Influence of Laser-Based Powder Bed Fusion of Metals Process Parameters on the Formation of Defects in Al-Zn-Mg-Cu Alloy Using Path Analysis
Abstract
:1. Introduction
2. Experiments and Numerical Simulations
2.1. Powder Feedstock
2.2. Sample Preparation
2.3. Microstructural Characterisation
2.4. Numerical Simulation Process
2.4.1. Finite Element Modelling
2.4.2. Boundary and Initial Conditions
2.4.3. Heat Source Modelling
2.4.4. Material Parameters
2.5. Path Analysis
3. Results and Discussion
3.1. Experimental Results
3.2. Numerical Simulation Results
3.3. Path Analysis Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saadi, M.; Maguire, A.; Pottackal, N.T.; Thakur, M.S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Li, J.; Liu, B.; Wang, J.; Chen, H.T.; Feng, H.; Zeng, X.; Duan, H.; Cao, Y.; He, J.; et al. Formation process and mechanical properties in selective laser melted multi-principal-element alloys. J. Mater. Sci. Technol. 2023, 133, 12–22. [Google Scholar] [CrossRef]
- Shin, W.S.; Son, B.; Song, W.S.; Sohn, H.; Jang, H.; Kim, Y.J.; Park, C. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021, 806, 140805. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Q.; Zhang, C.; Huang, Z.F.; Jia, M.Y.; Shen, Q. Microstructures and mechanical behaviors of additive manufactured Inconel 625 alloys via selective laser melting and laser engineered net shaping. J. Alloys Compd. 2022, 917, 165572. [Google Scholar] [CrossRef]
- Moghadas, S.M.J.; Yeganeh, M.; Zaree, S.R.A.; Eskandari, M. Influence of low temperature heat treatment on microstructure, corrosion resistance and biological performance of 316L stainless steel manufactured by selective laser melting. CIRP J. Manuf. Sci. Technol. 2023, 40, 68–74. [Google Scholar] [CrossRef]
- Shi, J.L.; Hu, Q.; Zhao, X.M.; Liu, J.H.; Zhou, J.C.; Xu, W.C.; Chen, Y. Densification, Microstructure and Anisotropic Corrosion Behavior of Al-Mg-Mn-Sc-Er-Zr Alloy Processed by Selective Laser Melting. Coatings 2023, 13, 337. [Google Scholar] [CrossRef]
- Yang, H.R.; Sha, J.W.; Zhao, D.D.; He, F.; Ma, Z.Q.; He, C.N.; Shi, C.; Zhao, N. Defects control of aluminum alloys and their composites fabricated via laser powder bed fusion: A review. J. Mater. Process. Technol. 2023, 319, 118064. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhang, S.M.; Li, F.D.; Li, Z.H.; Wang, Y.; Liu, B. Selective Laser Melting of Al-Cu-Mn-Mg Alloys: Processing and Mechanical Properties. Metals 2023, 13, 1520. [Google Scholar] [CrossRef]
- Lai, Y.; Deng, Y.; Zhu, X.W.; Guo, Y.F.; Xu, G.F.; Huang, J.W.; Yin, Z.M. Tensile property and microstructure of Al-4.77Mn-1.37Mg-0.67Sc-0.25Zr alloy under different selective laser melting processing parameters. Trans. Nonferrous Met. Soc. China 2023, 33, 357–370. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Hu, Z.H.; Li Seet, H.; Liu, T.T.; Liao, W.H.; Ramamurty, U.; Nai, S.M.L. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int. J. Mach. Tools Manuf. 2023, 190, 104047. [Google Scholar] [CrossRef]
- Tan, Q.Y.; Liu, Y.G.; Fan, Z.Q.; Zhang, J.Q.; Yin, Y.; Zhang, M.X. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy. J. Mater. Sci. Technol. 2020, 58, 34–45. [Google Scholar] [CrossRef]
- Pekok, M.A.; Setchi, R.; Ryan, M.; Han, Q.Q.; Gu, D.D. Effect of process parameters on the microstructure and mechanical properties of AA2024 fabricated using selective laser melting. Int. J. Adv. Manuf. Technol. 2021, 112, 175–192. [Google Scholar] [CrossRef]
