimizing Coil Configurations: Balancing Efficiency and Functionality
3.1.1. Magnetic Field Analysis
- X = (Coil Center): The R2000 coil (97 turns) exhibited a substantially stronger vertical magnetic flux density () of 20.58 mT compared to the R500 coil (10.05 mT), highlighting the direct influence of coil turns on field strength.
- X = (Intermediate Distance): This trend persisted at an intermediate distance within the coil, with the R2000 coil maintaining a higher average (21.92 mT) than the R500 coil (11.58 mT).
- X = (Coil Edge): Even at the coil’s outer edge, the R2000 coil produced a stronger (9.42 mT) compared to the R500 coil (5.19 mT).
3.1.2. Optimal Field Uniformity
3.1.3. Power Efficiency Considerations
3.1.4. Tailoring Coils to Specific Functions
3.2. Fluid Dynamics and Magnetic Trapping Performance in Microfluidic Platform
3.2.1. Optimizing Microchannel Alignment
3.2.2. Fluid Dynamics and MNP Trapping
3.2.3. Coil Performance in Trapping Efficiency
3.3. Capacitive Sensing Performance and Implications
3.3.1. Electrode Material Selection
3.3.2. Optimization of Electrode Geometry
3.3.3. Impact of MNP Properties and Concentration on Capacitive Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Makroum, M.A.; Adda, M.; Bouzouane, A.; Ibrahim, H. Machine learning and smart devices for diabetes management: Systematic review. Sensors 2022, 22, 1843. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Lousada, H.; Mestre, A.; Ramalhete, S.; Price, A.J.; De Mello, R.A.; Marreiros, A.D.; Neves, R.P.d.; Castelo-Branco, P. Screening for Colorectal Cancer Leading into a New Decade: The “Roaring ‘20s” for Epigenetic Biomarkers? Curr. Oncol. 2021, 28, 4874–4893. [Google Scholar] [CrossRef]
- Schmid, T.; Brüne, B. Prostanoids and resolution of inflammation–beyond the lipid-mediator class switch. Front. Immunol. 2021, 12, 714042. [Google Scholar] [CrossRef]
- Dogaru, I.A.; Puiu, M.G.; Manea, M.; Dionisie, V. Current perspectives on pharmacological and non-pharmacological interventions for the inflammatory mechanism of unipolar depression. Brain Sci. 2022, 12, 1403. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, T.D.; Prieto-Dominguez, N.; Gowda, P.S.; Ubil, E. Mechanisms of macrophage plasticity in the tumor environment: Manipulating activation state to improve outcomes. Front. Immunol. 2021, 12, 642285. [Google Scholar] [CrossRef] [PubMed]
- Shama, A.; Soni, T.; Jawanda, I.K.; Upadhyay, G.; Sharma, A.; Prabha, V. The latest developments in using proteomic biomarkers from urine and serum for non-invasive disease diagnosis and prognosis. Biomark. Insights 2023, 18, 11772719231190218. [Google Scholar] [CrossRef] [PubMed]
- Gherghe, M.; Lazar, A.M.; Sterea, M.C.; Spiridon, P.M.; Motas, N.; Gales, L.N.; Coriu, D.; Badelita, S.N.; Mutuleanu, M.D. Quantitative SPECT/CT parameters in the assessment of transthyretin cardiac amyloidosis—A new dimension of molecular imaging. J. Cardiovasc. Dev. Dis. 2023, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Pathania, Y.S.; Apalla, Z.; Salerni, G.; Patil, A.; Grabbe, S.; Goldust, M. Non-invasive diagnostic techniques in pigmentary skin disorders and skin cancer. J. Cosmet. Dermatol. 2022, 21, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, L.; Li, G.; Yan, D.; Liu, C.; Xu, T.; Zhang, X. Ultra-small wearable flexible biosensor for continuous sweat analysis. ACS Sens. 2022, 7, 3102–3107. [Google Scholar] [CrossRef]
- Yuan, X.; Li, C.; Yin, X.; Yang, Y.; Ji, B.; Niu, Y.; Ren, L. Epidermal wearable biosensors for monitoring biomarkers of chronic disease in sweat. Biosensors 2023, 13, 313. [Google Scholar] [CrossRef]
- Zahed, M.A.; Sharifuzzaman, M.; Yoon, H.; Asaduzzaman, M.; Kim, D.K.; Jeong, S.; Pradhan, G.B.; Shin, Y.D.; Yoon, S.H.; Sharma, S.; et al. A nanoporous carbon-MXene heterostructured nanocomposite-based epidermal patch for real-time biopotentials and sweat glucose monitoring. Adv. Funct. Mater. 2022, 32, 2208344. [Google Scholar] [CrossRef]
