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Abstract: HfNbTaTiZr high-entropy alloy has wide application prospects as a biomedical material,
and the use of laser additive manufacturing can solve the forming problems faced by the alloy. In
view of the characteristics of the one-time forming of additive manufacturing methods, it is necessary
to develop non-mechanical processing modification methods. In this paper, deep cryogenic treatment
(DCT) is first applied to the modification of a HEA with BCC structure, then the post-processing
method of DCT is combined with laser melting deposition (LMD) technology to successfully re-
alize the coordinated improvement of forming and strength–ductility synergistic improvement in
lightweight Hf0.25NbTa0.25TiZr alloy. The final tensile strength of the alloy after DCT treatment is
25% higher than that of the as-cast alloy and 11% higher than that of the as-deposited alloy, and the
elongation is increased by 48% and 10%, respectively. In addition, DCT also achieves induced phase
transition without additional deformation.

Keywords: laser melting deposition; high entropy alloy; deep cryogenic treatment; 3D printing;
defects; strength–ductility synergistic improvement

1. Introduction

High-entropy alloys (HEAs) are special types of alloys with five or more principal
elements and an atomic ratio of 5 to 35 at.%, which have received extensive attention in
recent years [1–3]. Among them, Hf-Nb-Ta-Ti-Zr HEAs have attracted more and more
attention as potential high-temperature structural materials and biomedical materials due
to their high melting point caused by the properties of their main elements, their excellent
chemical stability, and their corrosion resistance in various external environments [4,5].
Most interestingly, as single-phase body-centered cubic (BCC) solid solution alloys, Hf-
Nb-Ta-Ti-Zr alloys have strong ductility. The plasticity of this BCC alloy system comes
from the Jahn–Teller effect, and the existence of this effect makes the body-centered cubic
unit cell deform in a specific direction, resulting in symmetry breaking, and then more slip
systems are obtained [6]. Due to this characteristic, the alloy has different characteristics
from the general BCC structure alloy, including the form of screw dislocation motion, and
presents some face-centered cubic structure characteristics [7,8]. On the other hand, the
latest research found that the plasticity of HfNbTaTiZr high-entropy alloy can be improved
by increasing the lattice distortion of the alloy [9]. The above characteristics mean more
modification methods can be applied to Hf-Nb-Ta-Ti-Zr alloys.

At present, the casting forming of HEAs is facing some problems due to their high
melt viscosity, and laser additive manufacturing (AM) technology can effectively solve
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this problem [10–12]. Laser melting deposition (LMD) technology has high energy density
and complex-shape-forming ability, which can solve the problem of HEA forming and
accumulate thermal stress in as-deposited alloy samples [13]. At the same time, deep
cryogenic treatment (DCT) has been gradually applied as a method to uniformly aggravate
the residual stress generated by LMD, and remarkable results have been achieved [14].

In previous studies, the DCT method has often been used to modify FCC structural
metals by constructing twins [15,16]. In this paper, LMD forming and DCT treatment
were carried out on the previously designed lower-density Hf0.25NbTa0.25TiZr alloy in
which the atoms of Hf and Ta are 25% of the atoms of other elements, in order to achieve
a strength–ductility synergistic improvement by increasing the internal stress and lattice
distortion so as to make up for the performance degradation caused by the decrease in
density compared with the equiatomic ratio system. In this work, the DCT method was
applied for the first time to the modification of BCC HEAs.