- Nie, X.J.; Zhang, H.; Zhu, H.H.; Hu, Z.H.; Ke, L.D.; Zeng, X.Y. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: From single tracks to cubic samples. J. Mater. Process. Technol. 2018, 256, 69–77. [Google Scholar] [CrossRef]
- Li, L.; Gou, Y.Q.; Zhang, W.; Meng, X.K.; Zhang, H.M.; Li, P.F.; Huang, S.; Zhou, J. Effect of hatch spacing on the characteristics of LPBF 2195 Al-Li alloy. J. Alloys Compd. 2024, 972, 172804. [Google Scholar] [CrossRef]
- Li, N.; Wang, T.; Zhang, L.; Zhang, L.X. Crack initiation mechanism of laser powder bed fusion additive manufactured Al-Zn-Mg-Cu alloy. Mater. Charact. 2023, 195, 112415. [Google Scholar] [CrossRef]
- Oko, O.E.; Mbakaan, C.; Barki, E. Experimental investigation of the effect of processing parameters on densification, microstructure and hardness of selective laser melted 7075 aluminium alloy. Mater. Res. Express 2020, 7, 036512. [Google Scholar]
- Kaufmann, N.; Imran, M.; Wischeropp, T.M.; Emmelmann, C.; Siddique, S.; Walther, F. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Phys. Procedia 2016, 83, 918–926. [Google Scholar] [CrossRef]
- Tan, Q.Y.; Fan, Z.Q.; Tang, X.Q.; Yin, Y.; Li, G.; Huang, D.N.; Zhang, J.; Liu, Y.; Wang, F.; Wu, T.; et al. A novel strategy to additively manufacture 7075 aluminium alloy with selective laser melting. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021, 821, 141638. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Li, D.M.; Zhang, X.; Qin, R.X.; Xu, J.X.; Yue, D.Y.; Chen, B.Z. Influence of processing parameters on AlSi10Mg lattice structure during selective laser melting: Manufacturing defects, thermal behavior and compression properties. Opt. Laser Technol. 2023, 161, 109182. [Google Scholar] [CrossRef]
- Wang, W.L.; Wang, D.; He, L.; Liu, W.Q.; Yang, X. Thermal behavior and densification during selective laser melting of Mg-Y-Sm-Zn-Zr alloy: Simulation and experiments. Mater. Res. Express 2020, 7, 116519. [Google Scholar] [CrossRef]
- Li, Y.L.; Gu, D.D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 2014, 63, 856–867. [Google Scholar] [CrossRef]
- Wei, P.; Wei, Z.Y.; Chen, Z.; Li, J.F.; Zhang, S.Z.; Du, J. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder. Appl. Phys. A Mater. Sci. Process. 2017, 123, 540. [Google Scholar]
- Khan, H.M.; Dirikolu, M.H.; Koç, E. Parameters optimization for horizontally built circular profiles: Numerical and experimental investigation. Optik 2018, 174, 521–529. [Google Scholar] [CrossRef]
- Zhou, J.T.; Han, X.; Li, H.; Liu, S.; Yi, J.C. Investigation of layer-by-layer laser remelting to improve surface quality, microstructure, and mechanical properties of laser powder bed fused AlSi10Mg alloy. Mater. Des. 2021, 210, 110092. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Mao, L.; Dong, J.; Fan, R.; Zhang, L. Path Analysis of Influencing Factors of Depression in Middle-Aged and Elderly Patients with Diabetes. Patient Prefer. Adherence 2023, 17, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Liu, J.L.; You, J.; Li, X.; Liang, Z.S.; Du, J.L. Proanthocyanidin Structure-Activity Relationship Analysis by Path Analysis Model. Int. J. Mol. Sci. 2023, 24, 6379. [Google Scholar] [CrossRef]
- Mandana, A.; Mohsen, S.; Ale Agha, A.B.; Danial, K. Interaction of iron and zinc fortification and late-season water deficit on yield and fatty acid composition of Dragon’s Head (Lallemantia iberica L.). Plant Physiol. Biochem. 2023, 201, 107882. [Google Scholar]
- Parsamanesh, S.; Sadeghi, H. Modeling the interactions between inter-correlated variables of plant and soil micro-ecology responses under simultaneous cadmium stress and drought. J. Clean. Prod. 2023, 418, 138163. [Google Scholar] [CrossRef]
