Influence of Y2O3 Doping on Phase Evolution and Dielectric Characteristics of ZrO2 Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. YSZ Ceramic Synthesis
2.2. Material Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheema, S.S.; Shanker, N.; Hsu, S.-L.; Rho, Y.; Hsu, C.-H.; Stoica, V.A.; Zhang, Z.; Freeland, J.W.; Shafer, P.; Grigoropoulos, C.P.; et al. Emergent Ferroelectricity in Subnanometer Binary Oxide Films on Silicon. Science 2022, 376, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qiu, P.; Lu, Y.; Ju, X.; Chi, D.; Yew, K.S.; Zhu, M.; Wang, S.; Wei, R.; Hu, W. In-Sensor Computing Realization Using Fully CMOS-Compatible TiN/HfOx -Based Neuristor Array. ACS Sens. 2023, 8, 3873–3881. [Google Scholar] [CrossRef] [PubMed]
- Fergus, J.W. Doping and Defect Association in Oxides for Use in Oxygen Sensors. J. Mater. Sci. 2003, 38, 4259–4270. [Google Scholar] [CrossRef]
- Niinistö, L.; Päiväsaari, J.; Niinistö, J.; Putkonen, M.; Nieminen, M. Advanced Electronic and Optoelectronic Materials by Atomic Layer Deposition: An Overview with Special Emphasis on Recent Progress in Processing of High-k Dielectrics and Other Oxide Materials. Phys. Status Solidi A Appl. Res. 2004, 201, 1443–1452. [Google Scholar] [CrossRef]
- Bülent Nilüfer, I.; Gökçe, H.; Muhaffel, F.; Lütfi Öveçoǧlu, M.; Çimenoǧlu, H. The Effect of La2O3 on the Microstructure and Room Temperature Mechanical Properties of T-ZrO2. Ceram. Int. 2016, 42, 9443–9447. [Google Scholar] [CrossRef]
- Zhao, X.; Vanderbilt, D. Phonons and Lattice Dielectric Properties of Zirconia. Phys. Rev. B 2002, 65, 075105. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, W.; Ushakov, S.V.; Navrotsky, A.; Demkov, A.A. Monoclinic to Tetragonal Transformations in Hafnia and Zirconia: A Combined Calorimetric and Density Functional Study. Phys. Rev. B 2009, 80, 134119. [Google Scholar] [CrossRef]
- Hong, Q.J.; Ushakov, S.V.; Kapush, D.; Benmore, C.J.; Weber, R.J.K.; van de Walle, A.; Navrotsky, A. Combined Computational and Experimental Investigation of High Temperature Thermodynamics and Structure of Cubic ZrO2 and HfO2. Sci. Rep. 2018, 8, 14962. [Google Scholar] [CrossRef]
- Chen, M.H.; Thomas, J.C.; Natarajan, A.R.; Van Der Ven, A. Effects of Strain on the Stability of Tetragonal ZrO2. Phys. Rev. B 2016, 94, 054108. [Google Scholar] [CrossRef]
- Tahir, M.N.; Gorgishvili, L.; Li, J.; Gorelik, T.; Kolb, U.; Nasdala, L.; Tremel, W. Facile Synthesis and Characterization of Monocrystalline Cubic ZrO2 Nanoparticles. Solid State Sci. 2007, 9, 1105–1109. [Google Scholar] [CrossRef]
- Mokhtar, M.; Ali, W.F.F.W.; Djuansjah, J.R.P. Influence of Silica Content on the Stabilization of Tetragonal Zirconia for Biomedical Applications. AIP Conf. Proc. 2019, 2068, 020110. [Google Scholar]
- Guo, X.; He, J. Hydrothermal Degradation of Cubic Zirconia. Acta Mater. 2003, 51, 5123–5130. [Google Scholar] [CrossRef]
- Gionea, A.; Andronescu, E.; Voicu, G.; Bleotu, C.; Surdu, V.A. Influence of Hot Isostatic Pressing on ZrO2–CaO Dental Ceramics Properties. Int. J. Pharm. 2016, 510, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, J.; Deville, S.; Münch, E.; Jullian, R.; Lair, F. Critical Effect of Cubic Phase on Aging in 3 Mol% Yttria-Stabilized Zirconia Ceramics for Hip Replacement Prosthesis. Biomaterials 2004, 25, 5539–5545. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Hou, G.; Ma, J.; Zhang, X.; An, Y.; Zhou, H.; Chen, J.; Li, W. Effect of Y2O3 Doping Content on Phase Composition, Mechanical Properties and Cavitation Erosion Performance of ZrO2 Ceramics. Ceram. Int. 2024, 50, 14718–14730. [Google Scholar] [CrossRef]