2. Experimental Section

The Hf0.25NbTa0.25TiZr alloy powder used in this study was prepared by the plasma
rotation electrode process (PREP). The prepared HEA powder for laser additive manufac-
turing with a particle size of 30–150 µm (D10 = 45.23 µm, D50 = 72.38 µm, D90 = 116.4 µm)
had good sphericity. The morphology and particle size statistics of the powder are shown
in Figure 1a. The processing parameters for laser melting deposition included: a laser
power of 1300 W, scanning rate of 4.5 mm/s, powder feeding rate of 8 g/min, and single
lift of 0.3 mm (Figure 1b). Based on this, Hf0.25NbTa0.25TiZr alloy samples with a size of 30
× 30 × 20 mm3 (x × y × z) were obtained, as shown in Figure 1c.
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Figure 1. Raw materials, sample preparation methods, and DCT process schematics: (a) morphology
and particle size of powder, (b) diagram of LMD system, (c) diagram of LMD forming and sampling,
(d) cryogenic treatment temperature curve.

The as-deposited samples were cryogenically treated in liquid nitrogen. The tempera-
ture curve is shown in Figure 1d, and the soaking time was 12 h, 24 h, 48 h, and 120 h. In
the experiment, Keller reagent was used to etch the sample along the z direction for 10 mm,
and then the xoy sections without stress effects at the center height of the as-deposited and
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DCT samples were obtained. The central area of the sections was identified using X-ray
diffraction (XRD, SmartLab 9 kW, Rigaku, Japan). The microstructure and tissue profiles of
the HEA samples were observed and investigated using a field-emission scanning electron
microscope (SEM, JSM-7900F) and transmission electron microscope (TEM, FEI Tecnai F20).
The sampling position and the observation area were the yoz cross-section at the center
of the samples. The tensile mechanical performance test was carried out with an NT100
electronic tensile machine at a constant displacement speed of 0.3 mm/min. The sampling
test was carried out in the middle of the sample. The size and sampling positions of the
tensile mechanical properties test sample are shown in Figure 1c, and the thickness was
1 mm. As shown in Figure 1c, the tensile specimen was taken from the center of the central
section of the alloy to make the final test results reliable.

The stress change in the DCT process was analyzed by finite element (FE) simulation.
A nonlinear FE model was established using commercial software ABAQUS (Abaqus/CAE
2021) for the coupled thermo-mechanical simulation of the LMD process, and the stress
development during the DCT process was simulated using a visco-elastic-plastic model. A
Gaussian-distributed moving heat flux was employed via the ABAQUS subroutine DFLUX.
The moving direction and velocity of the heat flux were controlled by a subroutine, and
elements were activated sequentially using a “birth and death” technique as the heat flux
moved. The DC3D8 and C3D8T elements were used for the heat transfer analysis and
stress analysis of the LMD process, respectively.

3. Results and Discussion
3.1. The Effect of Cryogenic Treatment on Residual Stress of the Alloy

According to the diffraction peak obtained by the XRD test (Figure 2a), all of the
spectra display only a typical BCC structure. The enlarged image of the main peak shows
that as the soaking time prolongs (Figure 2b), the position of the main peak shifts to the
right, indicating that the lattice distortion of the alloy increases, and the residual stress
increases. The residual stress values were calculated via the sin2ψmethod as follows [17]:

σs =
E

(1 + v)
∂(dΨ/d0)

∂
(

sin2Ψ
) (1)

where the Young’s modulus E of the alloy is 210 GPa [18], υ is Poisson’s ratio, ψ is the
off-axis angle, dΨ is the lattice spacing in the stressed state (as-deposited and DCT samples),
and d0 is that in the stress-free (an annealed as-cast sample) state. The average value
of each sample was calculated five times. The calculation results show that DCT has an
effect on enhancing the residual stress of the alloy (Figure 2c). It can be intuitively found
from the graphic results that with an increase in soaking time, the compressive residual
stress shows a gradual upward trend, and the compressive residual stress of the DCT120
sample is the highest among all samples, about −493.25 MPa. Combined with the XRD test
results, the results shown in Figure 1 show that the DCT process has an effect on the lattice
arrangement (interplanar spacing) of the alloy and effectively improves the residual stress
level inside the alloy.
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Figure 2. XRD test results and residual stress calculation results: (a) XRD diffraction patterns of
samples with different soaking times, (b) main diffraction peak amplification diagram, (c) calculated
value of residual stress.