- Li, Q.; Xue, Q.C.; Hu, Q.S.; Song, T.; Wang, Y.H.; Li, S.Y. Cold Expansion Strengthening of 7050 Aluminum Alloy Hole: Structure, Residual Stress, and Fatigue Life. Int. J. Aerosp. Eng. 2022, 2022, 4057898. [Google Scholar] [CrossRef]
- Meng, Q.J.; Frankel, G.S. Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys. J. Electrochem. Soc. 2004, 151, B271–B283. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Z.; Zhao, J.; Guo, W.; Wang, M.; Liu, Z. Effect of Zn content and retrogression and re-aging treatment on properties of 7075 aluminum alloy. Heat Treat. Met. 2016, 41, 11–15. [Google Scholar]
- Zhang, X.; Mao, W.; Zhu, W. Influence of Zn, Mg and Cu Contents on Hot Cracking Behavior and Microstructure of 7075 Aluminum Alloys. Spec. Cast. Nonferrous Alloys 2014, 34, 1336–1339. [Google Scholar]
- Sun, Y.Y.; Gulizia, S.; Oh, C.H.; Doblin, C.; Yang, Y.F.; Qian, M. Manipulation and Characterization of a Novel Titanium Powder Precursor for Additive Manufacturing Applications. JOM 2015, 67, 564–572. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L.; Pilone, D. Effect of laser remelting on surface roughness and microstructure of AlSi10Mg selective laser melting manufactured parts. Int. J. Adv. Manuf. Technol. 2021, 113, 2739–2759. [Google Scholar] [CrossRef]
- Ma, R.-l.; Peng, C.-q.; Cai, Z.-y.; Wang, R.-c.; Zhou, Z.-h.; Li, X.-g.; Cao, X. Finite element analysis of temperature and stress fields during selective laser melting process of Al-Mg-Sc-Zr alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 2922–2938. [Google Scholar] [CrossRef]
- Li, Z.H.; Yang, S.; Liu, B.; Liu, W.P.; Kuai, Z.Z.; Nie, Y.F. Simulation of temperature field and stress field of selective laser melting of multi-layer metal powder. Opt. Laser Technol. 2021, 140, 106782. [Google Scholar] [CrossRef]
- Nie, S.J.; Li, L.; Wang, Q.; Zhao, R.X.; Lin, X.; Liu, F.R. Effects of Thermal Stress on the Formation and Cracking Behavior of Nickel-Based Superalloys by Selective Laser Melting Based on a Coupled Thermo-Mechanical Model. Materials 2022, 15, 8968. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, H.; Ke, L.; Lei, W.; Dai, C.; Zuo, D. Simulation of temperature distribution in single metallic powder layer for laser micro-sintering. Comput. Mater. Sci. 2012, 53, 333–339. [Google Scholar] [CrossRef]
- Liu, H.W.; Zheng, J.X.; Guo, Y.L.; Zhu, L.X. Residual stresses in high-speed two-dimensional ultrasonic rolling 7050 aluminum alloy with thermal-mechanical coupling. Int. J. Mech. Sci. 2020, 186, 105824. [Google Scholar] [CrossRef]
- Romano, J.; Ladani, L.; Razmi, J.; Sadowski, M. Temperature distribution and melt geometry in laser and electron-beam melting processes—A comparison among common materials. Addit. Manuf. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.Z.; Li, B. Formation mechanisms of lack of fusion and keyhole-induced pore defects in laser powder bed fusion process: A numerical study. Int. J. Therm. Sci. 2023, 188, 108221. [Google Scholar] [CrossRef]
- Bayat, M.; Thanki, A.; Mohanty, S.; Witvrouw, A.; Yang, S.F.; Thorborg, J.; Tiedje, N.S.; Hattel, J.H. Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Addit. Manuf. 2019, 30, 100835. [Google Scholar] [CrossRef]
- Liu, B.Q.; Fang, G.; Lei, L.P.; Yan, X.C. Predicting the porosity defects in selective laser melting (SLM) by molten pool geometry. Int. J. Mech. Sci. 2022, 228, 107478. [Google Scholar] [CrossRef]
