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Abstract: Bearing steel (GCr15) is widely used in key parts of mechanical transmission for its excellent
mechanical properties. Electrochemical machining (ECM) is a potential method for machining GCr15,
as the machining process is the electrochemical dissolution of GCr15 regardless of its high hardness
(>50 HRC). In ECM, NaNO3 solution is a popular electrolyte, as it has the ability to help in the
nonlinear dissolution of many metallic alloy materials, making it useful for precision machining.
However, due to high carbon content of GCr15, the electrochemical dissolution of GCr15 is unique,
and there is always a black layer with high roughness on the machined surface, reducing the surface
quality. In order to improve the electrochemical machining of GCr15 with a high surface quality,
the surface characteristics of GCr15 in ECM were investigated. The anodic polarisation curve in the
NaNO3 electrolyte was measured and electrochemical dissolution experiments were conducted with
different current densities. SEM, XRD, and XPS were employed to analyse the surface morphology
and composition formed on the machined surface at different current densities. The initial results
showed that there were two parts (black part and bright part) formed on the machined surface
when a short circuit occurred, and the test results suggested that the black part contained a mass of
Fe3O4 while the bright part was composed of mainly Fe and Fe3C. Further investigation uncovered
that a black flocculent layer (Fe3O4) always formed in a low current density (32 A/cm2) with high
roughness. With the current density increased, the amount of black flocculent layer was reduced, and
Fe3C particles appeared on the machined surface. When the current density reached 81 A/cm2, the
entire flocculent oxide layer was removed, only some spherical Fe3C particles were inserted on the
machined surface, and the roughness was reduced from Ra7.743 µm to Ra1.783 µm. In addition, due
to exposed Fe3C particles on the machined surface, the corrosion resistance of the machined surface
was significantly improved. Finally, circular arc grooves of high quality were well manufactured with
current density of 81 A/cm2 in NaNO3 electrolyte.

Keywords: electrochemical machining (ECM); GCr15 bearing steel; oxide film; removal; current density

1. Introduction

GCr15 bearing steel is widely used in the manufacturing of bearings in the automotive
and aeronautic fields because of its excellent wear resistance, uniform hardness, and high
elastic limit [1,2]. Compared with traditional mechanical methods, ECM exhibits robust
processing prowess in certain characteristic applications. Wu Ming et al. employed mask
electrolyte jet machining for the creation of micrometre-sized triangular and quadrilateral
features on numerous metals [3]. Subsequently, to augment ECM’s manufacturing perfor-
mance, machine learning was applied to forecast the contour of ECM [4]. Electrochemical
machining (ECM) is the process of anodic dissolution with a specially formed cathode
at large current densities and a strong electrolyte flow. It has the advantages of no tool
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wear and smooth surfaces, regardless of workpiece material hardness, and a relatively
high machining rate for the machining of difficult-to-cut materials [5,6], including GCr15
(>50 HRC).

The electrochemical solubility of metals is significant for the machining quality of
ECM. Scholars have paid increasing attention to investigating the electrochemical dis-
solution characteristics of metallic materials to improve their machining quality. Even
with high electrolyte velocity, a black layer remained on the machined surface, leading
to non-uniform dissolution [7]. Wang et al. investigated the electrochemical dissolution
behaviour of Inconel 718 in NaNO3 solution [8] and found that Inconel 718 suffered serious
selective corrosion due to the formation of a porous film in NaNO3 at a low current density
(<5 A/cm2). For the ECM of iron-based materials, Song et al. and Fan et al. found that a
black oxide layer was always formed [9,10] and the colour gradually darkened as current
density increased from 2 A/cm2 to 30 A/cm2. To determine the composition of the black
layer, Lohrengel et al. further studied the corrosion process of iron-based materials [11,12],
and found that the black was mainly composed of Fe2O3 and Fe3O4 [13]. The black oxide
layer on the machined surface would reduce surface quality and even the stability of the
machining process [14]. Che et al. proposed electrochemical abrasive jet machining to
remove the oxide film [15]. The flowing abrasives produced a cutting process role on the
machining surface, and the oxide film could be effectively removed. Zhao et al. analysed
the electrochemical dissolution features of horizontal and vertical sections of AM SUS 304
components at low current densities, discovering that the melt pool boundary is susceptible
to dissolution and that the post-dissolution depressions, basins, and expansive materials
segregate [16].

