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Abstract: In poor sanitary conditions, people need to wear masks to protect the health of their
respiratory system. Meanwhile, it is necessary for patients with respiratory diseases to have real-
time measurement on respiratory rate when wearing masks. Thermoelectric generation provides
a new approach and method for powering and sensing small low-power devices, and has good
application prospects in smart masks. In view of this, a novel sensible smart mask using micro
thermal-electric energy conversion elements (TECE) is proposed in this paper, which can detect and
display the respiratory rate in real time. First, the temperature conversion characteristic of micro
TECE represented by the thermoelectric generator module is analyzed. Second, the respiratory
characteristics of the human body are studied, and the respiratory rate sensing effect based on micro
TECEs is analyzed and verified. Then, a sensible smart mask, which can show respiratory rate in
real time, is developed by integrating MCU and OLED module. Finally, human respiratory rate
experiments are conducted, the experimental results verified the effectiveness and accuracy of the
proposed sensible smart mask.

Keywords: sensible smart mask; thermal-electric energy conversion; thermoelectric generator module;
respiratory rate sensing

1. Introduction

Respiratory rate is one of the important vital signs that is able to respond to the health
condition of human body [1]. The COVID-19 pandemic is a growing public health concern
worldwide. It causes infection in the lower respiratory tract, which can lead to alveolar
damage and respiratory failure in severe cases [2]. Respiratory rate is a common indicator
for judging lower respiratory tract infections in the clinic, and extensive research has shown
that the risk of COVID-19 pandemic infection can be predicted by analyzing the change
of respiratory rate [3]. Real-time detection of respiratory rate is a guarantee of life safety
for various respiratory disorders such as asthma, and a portable respiratory rate detection
device can also be of great use in home detection for patients with respiratory diseases.
Therefore, it is crucial to develop a wearable device that can measure respiratory rate in
real time. However, wearable respiratory rate detection devices applied at this stage, are
usually realized by detecting the fluctuation frequency of the human thorax, which requires
the use of sensors fixed on wristbands or clothes [4,5], resulting in low detection accuracy,
high costs, and limited scalability for widespread adoption.

Wearing masks is the simplest and most efficient strategy to restrict the progression of
the COVID-19 pandemic and other infectious diseases [6]. Droplet and contact transmission
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are the two main routes of transmission for the COVID-19 pandemic. Infected people’s
droplets will produce aerosols in the air, while masks can minimize the amounts of droplets
emitted by wearers, effectively inhibiting virus transmission [7]. Through mathematical
modeling, Li et al. indicate that wearing a face mask can be effectively combined with
social distancing to flatten the epidemic curve, wearing a mask presents a rational way
to combat COVID-19, and more countries and regions are moving forward with recom-
mendations or mandates to wear masks in public [8]. Therefore, mask-based wearable
respiratory monitoring devices take into account the needs of epidemic prevention and
health monitoring.

The Information contained In one’s breath is also a significant aspect in determining
one’s health, and the mask is close to the face and serves as an excellent carrier for respira-
tory sensors. As a result, a mask that continuously monitors the user’s respiratory state
in daily life is required for tailored medical care and epidemic prevention. Zhong et al.
have integrated the self-powered pressure sensor with the mask to produce an intelligent
mask [9]. Under the influence of respiratory gas, the pressure sensor can generate a peak
voltage of roughly 10 V. Nguyen et al. attached a flexible airbag to a mask and used a
pressure sensor to measure the flexible airbag’s pressure change in order to measure the
pulse, blink, and respiration signals [10]. He et al. used the friction nano generator as the
sensor of the smart mask to detect various respiratory indicators such as respiratory rate
and inspiratory time [11].

In addition to the pressure characteristics of breathing, the researchers also measured
the respiratory rate through the temperature characteristics of breathing. Xue et al. used py-
roelectric materials to make a self-powered sensor installed on the mask, which can convert
the temperature change in breathing into electrical energy and reflect the respiratory rate
of human body [12]. Thermoelectric generators have also been extensively researched for
detecting respiratory characteristics. Compared to other materials, a thermoelectric genera-
tor has the advantages of high conversion efficiency, high output power and high service
life. Goto et al. proposed a micro-thermoelectric gas sensor for selective gas detection in
breath, the thermoelectric voltage of the sensor is induced by the catalytic combustion of
hydrogen or methane. Their work was conducted under an elevated temperature, which
used a micro-heater built on the same membrane as a hotplate, and then enabled selective
combustion of the target gas [13]. Based on the literature review, it can be concluded that
the effective measurement of respiratory rate can be achieved by utilizing the body’s own
energy sources.

