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Abstract: Microelectromechanical System (MEMS) gyroscopes are inertial sensors used to measure
angular velocity. Due to their small size and low power consumption, MEMS devices are widely
employed in consumer electronics and the automotive industry. MEMS gyroscopes typically use
closed-loop control systems, which often use PID controllers with fixed parameters. These classical
PID controllers require a trade-off between overshoot and rise time. However, temperature vari-
ations can cause changes in the gyroscope’s parameters, which in turn affect the PID controller’s
performance. To address this issue, this paper proposes an adaptive PID controller that adjusts its
parameters in response to temperature-induced changes in the gyroscope’s characteristics, based on
the error value. A closed-loop control system using the adaptive PID was developed in Simulink and
compared with a classical PID controller. The results demonstrate that the adaptive PID controller
effectively tracked the changes in the gyroscope’s parameters, reducing overshoot by 96% while
maintaining a similar rise time. During gyroscope startup, the adaptive PID controller achieves faster
stabilization with a 0.036 s settling time, outperforming the 0.06 s of the conventional PID controller.

Keywords: MEMS gyroscope; temperature characteristics; closed-loop control; adaptive PID control

1. Introduction

Microelectromechanical System (MEMS) technology offers significant advantages
such as small size, low cost, low power consumption, and high shock resistance. A MEMS
gyroscope, as one of the most important devices, has wide applications in the fields of
consumer electronics, automotive industry, and defense [1,2]. Especially in the defense
area, there is a great demand for low bias instability, high sensitivity, and good linearity
under wide temperature zone, etc. Currently, the performance of a MEMS gyroscope is
restricted by device structure, control and signal conditioning circuit, and micromachining
technologies [3–5]. The principle of MEMS gyroscopes is based on the Coriolis effect.
The input angular velocity is detected by measuring the Coriolis force on a moving mass.
According to the principle of the MEMS gyroscope, the larger the displacement of the
drive mode, the greater the Coriolis force. To improve the signal-to-noise ratio of the
detection output, typically, applying a driving force at the resonance frequency of the
gyroscope’s drive mode results in a maximum displacement response. The drive mode of a
tuning fork-type MEMS gyroscope can be approximated as a high-Q resonator, which is
highly sensitive to the driving frequency. Even slight frequency errors can cause significant
response attenuation. Therefore, the stable vibration of the mass in the drive direction is
crucial for a high-performance MEMS gyroscope [6,7]. To achieve a stable vibration of the
proof mass, a good control scheme is needed.
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Digital circuits, due to the benefits of low noise, low temperature drift, and ease of
debugging, are the dominating technology used in MEMS gyroscope control circuits of
drive mode. Conventional digital closed-loop drive schemes use phase-locked loops (PLL)
to track the drive frequency of the gyroscope and automatic gain control (AGC) techniques
to stabilize the amplitude [8]. The control algorithms typically employ classical PID con-
trollers because of their simple structure, good stability, and ease of adjustment. However,
the device structure and materials used make them highly susceptible to temperature
changes, such as Young’s modulus and thermal expansion coefficient, leading to changes
in stiffness and damping, and which consequently shifts the resonance frequency. Many
studies point out that temperature changes are an important reason for the decrease in
gyroscope accuracy [9,10]. Since PID controller parameters are fixed after the initial setup,
their capability of adapting to parameter changes caused by environmental temperature
disturbances is limited.

For the purpose of improving the PID control performance, an adaptive closed-loop
drive control system is proposed. The adaptive PID controller will adjust its parameters
based on error values to accommodate the changing parameters of the gyroscope under
temperature disturbances.

To verify the effectiveness of the designed closed-loop control system, First, sim-
ulations of temperature characteristics were conducted in COMSOL to determine key
parameters of the MEMS gyroscope model. Subsequently, the simulation model of the
MEMS gyroscope with temperature parameters was built in the Simulink environment of
MATLAB. Finally, a closed-loop control system incorporating both PLL and AGC loops
was established in Simulink, with the controller utilizing an adaptive PID algorithm.