Numerous researchers have researched the electrochemical dissolution properties
of easily passivated materials. Zhang et al. studied the electrochemical dissolution be-
haviour of tungsten during ECM [17]. They found that an oxide layer readily formed
on the machining surface, avoiding the continuous dissolution in the NaNO3 solution.
Liu et al. analysed the effect of anodic behaviour on ECM of TB6 titanium alloy in NaCl
electrolyte [18]. He et al. examined the dissolution behavior of TA15 in NaCl solution under
a low-frequency pulse current, revealing that TA15 would form a new passivation film
during a longer pulse off time, accumulating the passivation effect, resulting in bumps
and pits on the processed surface. This suggests that utilising long pulse conduction time
can yield superior surfaces with distinct crystal structures [19]. Liu et al. scrutinised the
electrochemical dissolution behavior of TB6 titanium alloy, exploring the surface dissolu-
tion processes at varying current densities. They discovered that, at high current densities
exceeding 200 A/cm2, electrochemical dissolution displays enhanced uniformity, greatly
reducing stray corrosion and achieving a minimal surface roughness of Ra 0.373 µm [20].

Although the electrochemical dissolution behaviours of numerous hard-to-machine
materials have been reported, the electrochemical dissolution behaviour of GCr15 is seldom
reported. As high-carbon steel, there are many cementites in the matrix, allowing for unique
electrochemical dissolution behaviour. This paper mainly focused on investigating the
electrochemical dissolution behaviour of GCr15 in NaNO3 solution, especially by analysing
the surface characteristics under different current densities, which had a significant effect
on the machining surface quality. The experiments were performed using various pulse
current densities. Scanning electron microscopy (SEM), energy-dispersive X-ray diffraction
(XRD), and x-ray photoelectron spectroscopy (XPS) were employed to analyse the surface
morphology and the components formed on the machined surface. Following the inves-
tigation, the change in surface morphology and composition on the machining surface
were well clarified and a method for the removal of the black layer was discovered. Finally,
electrochemical impedance spectroscopy (EIS) was used to analyse the corrosion resistance
of the machined surface.
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2. Materials and Methods
2.1. Materials

The workpiece material is bearing steel (GCr15) made using a conventional forging
method; the chemical composition of the material is listed in Table 1.

Table 1. Main chemical composition of GCr15.

Fe C Cr Mn Si Others

Balance 1.01 1.46 0.36 0.25 <0.05

2.2. Methods
2.2.1. Procedure for Testing Polarization Curve

An electrochemical workstation (Zennium E, Zahner, Kronach, Germany) was used
to investigate the electrochemical dissolution characteristics of GCr15 in NaNO3 solution
through detecting polarisation curves and open circuit potential (OCP). The three-electrode
system was used in this experiment. The specimen was prepared using a piece size of
5 × 5 × 2 mm with a polished surface. A 15 × 15 mm platinum piece was employed as
the auxiliary electrode, and, for the reference electrode, a saturated calomel electrode was
adopted. The test parameters are listed in Table 2.

Table 2. Parameters for polarisation curve measurement.

Parameter Value

Electrolyte (wt.%) 1.5 mol/L, NaNO3
Measuring potential (V) −1.25~4

Scan rate (mV/s) 1
Temperature (◦C) 25

2.2.2. Experiment

Figure 1 shows the schematic of set-up for obtaining a machined surface in ECM.
Electrolytes with high velocities flowed into the machining gap along the flow channel,
and the workpiece surface was dissolved when the tool and workpiece were connected
with the cathode and anode, respectively. The rod-like cathode (copper) and workpiece
were prepared with a diameter of 5 mm. The machining parameters for the ECM of the
GCr15 are listed in Table 3.

The surface morphology was observed through a focused ion beam emission scanning
electron microscope (LYRA3XMU, Tescan, Brno, Czech Republic). The XRD (D8ADVANCE,
Bruker, Kalka, Germany) and XPS (Escalab 250Xi, Thermo Fisher, Waltham, MA, USA)
were used to examine the corroded specimen surfaces.
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Table 3. Experimental parameters for ECM of GCr15.

