Synergistic Strength–Ductility Improvement in an Additively Manufactured Body-Centered Cubic HfNbTaTiZr High-Entropy Alloy via Deep Cryogenic Treatment
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. The Effect of Cryogenic Treatment on Residual Stress of the Alloy
3.2. The Effect of Stress Aggregation on the Microstructure and Properties of the Alloy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Y.; Liu, Y.; Zhu, Z.; Zhang, H. Microstructure and properties of AlCoCrFeNi2.1 eutectic high-entropy alloy formed by laser melting deposition (LMD). Mater. Lett. 2022, 317, 132092. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Chen, Y.; Lai, F.; Fu, H.; Zhang, L.; Zhang, N.; Bai, S.; Liu, T. High-Entropy Alloy Aerogels: A New Platform for Carbon Dioxide Reduction. Adv. Mater. 2023, 35, 2209242. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, C.; Liu, J.; Tang, Y.; Lin, Z.; Li, L.; Liang, H.; Lu, W.; Wang, L. Medical high-entropy alloy: Outstanding mechanical properties and superb biological compatibility. Front. Bioeng. Biotechnol. 2022, 10, 952536. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hanemann, T.; Seils, S.; Schliephake, D.; Tirunilai, A.S.; Heilmaier, M.; Weiss, K.P.; Kauffmann, A. Influence of Temperature and Plastic Strain on Deformation Mechanisms and Kink Band Formation in Homogenized HfNbTaTiZr. Crystals 2021, 11, 81. [Google Scholar] [CrossRef]
- Qi, L.; Chrzan, D.C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. Phys. Rev. Lett. 2014, 112, 115503. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.Y.; Yamada, Y.; Cho, K.; Nagase, T. Deformation behavior of HfNbTaTiZr high entropy alloy singe crystals and polycrystals. Mater. Sci. Eng. A 2021, 809, 140983. [Google Scholar] [CrossRef]
- Hsu, W.C.; Shen, T.E.; Liang, Y.C.; Yeh, J.W.; Tsai, C.W. In situ analysis of the Portevin-Le Chatelier effect from low to high-entropy alloy in equal HfNbTaTiZr system. Acta Mater. 2023, 253, 118981. [Google Scholar] [CrossRef]
- Chen, B.; Li, S.; Ding, J.; Ding, X.; Sun, J.; Ma, E. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys. Scr. Mater. 2023, 222, 115048. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, J.; Liaw, P.K. A Brief Review of High Entropy Alloys and Serration Behavior and Flow Units. J. Iron Steel Res. Int. 2016, 23, 2–6. [Google Scholar] [CrossRef]
- Wen, X.L.; Wang, C.B.; Liu, W.B. Experimental Study on the Microstructure of FeCoNiCr High-Entropy Alloys by Selective Laser Melting. J. Northeast. Univ. Nat. Sci. 2023, 44, 536–543. [Google Scholar]
- Liu, Y.; Ren, J.; Guan, S.; Li, C.; Zhang, Y.; Muskeri, S.; Chen, W. Microstructure and mechanical behavior of additively manufactured CoCrFeMnNi high-entropy alloys: Laser directed energy deposition versus powder bed fusion. Acta Mater. 2023, 250, 118884. [Google Scholar] [CrossRef]
- Vignesh, M.; Ranjith Kumar, G.; Sathishkumar, M.; Manikandan, M.; Rajyalakshmi, G.; Ramanujam, R.; Arivazhagan, N. Development of Biomedical Implants through Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2021, 30, 4735–4744. [Google Scholar] [CrossRef]
- Li, H.G.; Huang, Y.J.; Zhao, W.J.; Chen, T.; Sun, J.F.; Wei, D.Q.; Zou, Y.C.; Lu, Y.Z.; Zhu, P.; Lu, X.; et al. Overcoming the strength-ductility trade-off in an additively manufactured CoCrFeMnNi high entropy alloy via deep cryogenic treatment. Addit. Manuf. 2022, 50, 102546. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, B.; Li, X.; Li, Q.; Ye, T.; Xiang, S.; Atrens, A. In-situ EBSD study on twinning activity caused by deep cryogenic treatment (DCT) for an as-cast AZ31 Mg alloy. J. Mater. Res. Technol. 2024, 30, 3840–3850. [Google Scholar] [CrossRef]
- Li, C.; Qu, Y.; Zhang, Y.; Lv, Q.; Qi, H. Effect of deep cryogenic treatment on the microstructure and mechanical properties of AlCrFe2Ni2 High-entropy alloy. Mater. Res. Express 2020, 7, 36504–36507. [Google Scholar] [CrossRef]
