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Abstract: The thermal-controlled fracture method has been increasingly focused upon in the high-
quality cutting of advanced ceramic materials due to its excellent characteristics. The successful
application of this method in cutting ceramics mainly depends on the volumetric heating effect.
However, most ceramics are treated using the surface heating mode. For the surface heating mode,
the processing quality, including fracture trajectory and fracture quality, is far lower than the industrial
application standards. This work was conducted to reveal the mechanism of this processing quality.
Experiments involving cutting ceramics in single-surface heating mode indicate that the fracture
trajectories of the upper and lower surfaces display a significant inconsistency, and the fracture quality
is worse than that using the dual-surface heating mode. A cutting model was established to calculate
the thermal stress distribution and to simulate the crack-propagation behaviors. The simulation
results show good agreement with the experiment and provide the stress distribution, and are used to
understand the reason for the processing quality problem. The mechanism of the trajectory deviation
and uneven distribution of the fracture quality is revealed based on the simulation and calculation
results. This study helps provide a deep understanding of the processing problems arising from this
method and thus helps to innovate high-quality processing methods in this field.

Keywords: ceramic materials; thermal-controlled fracture method; surface heating mode; processing
problem; trajectory deviation; simulation; uneven distribution; fracture quality

1. Introduction

Ceramics have been increasingly used in frontier domains such as aerospace and
advanced chips due to their properties of high hardness, low thermal expansion, and
excellent stability [1]. High-quality cutting technology is the foundation for preparing
qualified parts from ceramic materials. However, the high hardness of ceramic materials
can cause severe wear of tools in contact force cutting mode, as well as serious damage
to the surface and subsurface of the machined workpiece [2–5]. Laser cutting methods
can also cause the formation of heat-affected zones in the kerf, which can weaken the
workpiece [6,7]. This severe damage induced by conventional cutting methods at the
fracture surface requires complex subsequent processing to achieve qualified parts, causing
a significant increase in manufacturing costs, which hinders the widespread application of
advanced ceramic materials in industrial fields [8–10].

In 1968, the thermal-controlled fracture method (TCFM) was proposed by Lumley,
which utilizes thermal stress to guide the crack propagation on brittle materials to cut
materials. TCFM can achieve high cutting quality at relatively low temperature (no more
than 350 ◦C) without damage in the kerf and without material removal [11]. After decades
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of development, this method has been implemented in industrial production for cutting
flat panel display glass [12]. The successful application of TCFM in cutting glass depends
on the volumetric heating effect caused by a specific wavelength laser irradiating glass [13].
However, the research on cutting opaque ceramic materials, such as laser cutting Al2O3
ceramics and microwave cutting low-dielectric ceramics, indicated that the surface heating
mode causes poor processing quality [14,15]. The processing quality problems in cutting
ceramic materials using TCFM under surface heating conditions mainly include whether
the fracture trajectory follows the ideal direction and whether the fracture quality is good
enough and uniform.

Regarding fracture trajectory, Brugan used a dual-beam CO2 continuous laser to cut
Al2O3 ceramics with a thickness of 2.54 mm using TCFM. The results indicated that the
TCFM could achieve the cutting of Al2O3 ceramics in surface heating mode, and induced
problems of trajectory deviation [16]. lu used microwaves to cut ceramic materials coated
with graphite using TCFM, and the mechanism of uncontrolled crack propagation was
studied [17]. Cheng studied the crack-propagation behavior in cutting silicon wafers using
TCFM via a surface heat source induced by a laser, and proposed a method of surface
pre-cracks to guide crack propagation to achieve approximate linear crack propagation [18].