Although the above-referenced studies achieved notable results, the mentioned mask
with embedded sensors may require high temperatures or have a large sensing area, which
is not conducive to flexible use. Aiming to solve the problem, we have developed a novel
sensible smart mask using micro thermal-electric energy conversion elements (TECE). The
primary work of this paper are as follows: the relationship between TECE and temperature
difference is verified, a smart mask integrating TECE, MCU, OLED screen and other
modules has been proposed, achieving automatic measurement of respiratory rate at room
temperature, and offering advantages in compact size, lightweight, and facial conformity.

The paper is structured into five sections. Following the introduction, the conversion
characteristic of micro TECE is analyzed in Section 2, which indicates the linear relationship
between the output voltage of TECE and the temperature difference. Section 3 analyzes
the fundamental characteristics of breath and gives the output law of TECE due to human
respiration. In Section 4, describes the development of a sensible smart mask by integrating
MCU and OLED modules, and this mask can show respiratory rate in real time. The
effectiveness of the proposed mask is verified by experiments. Finally, the conclusions are
given In Section 5.

2. Conversion Characteristic of Micro TECE

The conversion principle of micro TECEs, represented by thermoelectric generator,
is the Seebeck effect. This effect arises when a temperature difference is applied between
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two coupled conductors or semiconductors. It forms the theoretical foundation for TECEs
as respiratory sensors. When different temperatures are applied to the two ends of TECE,
the Seebeck effect results in a thermoelectric voltage [14]. Therefore, by measuring the
temperature difference inside and outside the mask caused by breathing, respiratory rate
can be achieved by processing the voltage signal of the TECE.

The Peltier effect also influences the output voltage of the TECE. Depending on the
direction of the current flow, heat absorption and release occur at the junctions of different
conductors [15]. Therefore, when TECE is utilized as a temperature sensor, this effect
leads to the loss of electrical energy converted from thermal energy, and then reducing the
output voltage.

V = (S − U) · (Th − Tc) · N (1)

where S is the Seebeck coefficient of TECE arm material, U is the Peltier coefficient, Th is
the hot end temperature, Tc is the cold end temperature, and N is the number of thermo-
electric arms.

Figure 1 shows the curves of Seebeck coefficient of P-type and N-type material pro-
duced by TECE changing with temperature. The Seebeck coefficient represents the ther-
moelectric conversion efficiency of the TECE, which is almost unaffected by temperature
changes. When the logarithm of the material and thermoelectric arm is constant, the change
of the output voltage is only related to the temperature difference between two sides of
the TECE, implying that output voltage and temperature difference have a one-to-one
mapping relationship.
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Figure 1. Seebeck coefficient of thermoelectric arm material.

In order to obtain effective thermoelectric properties, the Seebeck coefficient and Peltier
coefficient are usually processed by integrating and normalizing over the temperature
gradient. Then, the normalized Seebeck coefficient and Peltier coefficient can be regarded
as a constant, which means that TECE has good linearity when used as a temperature sensor.
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∫ Th
Tc

Up(T)dT

Th − Tc
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S = Sp,e f f − Sn,e f f (6)

U = Up,e f f − Un,e f f (7)

To investigate the steady-state output performance of TECE, various temperature dif-
ferentials are applied to the TECE, its output voltage are measured in detail and compared
with the calculated outcomes. To effectively conduct experiments, as shown in Figure 2, a
TECE performance testing platform is designed and built, which mainly includes the TECE,
a constant temperature heater serving as the heat source, a water-cooling system providing
the cold source, an AVO meter, and a thermometer.
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Figure 2. TECE performance testing platform.

The TECE utilized in the experiment has a length and width of 15 mm and a thickness
of 3.6 mm. The size of a single thermoelectric arm is 1 mm × 1 mm × 2 mm, and each
TECE is combined 31 thermoelectric arms. Based on the experimental platform, the output
performance of TECE was tested and compared with the simulated results.