- Zhang, T.; Ratajczak, A.M.; Chen, H.; Terrell, J.A.; Chen, C. A Step Forward for Smart Clothes Fabric Based Microfluidic Sensors for Wearable Health Monitoring. ACS Sens. 2022, 7, 3857–3866. [Google Scholar] [CrossRef]
- Parihar, A.; Yadav, S.; Sadique, M.A.; Ranjan, P.; Kumar, N.; Singhal, A.; Khare, V.; Khan, R.; Natarajan, S.; Srivastava, A.K. Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioeng. Transl. Med. 2023, 8, e10481. [Google Scholar] [CrossRef]
- Trinh, K.T.L.; Do, H.D.K.; Lee, N.Y. Recent advances in molecular and immunological diagnostic platform for virus detection: A review. Biosensors 2023, 13, 490. [Google Scholar] [CrossRef]
- Lou, C.; Yang, H.; Hou, Y.; Huang, H.; Qiu, J.; Wang, C.; Sang, Y.; Liu, H.; Han, L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. Adv. Mater. 2024, 36, 2307051. [Google Scholar] [CrossRef] [PubMed]
- Hirschwald, L.T.; Brosch, S.; Linz, G.; Linkhorst, J.; Wessling, M. Freeform Membranes with Tunable Permeability in Microfluidics. Adv. Mater. Technol. 2023, 8, 2201857. [Google Scholar] [CrossRef]
- Stojanović, G.M.; Kojić, T.; Simić, M.; Jovanović-Galović, A.; Pavlović, B.; Zurutuza, A.; Anzi, L.; Sordan, R. Rapid selective detection of ascorbic acid using graphene-based microfluidic platform. IEEE Sens. J. 2021, 21, 16744–16753. [Google Scholar] [CrossRef]
- Kuo, P.Y.; Chang, C.H.; Lai, W.H.; Wang, T.H. The Characteristics Analysis of a Microfluid-Based EGFET Biosensor with On-Chip Sensing Film for Lactic Acid Detection. Sensors 2022, 22, 5905. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X. Microfluidics-based plasmonic biosensing system based on patterned plasmonic nanostructure arrays. Micromachines 2021, 12, 826. [Google Scholar] [CrossRef]
- Şahin, S.; Ünlü, C.; Trabzon, L. Affinity biosensors developed with quantum dots in microfluidic systems. Emergent Mater. 2021, 4, 187–209. [Google Scholar] [CrossRef]
- Stapf, H.; Selbmann, F.; Joseph, Y.; Rahimi, P. Membrane-Based NEMS/MEMS Biosensors. ACS Appl. Electron. Mater. 2024, 6, 2120–2133. [Google Scholar] [CrossRef]
- Robin, P.; Gerber-Lemaire, S. Design and preparation of sensing surfaces for capacitive biodetection. Biosensors 2022, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Chakraborty, T.; Lei, K.F.; Lin, C.Y.; Kao, C.H. Excellent physicochemical and sensing characteristics of a Re x O y based pH sensor at low post-deposition annealing temperature. RSC Adv. 2022, 12, 13774–13782. [Google Scholar] [CrossRef]
- Ahuekwe, E.; Akinyele, A.; Benson, A.; Oniha, M.; Oziegbe, O. A Review of Fabrication Techniques and Optimization Strategies for Microbial Biosensors. Iop Conf. Ser. Earth Environ. Sci. 2024, 1342, 12015. [Google Scholar] [CrossRef]
- Aa, A.; Dirican, O. Modeling and Simulation of a High-Performance Magnetic Biosensor for Biomedical Sensing. Ergon. Int. J. 2024, 8, 322–329. [Google Scholar] [CrossRef]
- Campanile, R.; Acunzo, A.; Scardapane, E.; Minopoli, A.; Martins, V.C.; Di Girolamo, R.; Cardoso, S.; Velotta, R.; Della Ventura, B.; Iannotti, V. Multifunctional Core@ Satellite Magnetic Particles for Magnetoresistive Biosensors. ACS Omega 2022, 7, 36543–36550. [Google Scholar] [CrossRef]
- Ramazanova, I.; Suslov, M.; Sibgatullina, G.; Petrov, K.; Fedorenko, S.; Mustafina, A.; Samigullin, D. Determination of the viscosity of the cytoplasm of M-HeLa cells using fluorescent magnetic nanoparticles and an electromagnetic needle. Pharmaceuticals 2022, 16, 200. [Google Scholar] [CrossRef]
- Sekhwama, M.; Mpofu, K.; Sivarasu, S.; Mthunzi-Kufa, P. Enhancing limit of detection in surface plasmon resonance biosensors: A sensitivity analysis for optimal performance. In Proceedings of the 35th SPIE Conference of Optical Interactions with Tissue and Cells, San Francisco, CA, USA, 27 January–1 February 2024. [Google Scholar]