Regarding fracture surface quality, Ueda used TCFM to cut crystalline silicon, Al2O3
ceramics, Si3N4 ceramics, etc. The results showed that the surface roughness of the fracture
surface could reach 0.7 µm, 1.3 µm, and 100 µm, respectively [19]. Cai used TCFM to cut
glass/silicon/glass sandwich materials, and the surface roughness of the fracture surface
of the silicon layer under the action of a surface heat source reached 1 µm [20]. Saman used
TCFM to cut different kinds of ceramics and studied the stress distribution characteristics.
The results indicated that if the material absorbs a laser on a single surface, the maximum
tensile stress area can easily be located on the back of the material, which seriously affects
the stable propagation of cracks. Saman inferred that it is difficult to obtain good processing
quality using the surface heating mode due to these stress distribution characteristics [21].

The above research indicates that cutting ceramics by TCFM can achieve ideal process-
ing quality. However, the processing quality under the surface heating mode is far lower
than that in volumetric heating mode, and should be improved for industry applications.
To the authors’ knowledge, there has been little research to date on the mechanism inducing
poor processing quality using TCFM under a surface heat source. The crack-propagation
mode and material fracture mechanism under the influence of a surface heat source have
not been revealed. This hinders the improvement and optimization of the cutting quality
in this mode.

In this study, microwaves were used to cut ceramic materials using TCFM under a
surface heat source. The influence of processing parameters on fracture trajectory and
fracture surface quality was studied. A TCFM cutting model was established to simulate
the fracture behaviors. Combining experimental and simulation results, the mechanism of
trajectory deviation and uneven distribution of fracture quality in cutting ceramic materials
using TCFM under a surface heat source was revealed. This work helps to understand
the mechanism of trajectory deviation and poor fracture surface quality in the cutting of
ceramic materials using TCFM, and thus helps to put forward methods for improving the
cutting quality under a surface heat source.

2. Experiment
2.1. Experimental Method

Al2O3 ceramic is opaque and does not absorb a laser, thus making it difficult to
apply a volumetric heat mode. Because of its low dielectric property, it is also difficult for
microwaves to interact with this ceramic. In this work, graphite with high permittivity was
used to coat one surface of the Al2O3 ceramic to absorb microwaves to generate a surface
heat source. Figure 1 shows the principle of producing the surface heating mode using the
coating material induced by microwaves. The unabsorbed microwaves pass the ceramic
body and enter the environment through the lower surface. The uneven heat distribution
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generated by the high electromagnetic loss on the coating material produces a thermal
stress field. The cutting of the ceramic is realized by moving the thermal stress to guide
crack propagation.
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Figure 1. Schematic diagram of surface heating mode induced by microwaves.

A pre-crack was carved on the workpiece using a diamond wire with a diameter
of 0.25 mm, which produced a stress amplification effect. The pre-crack with a depth of
0.1 mm is the start point of crack propagation. When the tensile stress exceeds the fracture
limit at the pre-crack, the crack system reaches the propagation condition. When the
waveguide is given an appropriate moving speed relative to the workpiece, the crack
propagates forward and realizes cutting.

2.2. Experimental Material and Apparatus

The experiment was conducted on a microwave cutting machine. Figure 2 shows
the schematic of the microwave cutting machine in TCFM. The microwave with a specific
frequency is produced from the microwave source. Then, it is modulated by the microwave
guide into a focusing apparatus. Finally, the focusing apparatus outputs the microwave,
which is suitable for heating the material from the inner conductor. The inner conductor is
surrounded by the outer shield to focus the microwave to achieve higher energy density.
The coating surface of the workpiece is just below the inner conductor. The NC motion
device with the x-y-z direction is integrated into the cutting machine to realize cutting
movement. The z-axis is used to adjust the distance between the inner conductor and the
workpiece. The x-axis is used to realize cutting movement, and the y-axis is used to center
the heat source and the workpiece. This cutting device is produced by Nanjing Huiyan
Microwave Equipment Company in China. It is used to cut brittle material and is equipped
with safety facilities such as a filter screen to ensure safety. The microwave frequency of
this device is 2.45 GHz and the maximum output power is 1500 W.
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 Figure 2. Schematic of microwave cutting machine using the thermal-controlled fracture method.

