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Abstract: The small-signal S parameters of the fabricated double-finger gate AlGaN/GaN high
electron mobility transistors (HEMTs) were measured at various direct current quiescent operating
points (DCQOPs). Under active bias conditions, small-signal equivalent circuit (SSEC) parameters
such as Rs and Rd, and intrinsic parameters were extracted. Utilizing f T and the SSEC parameters,
the effective electron velocity (νe−e f f ) and intrinsic electron velocity (νe−int) corresponding to each
gate bias (VGS) were obtained. Under active bias conditions, the influence mechanism of VGS on
νe−e f f was systematically studied, and an expression was established that correlates νe−e f f , νe−int,
and bias-dependent parasitic resistances. Through the analysis of the main scattering mechanisms in
AlGaN/GaN HEMTs, it has been discovered that the impact of VGS on νe−e f f should be comprehen-
sively analyzed from the aspects of νe−int and parasitic resistances. On the one hand, changes in VGS

influence the intensity of polar optical phonon (POP) scattering and polarization Coulomb field (PCF)
scattering, which lead to changes in νe−int dependent on VGS. The trend of νe−int with changes in VGS

plays a dominant role in determining the trend of νe−e f f with changes in VGS. On the other hand,
both POP scattering and PCF scattering affect νe−e f f through their impact on parasitic resistance.
Since there is a difference in the additional scattering potential corresponding to the additional
polarization charges (APC) between the gate-source/drain regions and the region under the gate,
the mutual effects of PCF scattering on the under-gate electron system and the gate-source/drain
electron system should be considered when adjusting the PCF scattering intensity through device
structure optimization to improve linearity. This study contributes to a new understanding of the
electron transport mechanisms in AlGaN/GaN HEMTs and provides a novel theoretical basis for
improving device performance.

Keywords: AlGaN/GaN HEMTs; bias voltage; effective electron velocity; polarization coulomb
field scattering

1. Introduction

Gallium nitride (GaN) materials are typical wide-bandgap semiconductor materials [1].
AlGaN/GaN HEMTs based on GaN materials are outstanding representatives of the new
generation of semiconductor devices [2–4]. Owing to their superior performance, such as
high electron velocity and high critical breakdown electric field, they hold broad market
application prospects in high-frequency and high-power fields, including aerospace and
mobile communication, among others [5–7]. Despite a series of scientific and technological
breakthroughs in the study of AlGaN/GaN HEMTs, their power output and linearity have
not yet fully reached the expected values due to non-ideal factors [8–10]. This has become an
important factor restricting the large-scale commercial application of AlGaN/GaN HEMTs.
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The channel electron velocity has a significant impact on device performance [11].
The electron velocity and maximum current-gain cutoff frequency (f T) of AlGaN/GaN
HEMTs remain a controversial issue [9]; the rapid decrease in gm and f T with increasing
gate bias is believed to be related to effective electron velocity (νe−e f f ) [11,12]. However,
much of the current research mainly focuses on the peak of electron velocity [9,13], which
cannot fully reflect the operating mechanism of the device. There is relatively little research
on the bias dependence of electron velocity. In the limited number of studies currently
available on the bias dependence of electron velocity, the extraction of bias-related electron
velocities is based on small-signal model parameters obtained through the COLD-FET
method, without considering the bias dependence of parasitic resistances [14]. Due to
the influence of bias voltage on the two-dimensional electron gas (2DEG) of the access
area, the parasitic source and drain resistances (Rs and Rd) of AlGaN/GaN HEMTs have
bias dependence [15–17]. Rs and Rd are important reasons for the inconsistency between
the external effective parameters and intrinsic parameters of the device. Therefore, when
studying the effect of bias voltage on νe−e f f , it is necessary to consider the bias dependence
of Rs and Rd. Polar optical phonon (POP) scattering and polarization Coulomb field (PCF)
scattering are the most important scattering mechanisms for AlGaN/GaN HEMTs, and
their intensity is affected by bias voltage [18–20]. Therefore, when studying the effect of
bias voltage on νe−e f f in AlGaN/GaN HEMTs, it is necessary to systematically analyze the
relationship between gate bias, parasitic resistance, scattering mechanism, and νe−e f f .