2. Simulation Model of MEMS Gyroscope
2.1. Structure of MEMS Gyroscope

The gyroscope used in this study is a linear vibrating tuning fork gyroscope [11],
whose structural model is shown in Figure 1.

Figure 1. Structural model of tuning fork gyroscope.

The tuning fork-type MEMS gyroscope is a tuning fork type and made from monocrys-
talline silicon wafer bonding on glass substrate. The device structure is composed of
consists of two proof movable mass blocks, with fixed anchors around them, movable
beams, and comb structures [12]. The gyroscope has a completely symmetrical struc-
ture. The two proof masses vibrate in different directions and eliminate errors caused
by acceleration in the detection mode direction. This allows for differential detection to
eliminate errors caused by acceleration in the detection mode direction. Due to the sym-
metrical structure of the aforementioned MEMS gyroscope, for simplicity, the analysis can
focus on one of the mass blocks, which can be equivalently modeled as a system with
two mass-spring-damper models, as shown in Figure 2.
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Figure 2. Simplified gyroscope dynamic model.

The driving force causes the gyroscope to vibrate in the X direction. When the gyro-
scope rotates around the Z axis, the mass experiences a Coriolis force in the Y direction.
Considering coupling motion and mechanical–thermal noise, the gyroscope’s dynamic
equation is given by Equation (1):{

mx ẍ + cxx ẋ + kxxx = Fx + 2mcΩzẏ
myÿ + cyyẏ + kyyy = −2mcΩz ẋ

(1)

where Fdx is the driving force, Ωz is the angular velocity, and x and y are the displacements
in the X (drive) and Y (sense) directions, respectively. mx, cx, and kx are the equivalent
mass, damping coefficient, and stiffness coefficient of the drive mode. my, cy, and ky are
the equivalent mass, damping coefficient, and stiffness coefficient of the sense mode. mc is
the equivalent mass of the Coriolis mass, approximately equal to my in this model.

However, due to manufacturing errors, quadrature errors exist in the gyroscope
output, primarily manifesting as coupling stiffness in the dynamic equations. Additionally,
manufacturing errors can also cause coupling damping. Considering these error factors,
Equation (1) is modified to Equation (2) to obtain a more accurate dynamic model.{

mx ẍ + cxx ẋ + cxyẏ + kxxx + kxyy = Fx + 2mcΩzẏ − FMNTx
myÿ + cyyẏ + cyx ẋ + kyyy + kyxx = −2mcΩz ẋ − FMNTy

(2)

where FMNTx and FMNTy are mechanical thermal noise. cxy and cyx are damping coupling.
kxy and kyx are stiffness coupling. The coupling stiffness and coupling damping can be
determined by Equation (4) and Equation (5) [13]. α and β are error angles between the
actual axis and design axis.

kxy = kyx =
sin 2α

(
kxx − kyy

)
2

(3)

cxy = cyx =
sin 2β

(
cxx − cyy

)
2

(4)

Based on Equation (2), a drive mode model of the MEMS gyroscope was established
in MATLAB’s Simulink (version 9.12) environment, as shown in Figure 3.
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Figure 3. Simulink model of MEMS gyroscope driving mode.

In Figure 3, Vdriving is the model input representing the drive signal, which is converted
into driving electrostatic force by a torque converter. mx is the drive mass. cxx and kxx
are the temperature-dependent damping and stiffness coefficients of the drive mode. In
Figure 3, the error terms caused by coupling stiffness and coupling damping are highlighted
in green; the error terms caused by the coupling of the sensing output to the drive are
highlighted in blue; and the mechanical thermal noise is highlighted in red. The impact of
temperature on MEMS gyroscopes is significant. For the drive mode, both cxx and kxx in
Equation (2) vary with temperature, while the equivalent mass of the drive mode, mainly
composed of the Coriolis mass and the drive frame, can be considered constant. Since
the coupling coefficient is relatively small, the impact of temperature disturbances on the
gyroscope model is primarily due to the variations of cxx and kxx with temperature [14]. It
is necessary to determine the temperature-dependent stiffness coefficient kxx and damping
coefficient cxx for the drive mode and establish a MEMS gyroscope model that includes
temperature parameters.