3.2. The Effect of Stress Aggregation on the Microstructure and Properties of the Alloy

According to the test results shown in Figure 3a, LMD and DCT can simultaneously
improve the strength and plasticity of the alloy. The strength improvement of DCT120 is
more significant as tensile strength increased from 812 MPa to 1065 MPa and elongation
increased from 24% to 36% compared to those of the as-cast sample. The yield strength of
the sample after DCT is slightly higher than that in the as-deposited state, but it has a higher
elongation. The increase in elongation shows the positive effect of a lattice arrangement
change on the plasticity of the alloy, shown in Figure 2b, while the change in yield strength
shows the particularity and complexity of the principle of plasticity improvement. Recent
studies found that for Hf-Nb-Ta-Ti-Zr alloys, the increase in lattice distortion reduces
the difference in the movement rate of edge dislocations and screw dislocations in the
alloy, thereby improving the plasticity of the alloy [9]. A decrease in the lattice constant
of single-phase multi-principal-element solid solution is inevitably accompanied by tan
increase in lattice distortion, which is affected by the difference in atomic radius. In general,
this increases the yield strength of the alloy. At the same time, the lattice distortion on the
movement rate of different types of dislocations after the yield improves the elongation
of the alloy. They were considered together to form the theoretical basis for the change in
alloy properties shown in Figure 3a. The significant increase in elastic modulus indicates
that DCT can densify the as-deposited alloys. The plastic stage of the alloy sample after
yielding exhibits a stress-increase stage, and a serration behavior curve can be observed,
which is different from the smooth curve of the deposited alloy.

According to the TEM images, compared with the as-deposited alloy, the structure of
DCT-treated alloy shows observable short dislocations (SDs) (Figure 3c). With the extension
of soaking time, the length of the dislocation line first increases to long dislocation (LD)
(Figure 3d), and gradually develops into a dislocation band (DB) (Figure 3e). When the
soaking time reached 120 h, both extensive DB distribution (Figure 3f) and dense SD
(Figure 3) were observed in the alloy.

The occurrence of dislocations confirms the previously calculated values, which
proves that DCT does increase the residual stress and then affects the microstructure
of the Hf0.25NbTa0.25TiZr alloy. The development of dislocation distribution is also con-
sistent with the trend in the mechanical properties shown in Figure 3a. The appearance
of dislocation explains the cause of the serrated shape shown in Figure 3b, which is dis-
location interaction. On the other hand, the interaction between the newly generated
dislocations in the plastic deformation stage and the dislocations generated by DCT form
the stress-increase stage in the alloy, as shown in Figure 3b after the yield.



Micromachines 2024, 15, 937 5 of 10Micromachines 2023, 14, x FOR PEER REVIEW 6 of 10 
 

 
Figure 3. Mechanical properties and microstructure of samples at different soaking times at room 
temperature: (a,b) tensile mechanical properties, (c–g) the microstructure of alloys with different 
DCT durations, (h) the phase precipitation of DCT120 sample, (i) amplification diagram and dif-
fraction spots of precipitated phase, (j) element composition of precipitated phase. 

Figure 3. Mechanical properties and microstructure of samples at different soaking times at room
temperature: (a,b) tensile mechanical properties, (c–g) the microstructure of alloys with different DCT
durations, (h) the phase precipitation of DCT120 sample, (i) amplification diagram and diffraction
spots of precipitated phase, (j) element composition of precipitated phase.
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Phase precipitation behavior at the grain boundary was observed in the alloy structure
after 120 h of DCT (Figure 3h). As shown in Figure 3i, the precipitated phase is an
HCP phase, while the matrix is a BCC single-phase solid solution. The energy spectrum
analysis confirms that this phase is a Ti and Zr-rich phase and contains a certain amount
of Hf (Figure 3j). The stress-driven phase transformation behavior has been reported
in HfNbTaTiZr alloys but also depends on large deformation [19]. The accumulated
residual stress of DCT can replace the large deformation and promote stress-induced phase
transition. The formation of the precipitated phase results in a larger increase in the strength
of DCT120.

