High-Precision Measurement of Microscales Based on Optoelectronics and Image Integration Method
Abstract
:1. Introduction
2. Measurement Principles and System Composition
3. Key Technologies and Methods
3.1. Smooth Motion Method
3.2. Miniature Laser Interferometer
3.3. Integrated Line Positioning System
3.4. Data Processing Methods
3.4.1. Experimental Research on Photoelectric Signal Measurement Method
3.4.2. Optical Image Data Processing Methods
4. Experiments and Uncertainty Evaluation
4.1. Experiment and Result Analysis
4.1.1. Experimental Analysis of Single Slit Optoelectronic Signal Measurement Method Combining Software and Hardware
4.1.2. Experimental Analysis of Image Measurement Methods
4.2. Uncertainty Assessment
4.2.1. Uncertainty Assessment of Single Slit Photoelectric Signal Measurement Methods
4.2.2. Uncertainty Assessment of Image Measurement Methods
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, H.; Sun, S.; Shen, X.; Wei, B. Aligning Techniques in the Field of Line Scale Metrology. Acta Metrol. Sin. 2017, 38, 6–12. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Li, W.; Xiao, K.; Sun, S. Measuring Device of One-Dimensional Linear Laser Length Measurement Device and its Key Technology. Metrol. Sci. Technol. 2022, 66, 3–11. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, X.; Li, Y.; Zhang, Z. Research on 2 m Laser Interferometer Based on Dynamic Optoelectronic Aiming. Mech. Electr. Inf. 2021, 17, 29–31. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Z.; Wang, H. A scanning measurement method of the pitch of grating based on photoelectric microscope. In Proceedings of the AOPC 2015: Advances in Laser Technology and Applications, Beijing, China, 5–7 May 2015; Volume 9671, p. 967110. [Google Scholar] [CrossRef]
- Lu, Y.; Feng, D.; Yang, X.; Li, T.; Chi, X. The design of 2D dynamic photoelectric microscope applied in the abbe comparator. In Proceedings of the AOPC 2020: Optical Sensing and Imaging Technology, Beijing, China, 30 November–2 December 2020; p. 115674. [Google Scholar] [CrossRef]
- Kajánek, P.; Kopáčik, A.; Kyrinovič, P.; Erdélyi, J.; Marčiš, M.; Fraštia, M. Metrology of Short-Length Measurers—Development of a Comparator for the Calibration of Measurers Based on Image Processing and Interferometric Measurements. Sensors 2024, 24, 1573. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Wang, J.; Tang, X.; Zhao, X. Image Normal Pattern Detection Device Based on Laser Length Measurement. Metrol. Meas. Tech. 2024, 51, 33–35. [Google Scholar] [CrossRef]
- Li, Q. Research on Verification Method for Standard Metallic Scale (Grande III) Based on CCD Visual and Laser Interferometer. Metrol. Meas. Tech. 2023, 50, 16–18. [Google Scholar] [CrossRef]
- Ma, J.; Gao, Z.; Yuan, Q.; Guo, Z.; Sun, Y.; Lei, L.; Zhao, L. Microscopy Measurement Method of Microstructure Linewidth Based on Translation Difference. Acta Photonica Sin. 2023, 52, 0212001. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, F.; Li, B.; Tian, A. Diffraction Intensity Distribution of Pinhole for Misaligned Gaussian Beam Incidence. Laser Optoelectron. Prog. 2021, 58, 1905001. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, C.; Zeng, W.; Gao, B.; Jian, X.; Ren, W. Error analysis of the moving mirror tilting in Michelson wind imaging interferometer. Optik 2013, 124, 2436–2442. [Google Scholar] [CrossRef]
- Wang, J.; Cai, Z.; Yu, J.; Luo, H.; Ma, C. Nanometer-scale displacement measurement based on an orthogonal dual Michelson interferometer. Chin. Opt. Lett. 2023, 21, 101201. [Google Scholar] [CrossRef]
- Gao, H.-T.; Ye, X.-Y.; Zou, L.-D. Study of Automatic Measurement System for Line Space Measurement with Nanometer Accuracy in 2 m Length Comparator. Acta Metrol. Sin. 2012, 33, 97–103. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Huang, Y.; Shan, Y. Centerline extraction of stripe imaged by optical microscope. Opt. Precis. Eng. 2017, 25, 1340–1347. [Google Scholar] [CrossRef]
- Fei, Y. Error Theory and Data Processing; China Machine Press: Beijing, China, 2017. [Google Scholar]
- JJF1917-2021; Calibration Specification for Micropattern Standards. State Administration for Market Regulation: Beijing, China, 2021.
- ISO; IEC. Guide 98-3:2008; Uncertainty of Measurement-Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995); ISO: Geneva, Switzerland; IEC: Geneva, Switzerland, 1995. [Google Scholar]
- Gao, H.; Wang, Z.; Zou, W.; Liu, Y.; Sun, S. High-accuracy measurement system for the refractive index of air based on a simple double-beam interferometry. Opt. Express 2021, 29, 1396–1411. [Google Scholar] [PubMed]
- ISO 13528:2022; Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. ISO: Geneva, Switzerland, 2022.