As shown in Figure 3, the experimental and simulated values of the TECE are in good
agreement. The temperature difference and the output voltage have a linear relationship. If
the temperature on one side of the TECE is known, the temperature difference between
the two sides can be calculated according to the output voltage, so as to realize the linear
measurement process of the temperature on the other side.
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3. Sensing Effect of Respiratory Rate

When a TECE is used to measure respiratory rate, it can be regarded as applying
a periodic temperature difference change to TECE. In the simulation, a time sinusoidal
varying temperature difference is imposed for the TECE, as shown in Figure 4a. As shown
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in Figure 4b, the TECE exhibits robust responsiveness to periodic variations in temperature
difference, correlating directly with changes in output voltage. This characteristic makes it
suitable for application as a breathing temperature sensor.
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The tidal volume of normal adults is 8–10 mL/kg and the respiratory rate is
16–20 times/min [16]. For an adult, if the weight is 60 kg, the tidal volume of one breath
is 0.6 L and the respiratory cycle is 3 s. The change in volume of the inhaled gas can
be approximated as a cosine function, as shown in Figure 5. There exists a relationship
between the volume of inhaled gas and time as follows:

V(t) = 0.3 cos(
2π

3
t + π) (8)
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Figure 5. Inhaled gas volume.

If the area of nasal outlet is A, the breath rate at the outlet is U (with exhalation as
positive):

U(t) =
dQ
dT

· 1
A

= −6.25 sin(
2π

3
t) (9)

Due to the fact that only exhalation provides heat to TECE, only exhalation will be stud-
ied here. Assuming that the velocity of exhaled gas does not decrease when passing over
TECE, and the heat transfer mode is external sweeping flat wall convective heat transfer.
Under this premise, the critical Reynolds number is Rec = 5 × 105, the TECE temperature
tw = 27 ◦C, the gas temperature t∞ = 31 ◦C, the qualitative temperature tm = (tw + t∞)/2.
Then, the thermal conductivity λ, kinematic viscosity ν, and Planck number Pr can be
determined by examining the physical properties of air at this qualitative temperature. As
the Reynolds number is always less than the critical Reynolds number during exhalation,
and the boundary layer flow is laminar. Thus, the Nusselt coefficient Nu and the average
convective heat transfer coefficient h of the flat wall can be obtained as follows:

Nu = 0.664 · Re1/2 · Pr1/3 (10)
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h =
λ

l
Nu (11)

The heat exchange Φ between flat wall of TECE and gas during breath, which shown
in Figure 6, can be obtained by Newton’s cooling formula:

ϕ = A · h · (t∞ − tw) (12)
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Total heat transfer Φz at expiration can be obtained by integrating heat transfer Φ over
time t.

ϕz =
∫

ϕ(t)dt (13)

Ignoring the heat loss from the cold end of the thermoelectric generating unit, the
power of the TECE is equal to the input heat Qh = Φz, the input heat will be converted to
Fourier heat Qf, Parthier heat Qp, and Joule heat Qj.

W = Qh (14)

Qh = Q f + Qp − Qj (15)

Q f = K(Th − Tc)N (16)

Qp = STh I = S2Th
(Th − Tc)N

Ri + RL
(17)

Qj = I2Ri =
S2(Th − Tc)

2N2

(Ri + RL)
2 Ri (18)

where Ri is the internal resistance of the TECE, so that the external load RL = 0; The output
voltage V of the TECE during expiration can be calculated.

As shown in Figure 7, with an external temperature of 17.5 ◦C, a breath gas temperature
of 32 ◦C, and a respiratory cycle of 3.0 s, the peak output voltage is 27.60 mV, while the
simulated peak is 29.33 mV, representing an error of 6.25%. This error is due to factors
such as contact thermal resistance, thermal radiation, and heat loss at the cold end of
the generator.

The TECE, leveraging its superior thermoelectric effect, can fulfill multiple roles
including thermoelectric power generation and signal sensing. The direction of its output
signal follows the temperature gradient between the two sides. Naturally, reversing the
temperature gradient can also reverse the output direction. In mouth breathing applications,
it is assumed that the breath gas temperature consistently exceeds the external temperature.
This state facilitates the generation of a unilateral fluctuation signal, which then serves as
the basis for subsequent tests.
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4. System Integration and Experimental Verification
4.1. System Integration