Based on the results shown in Figure 2c, DCT can introduce high compressive residual
stress in a sample, which has a positive effect on the tensile properties of the alloy. On
the other hand, we believe that the residual stress value is the embodiment of the internal
stress and microstructure changes of in alloy during DCT. The DCT process causes complex
stress changes in the alloy, which result in the defect growth and phase precipitation shown
in Figure 3c–i, and they provide strength enhancement. At the same time, the residual
stress corresponds to the change in the interplanar spacing, while for the Hf-Nb-Ta-Ti-Zr
single-phase BCC solid solution alloy, a decrease in the interplanar spacing also means
an increase in the lattice distortion degree, which brings about the improvement in the
plasticity of the alloy.

In view of the influence of residual stress on grain structure, it is considered that a
sharp decrease in alloy temperature causes the grain to shrink, which constructs the tensile
stress state between grains, assisted by the mutual restraint of the grains (Figure 4A,B). In
the process from B to C, the line defects inside the grains are generated under the action of
continuous tensile stress and expand with the increase in soaking time. The accompanying
plastic deformation partially relaxes the tensile thermal stress. When the soaking time
increases to a certain extent, the tensile stress between the crystals promotes stress-induced
phase transition. Then, as the HEA sample is reheated back to room temperature at the end
of the DCT process (states C to D), due to the crystalline defects and plastic deformation,
as well as the intergranular constraints, a state of compressive residual stress remains in
the particles.
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In order to provide a further basis for this hypothesis, the finite element simulation
(FE simulation) method based on ABAQUS software was used to simulate the internal
stress of the alloy during LMD and DCT processes.

Firstly, an FE model with a dimension of 30 × 30 × 20 mm was established in which the
finite element mesh used for the 5-layer and 50-track bulk HEA component was established
and is shown in Figure 5a. The “element birth and death” technique was used to restore the
layer-by-layer deposition behavior of the alloy during the LMD process when DC3D8 and
C3D8T elements were separately employed for heat transfer analysis and stress analysis
in this continuous 3D model. The substrate material parameters in the simulation process
were set according to the TC4 alloy as in the actual forming process, and the material
properties of the deposited material were set with the change in temperature [20]. The
moving heat flux of the Gaussian distribution was set up using the ABAQUS subroutine
DFLUX to simulate the process of alloy deposition with laser moving in the LMD process.
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residual stress in DCT process.

The influence range of the moving heat flux and the heat conduction in this range
were defined to make the FE simulation process closer to the actual situation. The heat
conduction equation in the process of additive manufacturing is [21]

ρ(T)cP(T)
∂T
∂t

= ∇·(k(T)∇T) + qL (2)

where ρ = 7.83 g/cm3 is the alloy density, T is the temperature, cp(T) and k(T) are the
variations in specific heat capacity and thermal conductivity with temperature [20], and qL
is the heat flux density of the external heat source. Therefore, it is necessary to calculate
and set qL [22]:

qL(x, y, z) =
2AP
πr2η

exp[−2
(x − x0)

2 + (y − y0)
2

r2 ]exp(−|z − z0|
η

) (3)

where A = 0.83 is the laser absorption coefficient of alloy powder, p = 1200 W is the heat
source (laser) power, r = 1.5 mm is the radius of laser beam, and η = 1.15 mm is the laser
penetration depth. The boundary conditions for heat transfer are described as [23] follows:

qcond = q(x, y, z)− qc − qr (4)

where heat is lost through conduction qcond, convection qc, and radiation qr during the
LMD process.