- Ji, H.; Wang, Z.; Wang, S.; Wang, C.; Chu, Y.; Liu, H.; Zhang, Y.; Han, L. A Novel InSe-FET Biosensor based on Carrier-Scattering Regulation Derived from the DNA Probe Assembly-Determined Electrostatic Potential Distribution. Adv. Funct. Mater. 2023, 33, 2213277. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, L.; Huang, L.; Zuo, Z.; Ho, V.; Jin, L.; Lu, Y.; Chen, X.; Zhao, J.; Qian, D.; et al. Microfluidic integrated capacitive biosensor for C-reactive protein label-free and real-time detection. Analyst 2021, 146, 5380–5388. [Google Scholar] [CrossRef]
- Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E.K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019, 9, 813. [Google Scholar] [CrossRef]
- Wang, T.; Lei, Q.L.; Wang, M.; Deng, G.; Yang, L.; Liu, X.; Li, C.; Wang, Q.; Liu, Z.; Wang, J.; et al. Mechanical tolerance of cascade bioreactions via adaptive curvature engineering for epidermal bioelectronics. Adv. Mater. 2020, 32, 2000991. [Google Scholar] [CrossRef] [PubMed]
- Furlani, E.P. Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Bird, R.B.; Curtiss, C.F.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids: Kinetic Theory; Wiley: Hoboken, NJ, USA, 1987; Volume 2. [Google Scholar]
- Jones, T.B. Dielectrophoresis and magnetophoresis. In Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 1995; pp. 34–82. [Google Scholar]
- Kirby, B.J. Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Mark, J.E. Polymer Data Handbook; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Ammar, M.; Smadja, C.; Phuong Ly, G.T.; Tandjigora, D.; Vigneron, J.; Etcheberry, A.; Taverna, M.; Dufour-Gergam, E. Chemical engineering of self-assembled Alzheimer’s peptide on a silanized silicon surface. Langmuir 2014, 30, 5863–5872. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Cao, H.H.; Cortés Francisco, M.; Woytasik, M.; Dufour-Gergam, E.; Ammar, M.; Martincic, E. Reusable embedded microcoils for magnetic nano-beads trapping in microfluidics: Magnetic simulation and experiments. Micromachines 2020, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Smadja, C.; Martincic, E.; Woytasik, M.; Ammar, M. Integration of microcoils for on-chip immunosensors based on magnetic nanoparticles capture. Sens. Bio-Sens. Res. 2017, 13, 115–121. [Google Scholar] [CrossRef]
- Cao, H.H. The Fabrication Process of Microfluidic Devices Integrating Microcoils for Trapping Magnetic Nano Particles for Biological Applications. Ph.D. Thesis, Université Paris Sud-Paris XI, Paris, France, 2015. [Google Scholar]
Parameter Description | Symbol | Value Range |
---|---|---|
Current in the coil | 100–700 mA | |
Electrode height | H | 20–500 m |
Nanoparticle diameter | 10–60 nm | |
Coil-to-channel separation | 5–100 m | |
Microchannel width | 50–1000 m | |
Microchannel height | 50 m | |
Electrodes Voltage | U | 5V |
coil wire height | 10 m | |
coil wire width | 10 m | |
Fluid flow rate | Q | 1 L/min |
Material Property | Symbol | Value |
---|---|---|
Copper Electrical conductivity | 59.6 MS/m (1) | |
Gold Electrical conductivity | 41 MS/m (1) | |
Density of sweat | 1000 kg/m3 (2) | |
Dynamic viscosity of sweat | Pa· s (3) | |
PDMS Electrical conductivity | 1.7 × S/m (4) | |
PDMS Relative permittivity | 2.7 (4) | |
Permeability of magnetite nanoparticles | 5000 (5) | |
Dielectric constant of MNPs | 10–40 (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jebari, N.; Dufour-Gergam, E.; Ammar, M. 3D Simulation-Driven Design of a Microfluidic Immunosensor for Real-Time Monitoring of Sweat Biomarkers. Micromachines 2024, 15, 936. https://doi.org/10.3390/mi15080936
Jebari N, Dufour-Gergam E, Ammar M. 3D Simulation-Driven Design of a Microfluidic Immunosensor for Real-Time Monitoring of Sweat Biomarkers. Micromachines. 2024; 15(8):936. https://doi.org/10.3390/mi15080936
Chicago/Turabian StyleJebari, Nessrine, Elisabeth Dufour-Gergam, and Mehdi Ammar. 2024. "3D Simulation-Driven Design of a Microfluidic Immunosensor for Real-Time Monitoring of Sweat Biomarkers" Micromachines 15, no. 8: 936. https://doi.org/10.3390/mi15080936
APA StyleJebari, N., Dufour-Gergam, E., & Ammar, M. (2024). 3D Simulation-Driven Design of a Microfluidic Immunosensor for Real-Time Monitoring of Sweat Biomarkers. Micromachines, 15(8), 936. https://doi.org/10.3390/mi15080936