Parameter Value

Electrolyte, NaNO3 (mol/L) 1.5
Applied voltage (V) 10, 14, 18, 22
Pulse duty cycle (%) 40

Pulse frequency (kHz) 1
Feed rate (mm/min) 1.5, 1.8

Initial gap (mm) 0.2
Electrolyte pressure (MPa) 0.5

Electrolyte temperature (◦C) 25

3. Results and Discussion
3.1. Polarisation Curve

To obtain the electrochemical characteristics of GCr15 in ECM, a polarisation curve
of GCr15 in a solution of 1.5 mol/L of NaNO3 was recorded, as depicted in Figure 2. It
showed that the polarisation curve included active dissolution, passivation, and trans-
passive processes. The active dissolution potential was −0.62 V (Ec), where the material
began to react in the solution. When the potential increased, the current density decreased,
and there was a peak in the current density at the potential of 0.05 V (Ep). With the
potential further increased, there was a sharp decrease in the current density, meaning
that the passivation zone appeared, the oxide layer was formed on the workpiece, and
the dissolution of material was hindered. When the potential reached 1.7 V (Eo), the
transpassive zone appeared, the passive oxide film was broken, and the material began
dissolving. In general, the applied voltage is always higher than Eo for electrochemical
dissolution. In this zone, because bearing steel is iron-based, the main reactions at the
workpiece surface can be summarised as follows [21]:

Fe0 → Fe2+ + 2e− (1)

Fe0 → Fe3+ + 3e− (2)

H2O → 1
2

O2 + 2H+ + 2e− (3)
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3.2. Black Layer on the Machined Surface
3.2.1. SEM

In the initial experiment regarding ECM and GCr15, a voltage of 10 V was employed;
other experiment parameters were as shown in Table 3. Figure 3a shows the SEM of
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the unmachined surface in which the entire surface was grey. However, when the feed
rate was 1.8 mm/min, a short circuit occurred; the real-time current was recorded as in
Figure 4, and the current was sharply increased. Then, there were two regions with different
current densities (low and high current densities). An interesting phenomenon was found
from the short-circuit machined workpiece (Figure 3b), in that the morphology of the
machined surface was divided into two parts: a bright part and a black part. Moreover, the
microstructures showed that there was a black flocculent layer on the black part, whereas
many solid particles, not unlike pebbles, were evenly embedded in the bright part.
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3.2.2. XRD and XPS

Figure 5 shows the XRD pattern of GCr15′s initial surface and its ECM surface (includ-
ing black and bright parts). It can be seen that the diffraction peak was mainly formed by
α-Fe, indicating that GCr15 was almost composed of polycrystalline ferrite and that the
main crystal structures were unchanged after ECM. The enlarged image shows that the
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diffractions’ peak intensities on the machined surface (black and bright) were lower than
that of the unmachined surface. In addition, another peak accompanied the diffraction
peak, indicating that a new component appeared after machining.
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XPS was employed to confirm the main composition of the component formed on the
machined surfaces. Figure 6 shows the XPS spectrum of the black and bright machined
surfaces of GCr15 after ECM. The main elements on the machined surface were Fe, O, and
C, and the C and O content on the black surface was greater than that on the bright surface.
Figure 7 shows the Fe 2p XPS spectrum of the black and bright surfaces machined by
ECM. As can be seen in Figure 7a, the binding energy of 710.4 eV and 723.5 eV (cyan lines)
correspond to Fe2p 3/2 and Fe2p 1/2, respectively, indicating that Fe3O4 was formed [22].
In addition, the peaks at 707.1 eV and 720.2 eV (red lines) represent the Fe matrix [23].
The results indicate that the black flocculent layer formed in the black region was mainly
constituted by Fe3O4. As is known, the colour of Fe3O4 is black, displaying a black
machined surface [24].
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Figure 7b (i.e., bright surface) shows that the binding energy of 708.1 eV and 721.2 eV
(olive lines) correspond to Fe2p 3/2 and Fe2p 1/2, respectively, indicating the existence
of Fe3C on the bright surface [25]. In addition, the peaks at 709.4 eV and 722.5 eV (blue
lines), which are consistent with the results of Mcintyre et al. [26], correspond to FeO on
the bright surface. Finally, the satellite peaks at 711.4 eV and 724.8 eV (magenta lines)
are characteristic of Fe2O3 [27], indicating the formation of Fe2O3 on the bright surface.
According to the results of the Fe 2p XPS spectrum on the bright surface, Fe and Fe3C
were the most frequently featured particles. Simultaneously, the spectrum contained a
small amount of FeO and Fe2O3. Thus, the uniformly distributed spherical solid particles,
embedded in the iron-based material, were Fe3C particles, as seen in Figure 3.