2.2. Relevant Parameters of MEMS Gyroscopes under Temperature Disturbances

The equivalent stiffness coefficient of the drive mode is affected by the tempera-
ture dependence of the material properties and the pre-stress changes caused by thermal
expansion [15–17]. Material properties include Young’s modulus, density, and thermal
expansion coefficient. The stiffness coefficient is typically difficult to measure directly.
Equation (5) shows the relationship between the stiffness coefficient and the resonance
frequency, which allows changes in the stiffness coefficient to be reflected through changes
in the resonance frequency.

ω = 2π f =

√
k
m

(5)

In COMSOL 6.2 software, the designed gyroscope was geometrically modeled. The
model material, reference temperature, temperature coefficient of Young’s modulus, and lin-
ear expansion coefficient of the elastic material were set, and the mesh was divided. Using
the finite element method, the characteristic frequencies and pre-stress studies were con-
ducted in the solid mechanics physics field to obtain the characteristic frequencies of the
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gyroscope’s natural modes [18]. The equivalent mass of the drive mode was calculated
based on the mechanical structure dimensions and material density. Using Equation (5),
the corresponding equivalent stiffness coefficients of the drive mode at different tempera-
tures were obtained. First, the first six characteristic frequencies of the MEMS gyroscope
structure at room temperature were calculated. According to the mode shape analysis,
the lowest two modes correspond to the designed drive mode and detection mode of the
MEMS gyroscope, with resonance frequencies of 4565.4 Hz and 7859.2 Hz, respectively.
The simulation results are ultimately consistent with the design.

By setting parameter scanning, the changes in the resonance frequency and stiffness
coefficient of the drive mode with temperature variation in the range of −40 °C to 60 °C
were calculated, as shown in Figure 4.

Figure 4. The variation curve of resonant frequency and stiffness coefficient caused by temperature.

Damping in gyroscopes primarily comprises mechanical damping and air damping.
Due to packaging constraints in practical engineering, even MEMS gyroscopes sealed in
vacuum maintain a pressure level of approximately 10 Torr, where air damping remains pre-
dominant [18,19]. MEMS gyroscopes employ comb structures with membrane structures,
thus air damping primarily manifests as membrane damping between the tops and bottoms
of comb fingers. Treating the encapsulated air as an ideal gas model, the damping coeffi-
cient’s relationship with temperature is derived using Sutherland’s formula (Equation (6))
and the Clapeyron equation (Equation (7)), resulting in the expression of Equation (8).

ηp

ηp0
=

(
T
T0

)1.5 T0 + B0

T + B0
(6)

Vp = nRT (7)

cx = ηp0

(
T
T0

)1.5 T0 + B0

T + B0

nRT
V

Sx (8)

Here, ηp and ηp0 are the air viscosity coefficients at temperatures T and T0, respectively.
Sx is the membrane area of the drive mode comb fingers, V and n are the gas volume and
moles, B0 is the Sutherland constant related to the gas type, and R is the molar gas constant.

The damping coefficient of MEMS gyroscopes is primarily influenced by the membrane
damping of encapsulated gases, which varies with temperature, gas tightness, and internal
gyroscope structure. Consequently, precise measurement is challenging. In practical
applications, the relationship between quality factor Q and damping coefficient cx, as given
by Equation (9), is used to reflect changes in the damping coefficient through variations in
quality factor and resonance frequency:

cx =
ωmx

Q
(9)
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To construct a damping coefficient temperature model, Equation (5) is first transformed
into the form of Equation (10):

cx = Acxn
T2.5

T + B0
(10)

In Equation (7), Acx is the damping conversion coefficient. Although temperature
causes structural size changes in MEMS gyroscopes, affecting the damping conversion
coefficient by less than 5‰, these structural changes can be ignored with regard to system
damping. Thus, Acx remains unchanged with temperature variations. Since the encapsula-
tion of MEMS gyroscopes can be considered a closed space, the quantity of gas molecules
in the gyroscope remains constant. Therefore, using the quality factor of the MEMS gyro-
scope at room temperature as a reference and employing Equation (6), the corresponding
parameters in Equation (7) are determined to solve for the damping coefficient and quality
factor at various temperatures, as shown in Figure 5.

