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Abstract: Although significant strides have been made in cardiac pacing, the field is still
evolving. While transvenous permanent pacing is highly effective in the management of
bradyarrhythmias, it is not risk free and may result in significant morbidity and, rarely,
mortality. Transvenous leads are often the weakest link in a pacing system. They may
dislodge, fracture, or suffer breaches in their insulation. This review was undertaken to
clarify leadless risks, benefits, and alternatives to transvenous cardiac pacing for brad-
yarrhythmias and heart failure management. In order to clarify the role(s) of leadless pacing,
this narrative review was undertaken by searching MEDLINE to identify peer-reviewed
clinical trials, randomized controlled trials, meta-analyses, and review articles, as well as
other clinically relevant reports and studies. The search was limited to English-language
reports published between 1932 and 2024. Leadless pacing was searched using the terms
Micra™, Nanostim™, AVEIR™, single-chamber leadless pacemaker, dual-chamber leadless
pacemaker, cardiac resynchronization therapy (CRT), cardiac physiological pacing (CPP)
and biventricular pacing (BiV). Google and Google Scholar, as well as bibliographies of
identified articles were also reviewed for additional references. The advantages and lim-
itations of leadless pacing as well as options that are under investigation are discussed
in detail.

Keywords: leadless pacing; lead limitations; leadless advantages/disadvantages

1. Introduction
The rich history of cardiac pacing began more than 90 years ago. Its evolution has

resulted from a combination of creative thought and dramatic advances in technology.
Table 1 summarizes key developments in transvenous cardiac pacing (additional details
are available in Supplement S1) [1–19]. This manuscript aims to provide a review of the
structure, function, and limitations of transvenous cardiac pacemaker leads, the develop-
ment of leadless pacemakers, the structural characteristics of leadless pacemakers, clinical
trials that investigated the safety and efficacy of leadless pacing, implantation techniques,
indications for leadless pacing, risks and complications of leadless pacing, advantages
and disadvantages of leadless pacing, investigational devices (those without U.S. Food
and Drug Administration [FDA] approval, without CE Mark or without both), and final
conclusions.

Table 1. Evolving concepts in cardiac pacing [1–16].

Date (Year) Investigator (s) Milestone

1932 Hyman
Used a machine that produced electricity and
plunged a needle through the chest wall into the
heart for resuscitation of cardiac standstill.
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Table 1. Cont.

Date (Year) Investigator (s) Milestone

1950 Bigelow et al.
Introduced a bipolar lead via the right internal
jugular vein and stimulated the right atrium
during open-heart surgery.

1952 Zoll Developed external pacing.

1958 Furman Used a transvenous electrode to successfully
stimulate the right ventricle (RV) for 96 days.

1958 Lillihei and Bakken Reported efficacy of a battery-powered external
pacemaker in 18 patients.

1958 Senning and Elmqvist Implanted the first pacemaker using an
epicardial lead.

Circa 1965 Berkovitz
Credited with the innovation of demand
(signal-sensed) pacing. Introduced the concept of
Universal DDD pacing.

1977 Funke Introduced atrial synchronous and
atrioventricular (AV) sequential (DDD) pacing.

1981 Rickards and Norman

Designed a physiologically adaptive cardiac
pacemaker which sensed the interval between
the delivered stimulus and the evoked T wave
and used the stimulus-evoked T wave interval to
set the subsequent pacemaker escape interval.

1994 Cazeau et al.

Contributed a landmark report of successful
four-chamber [biventricular (BiV)] pacing for
heart failure. Initially, left ventricular (LV) lead
placement was surgical.

1998 Daubert et al.
Described permanent left ventricular pacing via
leads advanced to the coronary sinus and
positioned in the cardiac veins.

1999 Auricchio et al.
Used balloon occlusive angiography (for road
map of cardiac veins), reshaped guide catheters,
and advanced leads over guidewires.

2018 Arnold et al.

His bundle pacing provided better ventricular
resynchronization and improvement in
hemodynamics compared to
biventricular pacing.

2020 Ponnusamy et al.

Left bundle branch pacing (LBBP) effective in
overcoming His-bundle pacing’s limitations,
providing lead stability, low stable pacing
thresholds, and correcting distal conduction
system disease.

2022 Vijayaraman et al.

Conduction system pacing improved clinical
outcomes compared to biventricular pacing in a
large cohort of patients with an indication for
cardiac resynchronization therapy.