3.3. Influence of Current Density on the Black Layer

In the experimental results presented in Section 3.2, two different zones with different
surface morphology and components appeared when a short circuit occurred. As can be
seen in Figure 4, there was a high current density in the short circuit zone, which may have
been the reason for the appearance of the two zones. To further investigate the surface
characteristics on a machined surface, an experiment was designed to study the influence
of current densities in those circumstances. In this experiment, pulse voltages of 10 V, 14 V,
18 V, and 22 V and a feed rate of 1.5 mm/min were employed; other machining parameters
are presented in Table 3.

In the ECM process, the current before the end of machining directly affects the surface
quality of the workpiece. The pulse currents at the last 1 s of machining were recorded, as
in Figure 8, for which the current densities were calculated as 32 A/cm2 (10 V), 49 A/cm2

(14 V), 68 A/cm2 (18 V), and 81 A/cm2 (22 V), respectively. SEM and EDS images of the
surface with different current densities are shown in Figure 9. With a current density
of 32 A/cm2 (Figure 9a), the machined surface was black and covered with a flocculent
layer (i.e., Fe3O4) in which the mass fraction of the O element was 5.04%. In addition,
spherical solid particles (i.e., Fe3C) surrounded by the flocculent layer were found. As
may be seen in Figure 10a, the roughness of the surface under this current density was
Ra7.743. With the current density increased to 68 A/cm2, both the flocculent layer and
the spherical solid particles were reduced. Simultaneously, the colour of the machined
surface changed from black to greyish, as may be seen in Figure 9b,c. This can be explained
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by the mass fraction of the O element being reduced from 2.14% to 1.03%. Additionally,
as indicated in Figure 10b,c, the roughness of the surface was reduced from Ra5.652 to
Ra3.761. When the current density was increased to 81 A/cm2, the flocculent layer was
fully removed, only some spherical solid particles were inserted, and the colour became
bright, as shown in Figure 9d. This can be also verified by the mass fraction of O element
being 0.15%. Additionally, as Figure 10d indicates, the roughness of the machined surface
under a current density of 81 A/cm2 was low (Ra1.783).
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On the basis of the experimental and measurement results, the surface morphology
and composition change in GCr15 in NaNO3 solution can be explained as follows.

At a current density of 32 A/cm2, a dense black flocculent layer and solid particles like
pebbles adhered to the machined surface; the qualitative model is shown in Figure 11a. As
indicated in Figures 6a and 7a, the black flocculent layer was Fe3O4 and the solid particles
were cementite (Fe3C). Because the size of the cementite was 0.7 µm to 1.5 µm (Figure 9a),
the thickness of the black flocculent layer was 1 µm to 3 µm [28]. As it is difficult to flush
away, a black surface with a high roughness remains.
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As shown in Figure 9b,c, with the current density increased from 32 A/cm2 to
68 A/cm2, the amount of Fe3O4 and Fe3C on the machined surface was reduced, with the
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Fe3O4 disappearing completely in some areas (Figure 11b,c), leaving a surface quality with
a low roughness.

From Figure 9d, it can be observed that, with the current density increased to 81 A/cm2,
the dense black flocculent layer was completely removed. Instead, a thin passive film,
including FeO and Fe2O3 (Figures 6b and 7b), was formed, and some cementite was embed-
ded in the GCr15. Thus, the surface was changed from black to bright and the machining
quality was improved, with low roughness.

3.4. Electrochemical Impedance Spectroscopy

EIS is often used as a complementary method to test the corrosion characteristics of
samples. This technique has been successfully applied to analyse the effects of anodic
oxide films on corrosion resistance [29,30]. As machined surfaces are used directly in
machinery, their corrosion resistance is an important index for the evaluation of the surface
performance. Before each test, the sample was immersed in NaNO3 solution for 1 h to
obtain a more stable OCP. The EIS measurements were performed at an OCP with an AC
disturbance of 10 mV and a frequency of 10−2 Hz to 105 Hz.