- Zouaoui, M.J.; Nait-Ali, B.; Glandut, N.; Smith, D.S. Effect of Humidity on the Dielectric Constant and Electrical Impedance of Mesoporous Zirconia Ceramics. J. Eur. Ceram. Soc. 2016, 36, 163–169. [Google Scholar] [CrossRef]
- Campos, J.V.; Lavagnini, I.R.; Avila, V.; Yoon, B.; Ghose, S.; Raj, R.; Pallone, E.M.J.A.; Jesus, L.M. On the Arrhenius-like Behavior of Conductivity during Flash Sintering of 3 mol% Yttria Stabilized Zirconia Ceramics. Scr. Mater. 2021, 203, 114093. [Google Scholar] [CrossRef]
- Paygin, V.; Stepanov, S.; Dvilis, E.; Khasanov, O.; Alishin, T.; Valiev, D. Effect of Technological Parameters on Optical and Mechanical Properties of Spark Plasma Sintered Transparent YSZ Ceramics. Ceram. Int. 2021, 47, 11169–11175. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, W.; Liu, Z.; Bai, Y.; Geng, Y.; Wang, J. Improvement of Dielectric Performance of Solid/Gas Composite Insulation with YSZ/ZTA Coatings. Sci. Rep. 2019, 9, 388. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, M.; Zhao, Y.; Du, Z. Sintering of Large-sized and Near-stoichiometric BNT Ceramics with Enhanced Dielectric and Electrostrictive Properties. J. Am. Ceram. Soc. 2024, 107, 4086–4095. [Google Scholar] [CrossRef]
- Raether, F.; Iuga, M. Effect of Particle Shape and Arrangement on Thermoelastic Properties of Porous Ceramics. J. Eur. Ceram. Soc. 2006, 26, 2653–2667. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Du, Z.; Liu, C. Structural Insight into the Optical and Electro-Optic Properties of Lead Zirconate Titanate for High-Performance Photonic Devices. Ceram. Int. 2019, 45, 22324–22330. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Wong, K.K.; Hsu, H.C.; Wu, S.C.; Ho, W.F. Structure and Properties of Ti-Rich Ti–Zr–Nb–Mo Medium-Entropy Alloys. J. Alloys Compd. 2021, 868, 159137. [Google Scholar] [CrossRef]
- Song, J.; Cao, L.; Jiang, L.; Liang, G.; Gao, J.; Li, D.; Wang, S.; Lv, M. Effect of HfN, HfC and HfB2 Additives on Phase Transformation, Microstructure and Mechanical Properties of ZrO2-Based Ceramics. Ceram. Int. 2018, 44, 5371–5377. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Zhang, W.; Zhao, N.; Wei, W.; Sun, Y. Synthesis of Dimethyl Carbonate from Propylene Carbonate and Methanol Using CaO-ZrO2 Solid Solutions as Highly Stable Catalysts. Catal. Today 2006, 115, 107–110. [Google Scholar] [CrossRef]
- Sikarwar, S.; Yadav, B.C.; Singh, S.; Dzhardimalieva, G.I.; Pomogailo, S.I.; Golubeva, N.D.; Pomogailo, A.D. Fabrication of Nanostructured Yttria Stabilized Zirconia Multilayered Films and Their Optical Humidity Sensing Capabilities Based on Transmission. Sens. Actuators B Chem. 2016, 232, 283–291. [Google Scholar] [CrossRef]
- Lackner, P.; Zou, Z.; Mayr, S.; Diebold, U.; Schmid, M. Using Photoelectron Spectroscopy to Observe Oxygen Spillover to Zirconia. Phys. Chem. Chem. Phys. 2019, 21, 17613–17620. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Du, Z.; Chng, S.S.; Tsang, S.H.; Teo, E.H.T. Strong Electro-Optically Active Ni-Substituted Pb(Zr0.35Ti0.65)O3 Thin Films: Toward Integrated Active and Durable Photonic Devices. J. Mater. Chem. C 2018, 6, 12919–12927. [Google Scholar] [CrossRef]