- Weingarten, C.; Buchbinder, D.; Pirch, N.; Meiners, W.; Wissenbach, K.; Poprawe, R. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J. Mater. Process. Technol. 2015, 221, 112–120. [Google Scholar] [CrossRef]
- Yao, S.; Wang, J.J.; Li, M.; Chen, Z.; Lu, B.H.; Shen, S.; Li, Y. LPBF-Formed 2024Al Alloys: Process, Microstructure, Properties, and Thermal Cracking Behavior. Metals 2023, 13, 268. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Yang, X.; Chen, B.; Zhu, H. Cracks and process control in laser powder bed fusion of Al-Zn-Mg alloy. J. Manuf. Process. 2022, 81, 571–579. [Google Scholar] [CrossRef]
- Huang, X.Q.; Chen, H.T.; Liu, B.; Mohammadzadeh, R.; Li, J.; Fang, Q.H. Thermal behavior and microstructural evolution of additively manufactured Ni-based superalloys via multi-scale simulation. Optik 2021, 243, 167456. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, Q.H.; Zhang, X.X.; Ma, F.; Wu, M.H.; Xu, Q. Characterization of porosity in lack of fusion pores in selective laser melting using the wavefunction. Mater. Res. Express 2023, 10, 016501. [Google Scholar] [CrossRef]
Alloy | Al | Zn | Mg | Cu | Zr | Si | Fe | Ti |
---|---|---|---|---|---|---|---|---|
7050 | Bal. | 5.87 | 1.21 | 1.98 | 0.084 | 0.033 | 0.023 | 0.022 |
Form Factor (Sphericity) | 0–0.4 | 0.4–0.5 | 0.5–0.6 | 0.6–0.7 | 0.7–0.8 | 0.8–0.9 | 0.9–1 |
---|---|---|---|---|---|---|---|
Number fraction (%) | 0 | 1 | 2 | 9 | 15 | 24 | 49 |
Process Parameters | Numerical Value | Unit |
---|---|---|
Laser power (P) | 210, 260, 310, 360, 410 | W |
Scan speed (V) | 800, 1100, 1400, 1700, 2000 | mm/s |
Hatch space (h) | 110 | μm |
Layer thickness (L) | 20 | μm |
Properties | Values |
---|---|
Density (kg/m3) | 2830 |
Specific heat J/(kg·K) | 860 |
Conductivity W/(m·K) | 157 |
Convective heat transfer coefficient W/(m2·°C) | 80 |
Laser absorption rate | 0.15 |
Prediction Model Equation | R2 | p-Value |
---|---|---|
Temperature = 246.433 + 6.61 P − 0.215 V | 0.998 | <0.001 |
Cooling rate = −10,576,413.1 + 47,602.848 P + 13,586.573 V | 0.960 | <0.001 |
Temperature gradient = 5.214 + 0.059 P − 0.001 V | 0.987 | <0.001 |
Porosity = 13.672 − 0.007 Temperature + 2.403 × 10−7 Cooling rate | 0.679 | <0.001 |
Crack = −0.702 + 0.117 Temperature gradient | 0.499 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Tang, H.; Huang, J.; Jia, Y.; Liao, L.; Pang, S.; Zheng, X.; Chen, Z. Influence of Laser-Based Powder Bed Fusion of Metals Process Parameters on the Formation of Defects in Al-Zn-Mg-Cu Alloy Using Path Analysis. Micromachines 2024, 15, 1121. https://doi.org/10.3390/mi15091121
Huang B, Tang H, Huang J, Jia Y, Liao L, Pang S, Zheng X, Chen Z. Influence of Laser-Based Powder Bed Fusion of Metals Process Parameters on the Formation of Defects in Al-Zn-Mg-Cu Alloy Using Path Analysis. Micromachines. 2024; 15(9):1121. https://doi.org/10.3390/mi15091121
Chicago/Turabian StyleHuang, Biao, Hongqun Tang, Jincheng Huang, Yuanxiang Jia, Liuhui Liao, Shuhuan Pang, Xu Zheng, and Zhendong Chen. 2024. "Influence of Laser-Based Powder Bed Fusion of Metals Process Parameters on the Formation of Defects in Al-Zn-Mg-Cu Alloy Using Path Analysis" Micromachines 15, no. 9: 1121. https://doi.org/10.3390/mi15091121
APA StyleHuang, B., Tang, H., Huang, J., Jia, Y., Liao, L., Pang, S., Zheng, X., & Chen, Z. (2024). Influence of Laser-Based Powder Bed Fusion of Metals Process Parameters on the Formation of Defects in Al-Zn-Mg-Cu Alloy Using Path Analysis. Micromachines, 15(9), 1121. https://doi.org/10.3390/mi15091121