By adjusting the analysis step to match the “element birth and death” with the moving
heat flux, the LMD forming process was realized using FE simulation. The intergranular
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residual stresses at the center of the as-deposited model obtained by FE simulation were
taken as the initial stress values for the subsequent DCT process simulation. The inter-
granular residual stress value was 301.45 MPa compressive stress, and the stress type was
consistent with the general situation obtained by the current LMD process [24,25].

Based on the existing simulation, the change in intergranular residual stress in the
DCT process was simulated. The constitutive equations of elastic, plastic, thermal, and
viscous strains of a visco-elastic-plastic model with initial residual stress were solved to
simulate the expansion and contraction of the alloy during DCT at different temperatures.
The increase in total strain with time is expressed as [26]

εtotal = εp + εe + εT + εV (5)

where εtotal, εp, εe, εT, and εV are the total strain, plastic strain, elastic strain, thermal strain,
and viscous strain, respectively. The constitutive equation can be written as [27] follows:

dεp
kl = dλ

∂f
∂σij

(6)

εe
kl = σe

ij·E(T)
−1 (7)

εT
kl = αij(T − T∞) (8)

εV
kl = Aqntm (9)

where f is the flow area capability; λ is a constant that depends on the properties of the
material; αij is the coefficient of thermal expansion; T∞ is the reference temperature; q is
the equivalent uniaxial deviatoric stress; A, n, and m are the material constants; and t is the
soaking time. Finally, the equivalent thermal shrinkage is introduced to redistribute the
strain and stress inside the model, described as [28]

εT = α·∆T (10)

where εT is the equivalent thermal strain, α is the thermal expansion coefficient, and ∆T is
the temperature gradient.

The intergranular residual stress at the center of the FE model of the alloy at different
stages was studied to obtain the results shown in Figure 5b. It can be seen from the graphic
results that at the beginning of the DCT process, the stress value in the alloy changes
from negative to positive rapidly due to rapid temperature reduction. This phenomenon
indicates that the intergranular stress changes from compressive stress to tensile stress,
which corresponds to the shrinkage of alloy grains at low temperature. As the soaking
continues, the tensile stress value decreases to a certain extent; that is, a slow stress release
occurs. The generation of this process is determined by the visco-elastic-plastic properties of
the model and corresponds to the defect density increase and phase precipitation behavior
shown in Figure 3. When the DCT process ends, the temperature of the model increases
rapidly, which corresponds to the actual water quenching process, and the intergranular
residual stress is transformed into compressive stress again, which has a value higher than
in the initial state. Higher residual stress, on the one hand, is considered to be able to
improve plasticity by inhibiting the formation of crack sources and the propagation of
cracks [29]. On the other hand, it aggravates the distortion of grains in Hf0.25NbTa0.25TiZr
alloy, which improves the plasticity of the alloy [9]. The simulation result here confirms the
mechanism proposed in Figure 4.

4. Conclusions

In summary, the DCT method effectively increases the participating stress value
accumulated in the LMD process, further induces the lattice distortion of the alloy, improves
the plasticity of Hf0.25NbTa0.25TiZr alloy, and promotes crystal line defects to improve the
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strength of the alloy. LMD–DCT has been proven to be an effective method of synergistically
improving the strength and plasticity of the alloy. Furthermore, DCT with a long immersion
time can avoid a large degree of processing deformation and directly promote the formation
of HCP precipitates near the grain boundary position. The presence of precipitates further
improves the strength of the alloy.

The DCT method can effectively utilize the residual stress accumulated in the alloy dur-
ing the forming process of laser additive manufacturing methods such as LMD. Compared
with traditional rolling methods, the DCT method is more suitable for the modification of
complex shape parts formed by LMD near-net forming. For HfNbTaTiZr alloy, DCT can
also be targeted for phase control. It can be said that DCT is an excellent supporting scheme
for additive manufacturing. Based on the DCT-induced phase transition found in this study,
increasing the density of grain boundaries by means of selective laser melting to increase
the density of precipitated phases will also be the direction of our further exploration.
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