Figure 5. The variation curve of damping coefficient and quality factor caused by temperature.

3. MEMS Gyroscope Closed-Loop Drive Control System
3.1. MEMS Gyroscope Closed-Loop Drive Control System

Due to the high quality factor of MEMS gyroscopes, a closed-loop drive system is
necessary. The closed-loop drive system designed in this paper employs a method based
on digital phase-locked loop (PLL) and automatic gain control (AGC) technology [20,21].
Figure 6 depicts the schematic diagram of the designed MEMS drive system, which consists
of two closed-loop circuits: a frequency stabilization loop and an amplitude stabilization
loop. The PLL ensures frequency tracking to maintain a resonance frequency operation
of the gyroscope for optimal response, while the AGC loop adjusts the amplitude of the
output electrostatic force to keep the gyroscope amplitude constant.

During the operation of the MEMS gyroscope, the signals controlled by the PLL
and AGC loops are converted by a DCA into voltage signals. These signals are then
applied to the MEMS gyroscope’s drive comb fingers through a push–pull drive circuit.
The electrostatic force causes displacement in the drive frame and mass blocks in the drive
mode direction, thereby altering the capacitance of the detection comb fingers. The MEMS
gyroscope employs a membrane comb structure, exhibiting a linear relationship between
capacitance and drive displacement. The capacitance signal is converted into a voltage
signal by a C/V detection circuit, representing the drive response. After sampling the
voltage signal with an ADC, mixing it with a reference signal generated by a DCO oscillator,
and low-pass filtering, the phase and amplitude of the response signal are obtained. The
fundamental principle of the PLL involves comparing the phase difference of the output
signals using a phase detector. The error signal generated is filtered through a loop
filter, and through negative feedback, it controls the oscillator output frequency change
to achieve phase lock when the phase difference is zero. For the control system of the
MEMS gyroscope, when the gyroscope is in resonance, the phase difference between the
drive signal and the drive response signal is 90°. Therefore, adjusting the PLL locks the
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phase difference at 90° to track the gyroscope’s resonance frequency in real time. In the
automatic gain control (AGC) loop, the amplitude information of the response signal is
obtained through phase-sensitive demodulation. The error between the amplitude and a
reference value is compared, and a PID controller is used to maintain constant vibration
amplitude in the drive mode. However, classical PID controller parameters are closely
related to the controlled system and do not change once set. When the temperature changes,
causing gyroscope parameters to vary, the control effectiveness of a classical PID controller
decreases. Traditional PID control suffers from a trade-off between overshoot and rise
time. For MEMS gyroscopes, overshoot could potentially lead to comb collision damage,
while prolonged rise time causes instability in the drive frequency, ultimately reducing
detection accuracy. To address this, this paper proposes an adaptive PID controller design
for the AGC control loop [22], capable of adapting to temperature changes. This controller
suppresses overshoot while stabilizing signal amplitude as quickly as possible.

Figure 6. Schematic diagram of MEMS gyroscope closed-loop drive system.