In this study, double-finger gate AlGaN/GaN HEMTs suitable for high-frequency
applications were fabricated, and the broadband S parameters were measured under
different gate bias conditions. Small-signal equivalent circuit (SSEC) parameters such as Rs
and Rd, and intrinsic parameters were extracted under active bias conditions. The intrinsic
electron velocity (νe−int) dependent on gate bias is calculated using these SSEC parameters.
Moreover, the νe−e f f corresponding to each gate bias voltage is obtained through the f T. We
analyzed the mechanism by which bias voltage affects νe−e f f and established a correlation
expression between νe−e f f and νe−int. This study is beneficial for understanding the electron
transport mechanism of AlGaN/GaN HEMTs from a new perspective and provides a new
theoretical basis for improving device performance, such as linearity.

2. Experiments

AlGaN/GaN heterostructure wafers were grown on 4H-SiC substrates via MOCVD.
Above the substrate are a 1000 nm GaN buffer layer, 400 nm undoped GaN, 0.8 nm AlN,
21 nm Al0.26Ga0.74N, and 3 nm GaN. The electron mobility and 2DEG density of the wafer,
obtained by Hall measurement, are 2073 [cm2/(V·s)] and 1.09 × 1013 cm−2.

The structure of the AlGaN/GaN HEMTs used in this study is shown in Figure 1.
The source and drain of the device are Ohmic contacts, which are formed by stacking
Ti/Al/Ni/Au on AlGaN/GaN heterostructure wafers and then rapidly annealing in an
N2 environment. The gate is a Schottky contact, manufactured by depositing Ni/Au after
electron beam lithography. The device is a central gate; the gate length (LG) is 300 nm, and a
gate width (WG) is 40 × 2 µm. The device with 1 µm gate-source spacing (LGS) is named as
Sample 1, and the device with 2 µm LGS is named as Sample 2. The I-V characteristics and
S parameters were measured using the Keysight B1500A Semiconductor Device Parameter
Analyzer(Keysight Technologies Inc., Santa Rosa, CA, USA) and the Keysight PNA-X Vector
Network Analyzer.(Keysight Technologies Inc., Santa Rosa, CA, USA).
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Figure 1. Schematic diagram of the AlGaN/GaN HEMTs used in this study. 
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with VDS = 12 V and VGS = 0 to −3.5 V (step: −0.5 V) were chosen as the direct current qui-
escent operating points (DCQOPs) to measure the small-signal S parameters correspond-
ing to each gate bias condition. The frequency range for small-signal S parameter meas-
urement is 0.5 to 40 GHz. The small-signal S parameter is converted to the H-parameter, 
and the current-gain modulus H21 (dB) is obtained. Therefore, as shown in Figure 3 and 
Figure 4a, the fT can be obtained by extrapolating H21 (dB) [21–24]. For AlGaN/GaN 
HEMTs, the external effective electron velocity (experimental value) can be expressed as 
follows [25]: 
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Figure 2. The measured I-V characteristics of (a) Sample 1 and (b) Sample 2. 

Figure 1. Schematic diagram of the AlGaN/GaN HEMTs used in this study.

3. Results and Discussion

The I-V characteristics of Sample 1 and Sample 2 are shown in Figure 2. The points with
VDS = 12 V and VGS = 0 to −3.5 V (step: −0.5 V) were chosen as the direct current quiescent
operating points (DCQOPs) to measure the small-signal S parameters corresponding to
each gate bias condition. The frequency range for small-signal S parameter measurement
is 0.5 to 40 GHz. The small-signal S parameter is converted to the H-parameter, and the
current-gain modulus H21 (dB) is obtained. Therefore, as shown in Figures 3 and 4a, the f T
can be obtained by extrapolating H21 (dB) [21–24]. For AlGaN/GaN HEMTs, the external
effective electron velocity (experimental value) can be expressed as follows [25]:

νe−exp = 2·π· fT ·LG (1)
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So, as shown in Figure 4b, the νe−exp corresponding to each gate bias for the two
samples can be obtained. From Figure 4b, it can be seen that νe−exp reaches its peak at a
VGS of −3 V, and gradually decreases as VGS increases from −3 V to 0 V. The phenomenon
of νe−exp decreasing with increasing VGS will seriously affect the linearity of the device.