In order to verify the measurement performance of human respiratory rate using the
TECE based smart mask, the system architecture of proposed mask shown in Figure 8 is
designed and integrated in this paper. The mask mainly consists of Arduino nano core
board, OLED display screen, lithium battery, micro TECE, etc. In the overall system of the
proposed mask, the TECE is positioned at the mask’s respirator valve, while the screen
is placed outside the mask to indicate the rate of respirations. The OLED screen and the
TECE are both connected to the Arduino nano core board, which is responsible for signal
processing and data transmission to the screen. Additionally, a lithium battery powers the
entire system. During each respiration, a temperature difference is generated across the
TECE, producing a voltage output to the Arduino core board, which processes the signal
and transmits the data to the OLED screen.
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The required components for the system are illustrated in Figure 9. The Arduino
nano core board, featuring the ATMEGA328 chip manufactured by Atmel Corporation
(San Jose, CA, USA), is an ultra-compact open-source simple I/O platform, weighing only
6 g. It operates at approximately 5 V DC with a 400 mA current capacity and a 16 MHz
clock speed, providing signal processing capabilities; The employed 0.91-inch OLED screen
from Geekcreit operates at a supply voltage range of 3.3 V to 5 V, has a four-pin interface,
a resolution of 128 × 32 pixels, with IIC communication, and an SSD1306 driver chip
manufactured by Solomon Systech Limited (Hong Kong, China). The entire system is
powered by a 3.7 V lithium battery. As the supply voltage of the Arduino nano core board
is above 5 V, two 3.7 V lithium batteries are connected in series to supply power to the
system. The micro TECE with a size of 15 mm × 15 mm serves as the sensing source for
the system.
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After completing the integration of the smart mask, a human wearing effect test was
conducted as shown in Figure 10. It can be seen that the mask has a friendly interactive
interface, which can automatically count and display the rate of breaths on the OLED
screen. Based on this mask, the rate of breaths taken by the human body over a certain
period of time can be visually displayed, and the breathing condition of the mask wearer
can be determined without the need for other auxiliary tools.
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4.2. Respiratory Rate Testing

This section mainly focuses on the quantitative analysis of the sensing characteristics
of the smart mask, which tested at different breathing rate. During the testing process,
one side of the micro TECE was close to the human mouth, while the other side was
exposed to the air environment. The output terminal of the TECE was connected to a
data acquisition module in ATMEGA328 on the Arduino core board. After wearing the
mask, a temperature difference is formed through natural breathing by tester, and the
corresponding voltage difference is generated between the two sides of the micro TECE.
Subsequently, the amplitude and the frequency of the open circuit voltage of the micro
TECE are measured in real time by the data acquisition module.

The experimental conditions are conducted at ambient temperature of 17.5 ◦C, with
exhaled gas temperature around 32 ◦C. To obtain effective voltage amplitude data, the
obtained signals are subjected to mean removal processing. As shown in Figure 10 of the
processed voltage waveform, when the respiratory cycle is at 1.9 s, 1.4 s, 0.69 s, and 0.47 s,
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the output amplitudes of voltage signals by TECE are 18.44 mV, 13.46 mV, 9.42 mV, and
6.07 mV, respectively.

In Figure 11, it is obvious that as the breathing rate increases, the output voltage
amplitude decreases. The main reason for this is that, on the one hand, shortening the
breathing cycle leads to lighter breathing, and the intensity of the breath gas heating the
TECE is insufficient. On the other hand, temperature transmission requires time, and the
faster the breathing rate, the shorter the duration of the breath gas heating the TECE is,
resulting in a greater difference between the temperature on the inner side of the TECE and
the actual mouth temperature of the human body.
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According to above experiment, the proposed smart mask can recognize voltage
signals that meet threshold conditions of breaths within a set time, and accurately mea-
surement the respiratory rate of the human body under different breaths conditions by
counting the number of recognized breaths. In addition, the mask can use IIC communi-
cation to drive the OLED and visually display respiratory rate data without affecting its
protective function.

5. Conclusions

In this paper, a novel sensible smart mask using micro TECE is proposed, which can
detect and display the respiratory rate in real time. The effectiveness of the proposed mask
was verified by a human wearing test. Based on the analysis and experiment results, the
following conclusions are drawn:

(1) The temperature conversion characteristic of TECE is analyzed, and the analysis
exhibited good agreement with experimental results. The results indicated that the
output voltage is linearly related to the temperature difference.
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(2) The fundamental characteristics of breath are analyzed, the heat conduction relation-
ship during human respiration is studied, and the output law of TECE due to human
respiration is determined through simulation and experiment.

(3) A sensible smart mask, which can show respiratory rate in real time, is developed
by integrating MCU and OLED module, and the effectiveness and accuracy of the
proposed sensible smart mask are verified by human respiratory rate experiments.

Overall, this paper introduces a new smart mask utilizing the thermoelectric effect to
detect respiratory rate. This mask can visually display breathing information, which is par-
ticularly useful during special periods. Additionally, the proposed mask offers advantages
in compact size, lightweight, and facial conformity. However, to ensure wearing comfort,
this study employed a smaller TECE, thus a self-powered respiratory rate collection sys-
tem was not realized. In subsequent stages, the conductive material of the TECE can be
optimized by modifying its thickness to enhance its output power and efficiency. Further
exploration into the impact of environmental factors like temperature and humidity on
TECE performance is also warranted to improve its stability.
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