3.2. Adaptive PID Controller

The principle of PID control is to adjust the output signal based on the error signal.
Equation (11) represents the classic PID control equation in the digital domain. In this
equation, e(k) is the error output at the current time step, and u(k) is the control signal
output at the current time step.

u(k) = Kpe(k) + Ki ∑ e(k) + Kd(e(k)− e(k − 1)) (11)

Kp is the proportional term, where the control output is proportional to the error.
As the error decreases, the control output gradually decreases and eventually stabilizes,
causing the system output to converge to a stable value. The magnitude of Kp reflects the
controller’s response speed; increasing Kp accelerates the response, but an excessively large
Kp can reduce stability and cause oscillations. Ki is the integral term. A purely proportional
term results in a steady-state error between the output and the reference value. The integral
term accumulates the error over time, adjusting the control output to eliminate this steady-
state error. The integral term’s main function is to eliminate the steady-state error; the larger
the gain, the quicker the adjustment. However, an excessively large integral term can lead
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to integral saturation and cause oscillations. Kd is the derivative term. The derivative of the
error reflects the trend of the system’s response. By anticipating changes in the response,
the derivative term adjusts the control signal in advance. Therefore, the derivative term
can effectively reduce overshoot. However, it has the weakest ability to resist disturbances,
and a large Kd can easily lead to system instability.

In classic PID control, the proportional term plays the main control role, the integral
term reduces the steady-state error, and the derivative term improves overshoot. The pa-
rameters of classic PID control are determined based on the characteristics of the controlled
system, typically using the Ziegler–Nichols method in engineering. This involves first
increasing the proportional gain and observing the step response to determine the critical
proportional gain KU and recording the oscillation period TU . Then, the appropriate PID
parameters are selected according to the desired control effect. The parameters of classic
PID control are closely related to the controlled system and do not change once determined.
The actual control effect depends on the system parameters at the time of tuning. However,
for MEMS gyroscopes, a sudden change in temperature can alter the gyroscope’s resonant
frequency. Since the gyroscope operates at the resonant frequency and has a high quality
factor, its response will significantly decrease, leading to errors. Under these conditions,
the system parameters change, reducing the effectiveness of PID control and potentially
causing instability in extreme cases. Therefore, in practical tuning, it is often necessary to
sacrifice some PID control performance to achieve a more stable control system.

In the PID control process, during the initial adjustment phase, the proportional coeffi-
cient has the most significant impact. A larger proportional coefficient allows the system
to reach the set value more quickly. When the system output approaches the set value,
the output from the proportional term stabilizes, and the integral term becomes the primary
influencing factor. The derivative coefficient functions similarly to damping, and its main
effect occurs when the output is near the target. Based on this principle, the PID parameters
can be set as functions of the error, with the error signal as the independent variable.

For the proportional coefficient Kp, a larger coefficient is needed when the error is
large to ensure a quick response. As the system output approaches the target value and the
error decreases, the response can slow down to enhance system stability. For the integral
coefficient Ki, which primarily reduces steady-state error, it can be deactivated during
the early adjustment phase when the error is large to prevent excessive integral output.
As the error decreases, the integral action is enhanced to quickly eliminate the remaining
error. For the derivative coefficient Kd, similar to damping, a smaller coefficient in the early
adjustment phase avoids extending the rise time. As the error decreases and the system
approaches the set value, enhancing the derivative term can significantly reduce system
overshoot without compromising stability.

Based on the above analysis of the PID adjustment process, functions for Kp, Ki,
and Kd in relation to the error were constructed, enabling an adaptive PID controller that
adjusts parameters according to the actual error. Equation (12) is the expression for the
proportionality coefficient Kp. When the error is large, the proportionality coefficient
becomes larger. When the error tends to infinity, Kp takes the maximum value ap + bp,
and when the error tends to 0, it takes the minimum value ap.

fkp(e(k)) = ap + bp(1 − e−cp |e(k)|) (12)

Equation (13) is the expression for the integration coefficient Ki. When the error is small,
the integration coefficient plays a major role. Therefore, at this time, Ki takes the maximum
value ai. If the error is large, stop the integration function to avoid integration saturation.

fki(e(k)) =

{
ai ∗ e−ci |e(k)| if |e(k)| ≥ θ

0 if |e(k)| < θ
(13)

Equation (14) is the expression for the differential coefficient Kd. When the error is large,
the differential coefficient is small, and as the error decreases, the differential coefficient
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increases. When the error approaches infinity, the differential gain takes the minimum
value ad − bd, and when the error approaches zero, it takes the maximum value ad.

fkd(e(k)) = ad + bd(1 − e−cd |e(k)|) (14)

3.3. Simulink Model of MEMS Gyroscope Closed-Loop Drive Control System

According to the schematic diagram in Figure 6, a closed-loop drive system model for
MEMS gyroscope was designed in a Simulink environment, as shown in Figure 7.