- Luo, Q.; Jones, A.H. High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin2ψ technique. Surf. Coat. Technol. 2010, 205, 1403–1408. [Google Scholar] [CrossRef]
- Senkov, O.N.; Semiatin, S.L. Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloy Compd. 2015, 649, 1110–1123. [Google Scholar] [CrossRef]
- Wang, S.; Lu, S.; Wu, M.; Wang, D.; Zhu, G.; Yang, C.; Shu, D.; Sun, B.; Vitos, L. Decreasing Zr content to improve tensile properties of non-equiatomic TiZrHfNb medium entropy alloys with transformation-induced plasticity. Mater. Sci. Eng. A 2022, 832, 142476. [Google Scholar] [CrossRef]
- Bhandari, U.; Ghadimi, H.; Zhang, C.; Gao, F.; Yang, S.; Guo, S. Computational exploration of biomedical HfNbTaTiZr and Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloys. Mater. Res. Express 2021, 8, 96534. [Google Scholar] [CrossRef]
- Zinovieva, O.; Zinoviev, A.; Ploshikhin, V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput. Mater. Sci. 2018, 141, 207–220. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, H.; Peng, G.; Yin, J.; Zeng, X. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater. Des. 2018, 142, 319–328. [Google Scholar] [CrossRef]
- Li, N.; Zhang, J.; Xing, W.; Ouyang, D.; Liu, L. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater. Des. 2018, 143, 285–296. [Google Scholar] [CrossRef]
- Schmeiser, F.; Krohmer, E.; Schell, N.; Uhlmann, E.; Reimers, W. Experimental observation of stress formation during selective laser melting using in situ X-ray diffraction. Addit. Manuf. 2020, 32, 101028. [Google Scholar] [CrossRef]
- Li, H.G.; Lee, T.L.; Zheng, W.; Lu, Y.Z.; Yin, H.B.C.; Yang, J.X.; Sun, J.F. Characterization of residual stress in laser melting deposited CoCrFeMnNi high entropy alloy by neutron diffraction. Mater. Lett. 2019, 263, 127247. [Google Scholar] [CrossRef]
- Parry, L.; Ashcroft, I.A.; Wildman, R.D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit. Manuf. 2016, 12, 1–15. [Google Scholar] [CrossRef]
- Akbari, D. International Journal of Pressure Vessels and Piping Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints. Int. J. Press. Vessel. Pip. 2009, 86, 769–776. [Google Scholar] [CrossRef]
- Alvarez, P.; Ecenarro, J.; Setien, I.; Sebastian, M.S.; Echeverria, A.; Eciolaza, L. Computationally efficient distortion prediction in Powder Bed Fusion Additive Manufacturing. Int. J. Eng. Res. Sci. 2016, 2, 2395–6992. [Google Scholar]
- Zhang, H.; Cai, Z.; Chi, J.; Sun, R.; Che, Z.; Zhang, H.; Guo, W. Fatigue crack growth in residual stress fields of laser shock peened Ti6Al4V titanium alloy. J. Alloys Compd. 2021, 887, 161427. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Ye, Z.; Liu, C.; Sun, L.; Zhang, Y. Synergistic Strength–Ductility Improvement in an Additively Manufactured Body-Centered Cubic HfNbTaTiZr High-Entropy Alloy via Deep Cryogenic Treatment. Micromachines 2024, 15, 937. https://doi.org/10.3390/mi15080937
Liang Z, Ye Z, Liu C, Sun L, Zhang Y. Synergistic Strength–Ductility Improvement in an Additively Manufactured Body-Centered Cubic HfNbTaTiZr High-Entropy Alloy via Deep Cryogenic Treatment. Micromachines. 2024; 15(8):937. https://doi.org/10.3390/mi15080937
Chicago/Turabian StyleLiang, Zhuoheng, Zhanggen Ye, Chunfeng Liu, Liangbo Sun, and Yongzhong Zhang. 2024. "Synergistic Strength–Ductility Improvement in an Additively Manufactured Body-Centered Cubic HfNbTaTiZr High-Entropy Alloy via Deep Cryogenic Treatment" Micromachines 15, no. 8: 937. https://doi.org/10.3390/mi15080937
APA StyleLiang, Z., Ye, Z., Liu, C., Sun, L., & Zhang, Y. (2024). Synergistic Strength–Ductility Improvement in an Additively Manufactured Body-Centered Cubic HfNbTaTiZr High-Entropy Alloy via Deep Cryogenic Treatment. Micromachines, 15(8), 937. https://doi.org/10.3390/mi15080937