The phenomenon of effective electron velocity decreasing with increasing VGS is
related to the intrinsic electron velocity (νe−int) and Rs and Rd, which are related to VGS.
The νe−int of AlGaN/GaN HEMTs can be expressed as follows [26]:

νe−int =
gm−int

Cgs + Cgd
·LG (2)

Among them, gm−int is the intrinsic transconductance, and Cgs and Cgd are intrinsic
gate-source and gate-drain capacitors, which are directly extracted under active bias condi-
tions based on the SSEC shown in Figure 5 [27–31]. Figure 6 shows the calculated νe−int
corresponding to each gate bias of Sample 1 and Sample 2.
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From Figure 6, it can be seen that νe−int reaches its peak at a VGS of −3 V and then
decreases significantly as VGS increases from −3 V to 0 V. The magnitude of ve−int is deter-
mined by the x-direction electric field under the gate (Ex) and the scattering mechanisms.
Existing research has shown that the change in the intensity of Ex is very slight when the
gate bias is altered [32]. Therefore, the variation in ve−int with VGS is primarily determined
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by the scattering mechanisms. POP scattering and PCF scattering are the predominant
scattering mechanisms in AlGaN/GaN HEMTs. As VGS increases, both the temperature of
polar optical phonons (TPOP) and the density of the two-dimensional electron gas (n2DEG)
increase, leading to enhanced POP scattering [33–35]. The enhancement of POP scattering
intensity causes ve−int to decrease with VGS. When VGS < −3 V, both TPOP and n2DEG are
lower, resulting in weaker POP scattering, making PCF scattering the dominant mechanism.
During the process of increasing VGS from −3.5 V to −3 V, the inverse piezoelectric effect
(IPE) weakens, leading to a reduction in the additional polarization charge (APC) and a
decrease in PCF scattering, which results in an increase in νe−int. The variation in νe−int
with VGS is an important factor influencing the variation in effective electron velocity with
VGS. The above analysis indicates that the effects of POP scattering and PCF scattering on
the variation trend of νe−int with VGS are opposite. Therefore, enhancing the PCF scattering
strength corresponding to the electron system under the gate can reduce the magnitude of
νe−int at lower VGS voltage ranges and compensate for the device linearity loss caused by
the reduction in νe−int due to the increased POP scattering caused by a higher VGS. This
results in a more gradual change in νe−int with VGS and thereby improves the device’s
linearity across the entire operating voltage range. Sample 2, with its larger LGS and LGD
values, corresponds to a stronger additional scattering potential, which leads to more
intense PCF scattering in the under-gate electron system. As a result, the variation in νe−int
with VGS is more gradual, as illustrated in Figure 6.

Figure 7 shows the Rs and Rd corresponding to each gate bias for Sample 1 and
Sample 2. These values are directly extracted under active bias conditions based on the
SSEC shown in Figure 5 [27–31]. Due to the modulation of Rs and Rd on the gate-source
voltage and drain-source voltage [26,36], νe−e f f , the externally measured effective electron
velocity, is less than νe−int. Considering these modulation effects, the relationship between
νe−e f f , νe−int, and parasitic resistance can be expressed as follows:

νe−e f f =
νe−int

[1 + ( ε0εAlGaNW
d )·Rs·νe−int]

− (Rs + Rd)·gds·νe−int (3)

where ε0 is the dielectric constant of a vacuum, εAlGaN is the dielectric constant of AlGaN, W
is the gate width, d is the barrier layer thickness, and gds is the drain conductance. Figure 8
displays the νe−e f f calculated using Formula (3) and the effective electron velocity obtained
experimentally (denoted as νe−exp), illustrating that the two values are consistent.