Figure 7. Simulink model of MEMS gyroscope closed-loop drive system.

In Figure 7, the gyro module is the Simulink model of the MEMS gyroscope shown
in Figure 3. The damping coefficient and stiffness coefficient in the model are influenced
by temperature, with specific values determined by the gyro parameter module. On the
left, the phase-locked loop (PLL) circuit consists of a mixer, a low-pass filter, and a DCO.
On the right, the automatic gain control (AGC) loop is composed of a mixer, a low-pass
filter, and an adaptive PID module. The output of the MEMS gyroscope module is the drive
displacement, which, after displacement-to-capacitance (x/C) conversion and capacitance-
to-voltage (C/V) conversion, yields the drive response signal.

Table 1 shows some parameters of the Simulink model for the closed-loop drive system
of MEMS gyroscope.

Table 1. Simulink model parameters of the MEMS gyroscope closed-loop drive system.

Parameters Unit Value or Expression

mx kg 5.92 × 10−7

cxx N/m/s 1.013 × 10−5 + 6.781 × 10−8 T
kxx N/m 480.5 + 0.1982 T

cxy/cyx N/m/s 3.49 × 10−8

kxy/kyx N/m 6.98
FMNTx N 8.89 × 10−13

FMNTy N 9.05 × 10−13

KVF N/V 10−8

KxC F/m 8.5 × 10−7

KCV F/V −8 × 1012
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3.4. The Stability of the Drive Loop

In the gyroscope control circuit, the amplitude of the gyroscope response is controlled
through an AGC circuit. According to Figure 6, the AGC control circuit can be represented
as the block diagram in the following Figure 8. In the figure, H (s) is the transfer function of
the gyroscope, Vac is the driving voltage, Fd is the driving force, x is the mass displacement,
Vds is the driving detection voltage, and DVds is the digital driving detection voltage.

Figure 8. The AGC control circuit.

This system is a negative feedback system, with the input being a reference amplitude
voltage and the output being an amplitude detection voltage. Select the corresponding
open-loop analysis node at the corresponding position in the Simulink model, linearize
each module, and calculate the open-loop transfer function of the system as Equation (15):

HOL(s) =
−5.617 × 105s3 − 1.702 × 107s2 − 7.131 × 1014s − 6.951 × 1015

s5 + 39.81s4 + 2.093 × 109s3 + 4.136 × 1010s2 + 1.045 × 1018s
(15)

The Bode diagram of the system is shown in Figure 9, and it can be seen that there is a
clear peak at the resonant frequency of the gyroscope, and the phase corresponding to the
resonant point is 90°.

Figure 9. Bode diagram.

Figures 10 and 11 show the plot-zero map and Nyquist diagram of the system.
All the poles in the figure are on the negative half of the real axis, and the Nyquist

curve of the system does not enclose the reference point (−1, j0). Therefore, according to
the Nyquist criterion, the closed-loop system is stable.
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Figure 10. The plot-zero map.

Figure 11. Nyquist digarm.

4. Results

The closed-loop drive system model of Figure 7 was simulated in a Simulink envi-
ronment. Firstly, the control effect of the adaptive PID algorithm was tested when the
temperature gradually increased, and the results are shown in Figure 12.
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Figure 12. Driving control signal and response signal under stable temperature changes.