- Wolter, S.D.; Piascik, J.R.; Stoner, B.R. Characterization of Plasma Fluorinated Zirconia for Dental Applications by X-ray Photoelectron Spectroscopy. Appl. Surf. Sci. 2011, 257, 10177–10182. [Google Scholar] [CrossRef]
- Avila-Paredes, H.J.; Zhao, J.; Wang, S.; Pietrowski, M.; De Souza, R.A.; Reinholdt, A.; Munir, Z.A.; Martin, M.; Kim, S. Protonic Conductivity of Nano-Structured Yttria-Stabilized Zirconia: Dependence on Grain Size. J. Mater. Chem. 2010, 20, 990–994. [Google Scholar] [CrossRef]
- Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A Review on Dielectric Breakdown in Thin Dielectrics: Silicon Dioxide, High-k, and Layered Dielectrics. Adv. Funct. Mater. 2020, 30, 1900657. [Google Scholar] [CrossRef]
- Zhu, M.; Shao, Y.; Xin, Y.; Yang, D.; Lu, X.; Zhang, H. Anisotropic Dielectric Dispersions and Thermal Behaviors in Highly Textured BN Thin Films for Heat Self-Dissipating Electronics. Vacuum 2024, 225, 113207. [Google Scholar] [CrossRef]
- Neusel, C.; Jelitto, H.; Schmidt, D.; Janßen, R.; Felten, F.; Schneider, G.A. Thickness-Dependence of the Breakdown Strength: Analysis of the Dielectric and Mechanical Failure. J. Eur. Ceram. Soc. 2015, 35, 113–123. [Google Scholar] [CrossRef]
- Cai, Z.; Feng, P.; Zhu, C.; Wang, X. Dielectric Breakdown Behavior of Ferroelectric Ceramics: The Role of Pores. J. Eur. Ceram. Soc. 2021, 41, 2533–2538. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Cai, S.; Yu, Z.; Zhang, J.; Fang, N.; Li, T.; Wu, Y.; Chen, T.; Xie, X.; et al. Uniform and Ultrathin High-k Gate Dielectrics for Two-Dimensional Electronic Devices. Nat. Electron. 2019, 2, 563–571. [Google Scholar] [CrossRef]
- Hattori, Y.; Taniguchi, T.; Watanabe, K.; Nagashio, K. Layer-by-Layer Dielectric Breakdown of Hexagonal Boron Nitride. ACS Nano 2015, 9, 916–921. [Google Scholar] [CrossRef]
- Sinha, S.; Dutta, G.; Mannam, R.; DasGupta, N.; Rao, M.S.R. Effect of Post Deposition Annealing on the Electrical Properties of YSZ Thin Films Deposited by Pulsed Laser Technique. Appl. Surf. Sci. 2020, 513, 145496. [Google Scholar] [CrossRef]
Materials | Phase | Grain Size (μm) | ε at 10 kHz | Vb (MV/cm) |
---|---|---|---|---|
0.0 wt%Y2O3-YSZ | M | 3.17 ± 1.00 | 3.9 | 0.13 |
0.5 wt%Y2O3-YSZ | M | 0.51 ± 0.20 | 6.4 | 0.11 |
1.0 wt%Y2O3-YSZ | M + T | 0.35 ± 0.18 | 9.0 | 0.14 |
2.0 wt%Y2O3-YSZ | M + T + C | 0.33 ± 0.10 | 11.7 | 0.15 |
3.0 wt%Y2O3-YSZ | M + C | 0.28 ± 0.08 | 11.9 | 0.12 |
4.0 wt%Y2O3-YSZ | M + C | 0.27 ± 0.08 | 13.4 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Shao, Y.; Xin, Y.; Yang, D.; Zhang, H.; Zhu, M.; Zhang, L.; Lu, X. Influence of Y2O3 Doping on Phase Evolution and Dielectric Characteristics of ZrO2 Ceramics. Micromachines 2024, 15, 938. https://doi.org/10.3390/mi15080938
Gao L, Shao Y, Xin Y, Yang D, Zhang H, Zhu M, Zhang L, Lu X. Influence of Y2O3 Doping on Phase Evolution and Dielectric Characteristics of ZrO2 Ceramics. Micromachines. 2024; 15(8):938. https://doi.org/10.3390/mi15080938
Chicago/Turabian StyleGao, Lanfeng, Yong Shao, Yangmei Xin, Dan Yang, Haizhong Zhang, Minmin Zhu, Li Zhang, and Xiaoqiang Lu. 2024. "Influence of Y2O3 Doping on Phase Evolution and Dielectric Characteristics of ZrO2 Ceramics" Micromachines 15, no. 8: 938. https://doi.org/10.3390/mi15080938
APA StyleGao, L., Shao, Y., Xin, Y., Yang, D., Zhang, H., Zhu, M., Zhang, L., & Lu, X. (2024). Influence of Y2O3 Doping on Phase Evolution and Dielectric Characteristics of ZrO2 Ceramics. Micromachines, 15(8), 938. https://doi.org/10.3390/mi15080938