Figure 3 shows the Al2O3 ceramic plate used in this study. Graphite powder with a
thickness of 0.1 mm and a width of 1 mm is coated on the expected cutting path. The plate
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is 100 mm × 100 mm in size. The graphite powder with a micron-size (mesh of 8000 and
particle size of 1.6 µm) is mixed with alcohol. The mixture is sprayed evenly by an electric
sprayer whose power comes from an air pump. As shown, a pre-crack is made on the end
of the plate.
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Figure 3. Al2O3 ceramic plate coated with graphite.

The microwave power and scanning speed were used in the experiments as processing
parameters. Table 1 shows the variation range of these processing parameters. The crack
propagation of the initial segment was observed by a Stemi 305 optical microscope, which
was produced by CARI ZEISS in Oberkochen of Germany and can magnify objects clearly
by more than 120 times.

Table 1. Variation range for processing parameters using TCFM by a surface heat source induced by
microwaves.

Test Group No. Microwave Power (W) Scanning Speed (mm/s)

NO.1 600–1200 2.0–3.5
NO.2 900–1500 0.5–2.0
NO.3 1200–1500 0.3–0.6

To investigate the distribution characteristics of the fracture surface quality, some
measurement sites were set on the section. Figure 4 shows the location of the measurement
sites in the experiments. A plane on the surface heat source in workpiece was selected
as the reference. Three depth positions, which are 0.2 mm, 0.5 mm, and 0.8 mm from
the reference plane in the direction of the thickness, were selected to measure the surface
roughness. To achieve stable fracture quality and avoid the influence of unstable boundary
conditions, four horizontal inspection positions, namely 40 mm, 50 mm, 60 mm, and
70 mm from the inlet along the cutting direction, were selected. To ensure the value of
the experimental results, each experiment was repeated four times, and the average of the
results was taken.
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3. Results
3.1. Fracture Trajectory

Figure 5 shows the fracture trajectories at each surface of the Al2O3 ceramic plates
after cutting at a microwave power of 1000 W and a scanning speed of 3 mm/s. It can be
shown that the fracture trajectory approaches a straight line when cutting ceramics with
a surface heat source. Comparing the processing effect of graphite in this study and clay
as the microwave-absorbing material in the literature [22], it is notable that pure graphite
micron powder can achieve better processing quality.
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Figure 5. Experimental results of fracture trajectories of surface-heat-source cutting Al2O3 ceramic
under using thermal-controlled crack propagation induced by microwaves: (a) the upper surface;
(b) the lower surface.

Figure 6 shows a photo magnified with an optical microscope of the fracture trajectory
on the two surfaces of the workpiece. It can be shown that the fracture trajectories of the
upper and lower surfaces display significant inconsistencies from a microscopic perspective.
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The effect of processing parameters on fracture trajectory was studied. Figure 7 shows
the relationship between the microwave power and the trajectory deviation of the initial
segment. It shows the effect of the microwave power on the initial trajectory deviation
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length Le and maximum offset De of the upper and lower surfaces at a cutting speed of
3 mm/s and a microwave power of 1000 W, 1100 W, 1200 W, and 1300 W. As is shown,
the deviation length Le and maximum offset De both increase as the microwave power
increases, and the De increases more significantly. Therefore, it is necessary to choose an
appropriate microwave power in order to reduce the trajectory deviation.
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3.2. Fracture Surface Quality

Figure 8 show the fracture surface of cutting Al2O3 ceramic plates at a microwave
power of 1000 W and a scanning speed of 3 mm/s. As is shown, there is obvious processing
damage at the entrance due to the process of prefabricating cracks using a diamond wire
saw. It is notable that the fracture quality of the middle and outlet sections is better than
that at the entrance, and the middle section is the best. There is a small amount of edge
damage at the outlet.
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Figure 8. Experimental results of fracture surface of Al2O3 ceramics under the action of thermally
induced crack propagation using a surface heat source:(a) the cutting inlet; (b) the middle segment;
(c) the cutting outlet.