From the figure, it can be seen that the amplitude of the response signal consistently
maintains the set value of 1 V without significant fluctuations, and the drive signal remains
phase-locked with the detection signal at 90°. The figure also shows that to maintain a
constant amplitude of the response signal, the amplitude of the drive signal gradually
increases. This is because as the temperature rises, the damping coefficient increases,
requiring greater driving force. Figure 13 shows the frequency of the drive signal mea-
sured using the sinusoidal analysis module. Comparing the current temperature and
the gyroscope’s resonant frequency curve reveals that the drive frequency follows the
changes in the resonant frequency, ensuring that the gyroscope consistently operates at its
resonant frequency.

Figure 13. Resonant frequency under stable temperature changes.

Figure 14 shows the changes in the adaptive Kp, Ki, and Kd parameters as the temper-
ature steadily rises. With the increase in simulation time, due to the continuous variation in
error, the three PID parameters adaptively follow the changes in error, eventually stabilizing
at their respective steady values as the error approaches zero.

A comparison was made between the control effects of classical PID and adaptive
PID. The parameters for classical PID were determined using the Ziegler–Nichols method.
Figure 15 shows the amplitude of the response signal under both control methods.
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Figure 14. Adaptive parameters of Kp, Ki, and Kd under stable temperature changes.

Figure 15. Response amplitude of classical PID and adaptive PID under stable temperature changes.

When the temperature changes steadily, the error changes at each time step are small,
and both classical PID and adaptive PID can effectively follow the temperature variations.
However, due to environmental temperature changes and the heating of the circuit itself,



Micromachines 2024, 15, 1102 14 of 18

temperature fluctuations might be more pronounced. In such cases, the adaptive PID
method can better accommodate parameter changes. Figure 16 shows the simulation
results of the gyroscope module’s input and output when temperature jumps occur at t = 1
and t = 2. Figure 17 shows the measured response signal frequency. Figure 18 shows the
three parameters Kp, Ki, and Kd.

Figure 16. Driving control signal and response signal under rapid temperature changes.

Figure 17. Resonant frequency under rapid temperature changes.

Under conditions of temperature jumps, significant changes in error occur due to
temperature variations. Comparing the classical PID controller with the adaptive PID
controller, it is evident that the adaptive PID controller better adapts to parameter changes,
maintaining stable driving amplitude. The control effects comparison is shown in Figure 19.

The quality factor of a gyroscope is mainly determined by damping, so in simulation,
reducing the damping coefficient can improve the quality factor of the gyroscope. Figure 20
shows a comparative simulation between the adaptive PID controller and the classical PID
controller when the quality factor is around 10,500. Although the overshoot of the system
has slightly increased due to reduced damping, it still has better control performance
compared to classical PID.
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Figure 18. Adaptive parameters of Kp, Ki, and Kd under rapid temperature changes.

Comparing the control effects of classical PID and adaptive PID, from the gyro ini-
tiation to the steady state at room temperature, the classical PID has a rise time of ap-
proximately 0.006 s but an overshoot of 0.6 V, with a settling time of 0.06 s. In contrast,
the adaptive PID has a rise time of 0.016 s and a settling time of 0.036 s, but the overshoot is
reduced to 0.025 V, a reduction of about 96%.
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Figure 19. Response amplitude of classical PID and adaptive PID under rapid temperature changes.

Figure 20. Response amplitude of classical PID and adaptive PID under rapid temperature changes.

5. Conclusions

This paper analyzes the influence of temperature on the parameters of MEMS gyro-
scopes through their dynamic equations. The changes in stiffness and damping coefficients
with temperature were determined using finite element simulation. Based on this, a driving
control system model for MEMS gyroscope was designed in a Simulink environment,
and the influence of temperature changes on the control system was considered. To address
the issue of poor control performance of the classical PID method due to variable model
parameters, an adaptive PID controller was designed to adjust PID parameters based on
error factors. Simulation experiments demonstrate that the designed closed-loop drive
system possesses good control capability, enabling the gyroscope vibration to be controlled
with smaller overshoot and faster stabilization speed. Compared to classical PID control,
the overshoot is reduced by approximately 96%, while maintaining a similar rise time.
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