Nominal Value (μm) | Standard Value (μm) | Result of the Algorithm in this Article (μm) | Difference from Standard Value (μm) |
---|---|---|---|
10 | 9.996 | 9.996 | 0.000 |
20 | 19.994 | 19.997 | 0.003 |
30 | 30.014 | 30.007 | −0.007 |
40 | 40.012 | 40.002 | −0.010 |
50 | 50.010 | 50.001 | −0.009 |
60 | 60.009 | 60.003 | −0.006 |
70 | 70.007 | 70.000 | −0.007 |
80 | 80.010 | 79.999 | −0.011 |
90 | 90.010 | 89.999 | −0.011 |
100 | 100.012 | 99.999 | −0.013 |
110 | 110.021 | 110.004 | −0.017 |
120 | 120.018 | 120.008 | −0.010 |
130 | 130.020 | 130.014 | −0.006 |
Nominal Value (mm) | Xlaser (mm) | dimg (mm) | X | Deviation (μm) | Reference Deviation (μm) |
---|---|---|---|---|---|
0.00 | −0.005746 | 0.001272 | −0.004474 | / | / |
0.05 | −0.052661 | −0.001645 | −0.054306 | −0.169 | −0.125 |
0.10 | −0.102523 | −0.001724 | −0.104247 | −0.227 | −0.163 |
0.15 | −0.156075 | 0.001829 | −0.154246 | −0.228 | −0.218 |
0.20 | −0.206166 | 0.001962 | −0.204204 | −0.271 | −0.274 |
0.25 | −0.253046 | −0.001008 | −0.254054 | −0.420 | −0.399 |
0.30 | −0.305140 | 0.001105 | −0.304035 | −0.439 | −0.375 |
0.35 | −0.352868 | −0.001201 | −0.354069 | −0.406 | −0.416 |
0.40 | −0.405807 | 0.001624 | −0.404183 | −0.291 | −0.397 |
0.45 | −0.456289 | 0.002126 | −0.454163 | −0.312 | −0.26 |
0.50 | −0.505402 | 0.001138 | −0.504264 | −0.211 | −0.285 |
0.55 | −0.552320 | −0.001821 | −0.554141 | −0.333 | −0.349 |
0.60 | −0.606117 | 0.002090 | −0.604027 | −0.448 | −0.381 |
0.65 | −0.655845 | 0.001809 | −0.654036 | −0.439 | −0.499 |
0.70 | −0.706136 | 0.002172 | −0.703964 | −0.511 | −0.543 |
0.75 | −0.755613 | 0.001728 | −0.753885 | −0.590 | −0.571 |
0.80 | −0.805841 | 0.001901 | −0.803940 | −0.535 | −0.486 |
0.85 | −0.855489 | 0.001418 | −0.854071 | −0.404 | −0.502 |
0.90 | −0.904973 | 0.000937 | −0.904036 | −0.438 | −0.456 |
0.95 | −0.952593 | −0.001297 | −0.953890 | −0.584 | −0.537 |
1.00 | −1.005425 | 0.001667 | −1.003758 | −0.716 | −0.666 |
Error Sources | Prob. | Unit | ||||
---|---|---|---|---|---|---|
Repeatability | S | 45 nm | N | 1.0 | / | 45 nm |
Resolution | N1 | 0.58 nm | R | 1.0 | / | 0.58 nm |
Nonlinear | N2 | 21 nm | R | 1.0 | / | 21 nm |
Laser wavelength | 1.0 × 10−7 × | R | L/ | / | 1.0 × 10−7 L | |
Edlen formula | 1.0 × 10−8 | R | 1.0 | L | (1.0 × 10−8) × L | |
Air pressure | pair | 10 Pa | R | 2.70 × 10−9 | L/Pa | (2.7 × 10−9) × L |
Air temperature | tair | 0.5 °C | R | 9.23 × 10−7 | L/°C | (0.5 × 10−6) × L |
Air humidity | fair | 30 Pa | R | 3.67 × 10−10 | L/Pa | (11 × 10−9) × L |
Thermal linear expansion coefficient | 8.0 × 10−6 °C−1 | R | 0.5 | L °C | (4.0 × 10−6) × L | |
Material temperature | ts | 0.5 °C | R | 8 × 10−6 | L/°C | (8 × 10−6) × L |
Abbe error | 45 nm | R | 1.0 | / | 45 nm | |
Cosine error | 3.2 × 10−8 nm | R | 1.0 | / | 3.2 × 10−8 × L | |
Standard uncertainty (when L0 is 1 mm) | 0.068 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Cheng, Y.; Gao, H.; Sun, S.; Zhang, X.; Xue, L.; Tang, J.; Tang, Y. High-Precision Measurement of Microscales Based on Optoelectronics and Image Integration Method. Micromachines 2024, 15, 1162. https://doi.org/10.3390/mi15091162
Zhu Y, Cheng Y, Gao H, Sun S, Zhang X, Xue L, Tang J, Tang Y. High-Precision Measurement of Microscales Based on Optoelectronics and Image Integration Method. Micromachines. 2024; 15(9):1162. https://doi.org/10.3390/mi15091162
Chicago/Turabian StyleZhu, Yanlong, Yinbao Cheng, Hongtang Gao, Shuanghua Sun, Xudong Zhang, Liang Xue, Jiangwen Tang, and Yingqi Tang. 2024. "High-Precision Measurement of Microscales Based on Optoelectronics and Image Integration Method" Micromachines 15, no. 9: 1162. https://doi.org/10.3390/mi15091162
APA StyleZhu, Y., Cheng, Y., Gao, H., Sun, S., Zhang, X., Xue, L., Tang, J., & Tang, Y. (2024). High-Precision Measurement of Microscales Based on Optoelectronics and Image Integration Method. Micromachines, 15(9), 1162. https://doi.org/10.3390/mi15091162