Figure 9 shows the variation in the arithmetic mean deviation of surface roughness
Ra at the middle thickness of the workpiece along the cutting direction, ranging from
1.5 mm to 4.7 mm, 30 mm to 33.2 mm, 60 mm to 63.2 mm, and 95 mm to 98.2 mm, when
the microwave power is 1000 W and the cutting speed is 3 mm/s. The sampling length is
0.8 mm, and the evaluation length is 3.2 mm. It is notable that the surface roughness Ra of
the initial scanning segment is 1 to 2 orders of magnitude higher than that of the middle
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and end segments, which corresponds to the inconsistent propagation of surface cracks on
the upper and lower surfaces.
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Figure 10 shows the variation in surface roughness Ra in the thickness direction of
the workpiece. As is shown, the average Ra at most points is between 0.2 µm to 1 µm. It
is notable that there is a significant difference in Ra along the depth direction at various
cutting positions without obvious regularity.
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Figure 10. Surface roughness distribution at different positions of the material at the middle segment.

Figure 11 shows the effect of microwave power on Ra under the condition of a cutting
speed of 3 mm/s at several positions along the cutting direction. It indicates that the surface
roughness of each position increases as the microwave power increases. The microwave
power has a significant impact on the surface roughness of the initial segment. When the
maximum microwave power is 1300 W, the surface roughness of both the initial and final
segments will increase significantly. Therefore, it is necessary to choose an appropriate
microwave power when using a surface heat source for cutting.
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4. Discussion
4.1. Finite Element Modeling

The main physical processes of cutting ceramic materials using TCFM are interactions
between energy beams and matter, heat generation, heat transfer, thermal stress generation,
and crack propagation.

Since cracks tend to propagate perpendicularly to the maximum transverse tensile
stress component, which is affected by the stress intensity factor in different fracture modes,
the fracture problem is transformed into determining the maximum value of the mechanical
energy release rate in fracture mechanics.

The crack-propagation condition is that the tensile stress at the tip of the pre-crack
exceeds the fracture limits of the material. From an energy perspective, it is a process of
converting elastic energy into surface energy of the fracture surface.

The cutting of ceramics materials by TCFM is a complex physical process. It is difficult
to calculate the temperature, thermal stress, and crack propagation using an analytical
model. A finite element modeling (FEM) technology with the aid of ABAQUS 6.14 software
was used in this study to calculate these physical quantities and simulate the cutting
process.

The cutting simulation was conducted for both surface and volumetric heat sources.
Figure 12 shows the simulation results of crack propagation for cutting Al2O3 ceramics by a
microwave surface heat source and the crack propagation for cutting glass with a volumetric
heat source. From Figure 12a, it is notable that the crack propagates inconsistently between
the upper and the lower surface of the workpiece. The crack propagation on the upper
surface presents a significant folding line, while the lower surface is relatively straight.
From Figure 12b, it is notable that that the crack-propagation paths on the upper and lower
surfaces of the workpiece are consistent under the action of a volumetric heat source, and
the crack-propagation paths tend to be straight.

Figure 13 show a comparison between the experimental and simulation results of the
crack-propagation trajectory under a surface heat source. It shows that the degree of offset
generated in experiments and simulations is relatively close. Therefore, the simulation of
crack propagation in this study is suitable for discussing the cutting quality.
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Figure 13. Comparison of experimental and simulation results of the initial crack-propagation
trajectory.

4.2. Trajectory Deviation Mechanism

There are three basic modes of crack propagation and fracture, which are type I (open),
type II (sliding), and type III (tear). Figure 14 shows a schematic of these three basic fracture
modes. Among them, type I means that the crack only breaks under the action of tensile
stress perpendicular to the fracture surface; type II means that the crack breaks only under
the action of longitudinal shear stress perpendicular to the leading edge of the crack; type
III means that the crack breaks only under the action of lateral shear stress parallel to the
leading edge of the crack.
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Figure 14. Three basic fracture modes.