Analysis of the relationship between the νe−e f f , parasitic resistances and νe−int has
revealed that both POP and PCF scattering can influence νe−e f f by altering νe−int and
parasitic resistances. When the VGS changes, the mechanisms by which POP and PCF
scattering impact the νe−int are similar to their effects on parasitic resistances [17,18]. As VGS
increases, the intensities of PCF and POP scattering exhibit opposite trends. Consequently,
their counteracting effects can be utilized to moderate the changes in νe−int and parasitic
resistances induced by VGS, thus enhancing linearity during the entire operating voltage
range. However, in the PCF scattering model, the drain-source channel is divided into
two systems: the under-gate electron system and the gate-source/drain electron system [37].
As shown in Figure 9a, the impact of PCF scattering on νe−int is realized by the scattering
action of the APC present in the gate-source/drain regions on the electrons located in the
area under the gate. The additional scattering potential generated by the APC present in
the gate-source/drain regions can be expressed as follows [37]:

VAPC−present in GS/GD(x, y, z) = − e
4πεsε0

∫ −
LG
2

−LGS−
LG
2

dx′
∫ WG

0
∆ρAPC−GS√

(x − x′)2 + (y − y′)2 + z2
dy′

− e
4πεsε0

∫ LGD+
LG
2

LG
2

dx′
∫ WG

0
∆ρAPC−GD√

(x − x′)2 + (y − y′)2 + z2
dy′

(4)
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where ∆ρAPC−GS and ∆ρAPC−GD are the amounts of APC present in the gate-source/drain
regions. The VAPC−present in GS/GD scatters the electrons located in the area under the gate,
thereby affecting νe−int. Conversely, as shown in Figure 9b, the impact of PCF scattering on
Rs and Rd is achieved through the scattering action of the APC present in the region under
the gate on the electrons located in the gate-source/drain regions. The additional scattering
potential generated by the APC present in the region under the gate can be expressed as
follows [37]:

VAPC−present in G(x, y, z) = − e
4πεsε0

∫ LG

2

−
LG

2

dx′
∫ WG

0

∆ρAPC−G√
(x − x′)2 + (y − y′)2 + z2

dy′ (5)

where ∆ρAPC−G is the amount of APC present in the region under the gate. The VAPC−present in G
scatters the electrons located in the gate-source/drain regions, thereby affecting Rs and
Rd. When the under-gate electron system experiences strong PCF scattering, the PCF
scattering in the gate-source/drain electron system might be weak. Therefore, when
adjusting the intensity of PCF scattering to influence the device linearity by optimizing the
device structure, the mutual effects of PCF scattering on the under-gate electron system
and the gate-source/drain electron system should be considered. For the two samples in
this study, since LGS is greater than LG, the under-gate electron system experiences stronger
PCF scattering. Consequently, the impact of PCF scattering on νe−int is greater than its
impact on Rs and Rd.
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4. Conclusions

In summary, based on the measured wideband small-signal S parameters of Al-
GaN/GaN HEMTs, the νe−e f f is calculated using the f T obtained. SSEC parameters such
as Rs and Rd and intrinsic parameters were extracted under active bias conditions. And
the νe−int corresponding to each VGS was also calculated. We analyzed the mechanism
by which VGS affects νe−e f f and established an expression for the relationship between
νe−e f f , νe−int, and parasitic resistances. By analyzing the main scattering mechanisms in
AlGaN/GaN HEMTs, it was found that the impact mechanism of VGS on νe−e f f needs to
be comprehensively analyzed from two aspects: νe−int and parasitic resistances. On the
one hand, the change in VGS will affect the intensity of POP scattering and PCF scattering,
leading to a change in νe−int. The trend of νe−int changing with VGS has a direct impact on
νe−e f f and plays a dominant role in the trend of νe−e f f changing with VGS. On the other
hand, due to the presence of parasitic resistance, νe−e f f is smaller than νe−int. Due to the
differences in APC between the gate-source/drain regions and the under-gate region, when
optimizing the device structure to adjust the intensity of PCF scattering to influence device
linearity, the mutual effects of PCF scattering on the under-gate electron system and the
gate-source/drain electron system must be considered. This study comprehensively eluci-
dates the impact mechanism of gate bias on νe−e f f from both intrinsic and parasitic aspects,
which is beneficial for understanding the electron transfer mechanism of AlGaN/GaN
HEMTs from a new perspective and provides a new theoretical basis for improving the
linear performance of the devices.
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