Figures 12–14 show EIS plots for the unmachined and machined surface recorded
in 1.5 mol/L NaNO3 solution. Generally, all the surfaces exhibited a capacitive response.
The Nyquist plots for the surfaces are presented in Figure 12. As indicated in Figure 12a,
reaction control and diffusion control featured in the high-frequency and low-frequency
regions, respectively, whereas only diffusion control was found in all frequency regions
(Figure 12b). The Nyquist radius of the machined surface was much larger than that of the
unmachined surface, indicating that the polarisation resistance of the machined surface was
much larger. Impedance mode in the low-frequency band is of great reference significance
in the evaluation of corrosion resistance, and an impedance mode |Z| at a frequency of
0.01 Hz was used to characterise it. As the Bode plots in Figures 12 and 14 reveal, the
peak phase angles and impedance moduli (log(|Z|)) of the machined surface were much
larger than those of the unmachined surface. These results indicate that corrosion resistance
was significantly improved on the machined surface of GCr15 by ECM, and this can be
attributed to the exposed cementite on the surface [31].

Micromachines 2024, 15, x FOR PEER REVIEW 11 of 14 
 

 

much larger than those of the unmachined surface. These results indicate that corrosion 
resistance was significantly improved on the machined surface of GCr15 by ECM, and this 
can be attributed to the exposed cementite on the surface [31]. 

 
Figure 12. Nyquist plots for the surface of GCr15: (a) unmachined; (b) machined. 

 
Figure 13. Bode representation of the phase angle as a function of frequency. 

 
Figure 14. Bode representation of the impedance modulus as a function of frequency. 

  

Figure 12. Nyquist plots for the surface of GCr15: (a) unmachined; (b) machined.



Micromachines 2024, 15, 1062 11 of 13

Micromachines 2024, 15, x FOR PEER REVIEW 11 of 14 
 

 

much larger than those of the unmachined surface. These results indicate that corrosion 
resistance was significantly improved on the machined surface of GCr15 by ECM, and this 
can be attributed to the exposed cementite on the surface [31]. 

 
Figure 12. Nyquist plots for the surface of GCr15: (a) unmachined; (b) machined. 

 
Figure 13. Bode representation of the phase angle as a function of frequency. 

 
Figure 14. Bode representation of the impedance modulus as a function of frequency. 

  

Figure 13. Bode representation of the phase angle as a function of frequency.

Micromachines 2024, 15, x FOR PEER REVIEW 11 of 14 
 

 

much larger than those of the unmachined surface. These results indicate that corrosion 
resistance was significantly improved on the machined surface of GCr15 by ECM, and this 
can be attributed to the exposed cementite on the surface [31]. 

 
Figure 12. Nyquist plots for the surface of GCr15: (a) unmachined; (b) machined. 

 
Figure 13. Bode representation of the phase angle as a function of frequency. 

 
Figure 14. Bode representation of the impedance modulus as a function of frequency. 

  

Figure 14. Bode representation of the impedance modulus as a function of frequency.

3.5. Fabrication of Double Circular Arc Groove

As shown in Figure 15, circular arc grooves were fabricated by electrochemical ma-
chining with specific parameters (i.e., a pulse frequency of 1 kHz, pulse duty cycle of 40%,
electrolyte pressure of 0.5 MPa, and feed speed of 1.5 mm/min). In Figure 15a we can
observe the results of an applied pulse voltage of 10 V; the machined surface was black and
there were many spherical solid particles (i.e., Fe3C) surrounded by the flocculent layer
on the machined surface, resulting in the rough surface. When the pulse voltage was 22 V,
there was a blight machined surface and no flocculent layer, as shown in Figure 15b.
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4. Conclusions

This study investigated the surface characteristics of GCr15 in electrochemical ma-
chining. The morphology and composition of the black layer was examined using SEM,
XRD, and XPS. Furthermore, the influence of different current densities on the surface
characteristics was studied. Based on our results and discussion, the conclusions can be
summarised as follows:
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1. The electrochemical dissolution characteristics of GCr15 show obvious passive and
transpassive zones in NaNO3 solution, indicating that an oxide layer can be formed
and removed during ECM.

2. In the case of a short circuit during ECM, black and bright parts on the machined
surface were left. XRD and XPS results indicate that the black part was mainly covered
by a dense black flocculent Fe3O4 layer. In contrast, many solid Fe3C particles were
found in the bright part, though it also contained small amounts of FeO and Fe2O3.

3. In a current density of 32 A/cm2, a Fe3O4 layer was formed on the machined surface.
With increasing current density, the thickness of the layer decreased. When the current
density reached 82 A/cm2, the entire flocculent oxide layer was removed and only
some spherical solid particles (Fe3C) were inserted, showing a bright surface with
low roughness.

4. EIS results indicate that, due to the cementite exposed on the machined surface, its
corrosion resistance was significantly improved over that of an unmachined surface.
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