Among the three basic fracture modes, type I is closest to the fracture of materials
with high brittleness. Due to the high brittleness of the ceramic materials in this study,
the fracture mode is generally considered to be type I. However, during the fracture and
propagation of the actual crack, it will be affected by both the sliding and tear of the
others. In this way, the crack is usually a “tilted” (type I and type II composite) fracture
or “torsional” (type I and type III composite) fracture according to the actual influence of
these two effects during the crack-propagation process.

The main reasons for the occurrence of offset propagation of cracks are divided into
“inclined” type (type I and type II composite) fractures or “torsional” type (type I and type
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III composite) fractures. Figure 15 shows the schematic diagrams of these two typical types.
It adopts the same coordinate system and crack location as the simulation calculation,
where the “inclined” type in Figure 16a refers to the original crack surface producing a
deflection angle θ relative to the original propagation direction under the influence of
transverse shear force, and an extended length dc1 of the included angle. The “torsional”
propagation in Figure 15b is caused by the influence of lateral shear force on the original
crack surface, resulting in a deflection angle φ relative to the original propagation direction,
and the extended length dc2 of the included angle.
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Figure 16. Transverse shear stress distribution front perpendicular to the scanning direction of a
surface heat source in a Al2O3 ceramic surface crack at t = 1.9058 s: (a) cloud chart of transverse shear
stress distribution and node path on the upper surface of the workpiece; (b) transverse shear stress
distribution of the crack front perpendicular to the scanning direction.

In order to study the mechanism of deviation of crack propagation in a surface heat
source-induced thermal fracture, it is necessary to analyze the two kinds of shear stress near
the crack that cause the migration. These are S12 and S13 in the output of the simulation
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results, which present the shear stress τ12 causing “inclined” propagation and shear stress
τ13 causing “torsional” propagation.

Figure 16 shows the distribution of transverse shear stress τ12, which is perpendicular
to the cutting direction at the crack front at t = 1.9058 s. To obtain effective data, a grid
segment with a length of 2 mm was symmetrically taken on the front edge of the crack
perpendicular to the initial crack plane, and the center position of this segment is the ideal
position for the crack propagation without deviation. The number of selected nodes is
23, and the path direction of the selected nodes is in the positive y-axis direction. As is
shown in Figure 16a, the crack on the upper surface of the workpiece shifted to the right.
Figure 16b shows that τ12 of the upper surface changes more significantly than the lower
surface, which is caused by the surface heat source being located on the upper surface of
the workpiece. It is notable that the intersection of the τ12 curve and the 0 MPa line is close
to the right side of the symmetry line. According to the theory of fracture mechanics, the
crack always tends to propagate where the shear stress is the smallest, so the upper surface
crack has a deviation to the right.

Figure 17 shows the crack propagation on the lower surface of the workpiece. It
indicates that the crack on the lower surface of the workpiece is returning to the ideal
propagation path. This is consistent with the middle position of the intersection of the τ12
curve and the 0 MPa line. Figure 18 shows the τ12 curve on each surface of the workpiece
at multiple times during the subsequent crack-propagation process. It is notable that the
significant size differences of τ12 on the upper and lower surfaces of the workpiece result
in their different effects on the tilting behavior of the cracks. This is the reason for the
inconsistent crack propagation on upper and lower surfaces, as well as their different
deviation behaviors in experiments.
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Figure 19 shows the lateral shear stress distribution near the crack front edge at
t = 1.7675 s. The plane X = 1.2 mm perpendicular to the x-axis is made at the crack front
edge to display the lateral shear stress distribution shown in Figure 19a. It is notable that
the lateral shear stress has a significantly asymmetric distribution within a range of 400 µm
around the front edge of the crack. The influence of this lateral shear stress distribution on
the formation near the crack front leads to torsional propagation, as shown in Figure 19b.
Due to the direct heating effect on the upper surface of the workpiece, the twisting behavior
near the upper surface is more pronounced. The trajectory deviation occurs under the
combined action of lateral shear stress and transverse shear stress in cutting ceramics with
a surface heat source.
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Figure 19. Lateral shear stress distribution near the front edge of the crack when the crack propagates
with torsion at t = 1.7675 s: (a) distribution of lateral shear stress near the crack front; (b) torsional
propagation of the crack.

4.3. Uneven Mechanism of Fracture Surface Quality

The fracture surface is formed under the guidance of transverse tensile stress whose
characteristic determines the mode of crack propagation in TCFM. Figure 20 shows the
distribution of transverse tensile stress at the crack front and its circumferential condition
when the crack is about to propagate.

It indicates that the stress gradient near the crack front is relatively large when it is
about to propagate, and the transverse tensile stress is large near the surface under the
condition of a surface heat source.

The gradient of transverse tensile stress along the thickness direction of the material
indicates that crack propagation is severely asynchronized at different positions of the cross-
section. As was reported in [18], the propagation first occurs from the root of the existing
crack on the upper surface, and the crack expands to the lower surface along the thickness
direction. The incentive for its subsequent expansion is that the expanding crack forms a
new tip with the existing crack in the vertical direction, which has the minimum curvature
radius and the most concentrated stress to guide the crack to propagate downwards. This
crack-propagation mode results in the uneven distribution of the fracture quality in the
cutting experiment.
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To improve the large stress gradient in single-sided surface heating mode, a dual-sided
surface heating method was proposed by the authors of this article in the literature [23].
Figure 21 shows the schematic diagram of heating ceramics using a microwave dual-surface
heat source. The lower surface of the workpiece is coated by graphite, which is used to
absorb the underutilized microwaves and forms a lower surface heat source.
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Figure 21. Schematic diagram of heating ceramics using a microwave dual-surface heat source.

Figure 22 shows the transverse tensile stress at the crack front along the direction of
material thickness at the moment of propagation under the action of a dual-surface heat
source at different times. As is shown, the maximum transverse tensile stress zone under
the action of a dual-surface heat source is located at the middle section of the crack root.
This indicates that the difference in the maximum transverse tensile stress zone and its
gradient at the crack front edge under different heat sources determines their different crack-
propagation modes and their fracture quality. According to this study, the distribution of
the transverse tensile stress at the crack front edge determines the distribution of fracture
quality.

Cutting experiments under a dual-sided surface heat source were conducted. Figure 23
shows the surface roughness distribution at the middle segment at the condition of 600 W
of microwave power and a cutting speed of 3 mm/s under dual-surface heat mode. As is
shown, the fracture quality and its distribution under the action of a dual-sided surface
are significantly better, and the distribution is more uniform than that of a single-surface
heat source. The middle depth of the section has the best fracture quality, which has good
agreement with that revealed in reference [19].
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5. Conclusions

In this work, experiments and simulations of cutting ceramics using the thermal-
controlled fracture method with a surface heat source were conducted to reveal the mecha-
nism of trajectory deviation and uneven distribution of fracture quality. Some conclusions
can be made from this study, as follows.

A finite element model was established to calculate the physical quantities and simu-
late the cutting process in the thermal-controlled fracture method in surface heating mode.
The crack-propagation results of the simulation were consistent with the trend of the cutting
path in the experiment. The modeling results could be used to reveal the mechanism of
trajectory deviation and uneven distribution of fracture quality for this method.

The trajectory deviation occurs under the combined action of lateral shear stress and
transverse shear stress in cutting ceramics with a surface heat source.

The significant differences in τ12 on the upper and lower surfaces of the workpiece
result in their different effects on the tilting behavior of the cracks and the inconsistent crack
propagation. This is the reason for the trajectory deviation under a surface heat source.

The significantly asymmetric distribution of lateral shear stress around the front edge
of the crack leads to torsional propagation under a surface heat source.

The distribution of the transverse tensile stress along the thickness direction of the
workpiece shows a positive correlation with the uneven distribution of fracture quality in
the single-surface heating mode, in contrast with the dual-sided surface and volumetric
heat source cutting method.
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Future research could focus on innovative techniques that could reduce the gradient of
transverse tensile stress in the thickness direction and correct the asymmetric distribution
of the two types of shear stress.
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