2. Structure, Function, and Limitations of Transvenous Cardiac
Pacemaker Leads

Transvenous pacemaker systems consist primarily of a hermitically sealed can, placed
in the pre-pectoral region, containing the battery and all circuitry. The can is connected to
the myocardial tissue by a pacemaker lead or leads. The leads contain conductor coils to the
distal electrodes separated by insulation material [20] (Figure 1). Over the last three to four
decades, the basic material used for most conductors has been MP-35N (SPS Technologies,
Cleveland, OH, USA), an alloy of nickel, cobalt, chromium, and molybdenum. High
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electrical resistance has been overcome with the development of composite-wire conductors
that incorporate low-resistance metals such as silver and stainless steel, with high-strength
materials such as titanium, platinum, and platinum–iridium alloy. The leads are of coaxial
(coil within a coil) or coradial (side-by-side coils) design, depending on the arrangement of
the conductor coils. Lead tips are attached to the myocardium by a penetrating helix (active
fixation) or by tines that embed in the myocardial trabeculations (passive fixation) [20].
Standardization of pacemaker leads has allowed global compatibility across manufacturers.
The international standard-1 (IS-1) terminal ring and pin arrangement allows (with some
exceptions) connection to pacemaker generators from different manufacturers [21].
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Figure 1. (A) Transvenous pacemaker systems primarily consisting of a hermetically encased can
(also known as a generator) containing the battery and its circuitry placed subcutaneously (in the
pre-pectoral region) or submuscularly between the pectoral muscles. The can is connected to the
myocardial tissue by a pacemaker lead (or leads). The leads contain conductor coils to the distal
electrodes separated by insulation material. (B) The leads are of coaxial (coil within a coil) or coradial
(side-by-side coils) design depending on the arrangement of the conductor coils. (C) The lead tips are
attached to the myocardium by a screw-like penetrating helix (active fixation) or by tines that embed
in the myocardial trabeculations (passive fixation). Adapted from reference [20] with permission.

Despite advances made in cardiac pacing, lead-related issues remain the “Achilles
heel” of cardiac pacing. Apart from infection, there is a greater incidence of lead-related
complications compared with issues related to pulse generators.

Early lead-related issues include dislodgement resulting in loss of capture, as well as
under-sensing due to an acute inflammatory response. The latter is usually remediable via
reprogramming.

Lead insulation provides physical and electrical shielding of the conductor elements.
In addition, insulation contributes significantly to the structural strength of the entire
lead body [22]. Among the problems with the major materials used for lead insulation
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(polyurethane, silicone rubber, fluoropolymers) is that they were not originally specifically
designed for this purpose. Each has disadvantages when used as part of a biological pacing
system. Because leads are subject to repetitive mechanical stress during each cardiac cycle
and by shoulder girdle movement in the body, leads are the most common pacemaker
components to fail. Insulation breaks result in low impedance measurements and over-
sensing of signals generated by surrounding muscle structures because the conductors are
exposed [22].

Over the last three to four decades, the basic material used for most conductors
has been MP-35N (SPS Technologies, Cleveland), an alloy of nickel, cobalt, chromium,
and molybdenum. The main advantage of MP-35N is high strength and resistance to
corrosion [23]. Its main disadvantage is its high electrical resistance. This has been overcome
with the development of composite-wire conductors that incorporate low-resistance metals
such as silver and stainless steel with high-strength materials such as titanium, platinum,
and platinum–iridium alloy [23]. Conductor fracture typically results in non-physiologic
signals (“noise”) caused by the lead. This noise consists of high-frequency, saturated
electrograms generated by intermittent contact between disrupted conductor elements
(called filars) and can be associated with elevated lead impedance and loss of capture.
Chronic inflammation (at times due to an underlying primary cardiomyopathic process)
may result in loss of capture. Acute venous entry angles, medial venous access near
the costoclavicular ligament, sharp turns in the pocket, young age, subpectoral device
placement, tight sutures, and silicone insulation are risk factors associated with insulation
breaks and lead fractures [20]. Other lead problems include infection/endocarditis, venous
thrombosis and emboli, and tricuspid regurgitation [20].

In addition to the problems noted above, leads may be misplaced in the left cham-
ber of the heart. Although inadvertent malpositioning of cardiac implantable electronic
device leads into the left ventricle is an uncommon complication of transvenous pacing
and defibrillation, it may result in serious consequences. In 2016, Ohlow et al. reported a
3.4% incidence of inadvertent lead placement into the left heart; however, this included the
cardiac veins [18]. Inadvertent endocardial left ventricular (LV) lead placement creates a
nidus for thrombus formation and possible embolization. Treatment of LV lead misplace-
ment discovered late after implantation includes lead removal or chronic anticoagulation
with warfarin to prevent thromboemboli. Although LV lead extraction was first described
in 1991 [19], procedural safety remains uncertain. Because use of dabigatran in patients
with mechanical heart valves was associated with increased rates of thromboembolic and
bleeding complications compared with warfarin, substituting a direct oral anticoagulant
for warfarin in the setting of malpositioned left ventricular leads is not recommended [24].

Rapid identification of lead position is critical during implantation and just after
the procedure, with immediate correction required if malpositioning is detected. If lead
misplacement is discovered late after implantation, the lead should be surgically removed
or chronic anticoagulation with warfarin should be initiated [24].

3. Development of Leadless Pacemakers (LPs)
Leadless cardiac pacing has been developed in response to lead-related problems and

the desire to reduce the incidence of device-related infection. Because leads have long
been considered the weakest link of cardiac pacing systems, a totally self-contained cardiac
pacing system was conceptualized more than 50 years ago. In 1970, Spickler and associates
reported totally self-contained leadless cardiac pacing in a canine model. Nevertheless, this
concept has become a reality only recently as a result of technological advancements in
battery energy, endocardial fixation and delivery systems [25]. The first report of leadless
pacing in humans was published in 2014 [26].
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4. Structure of Leadless Pacemakers
The newest versions of leadless pacemakers available from Medtronic (Minneapolis,

MN, USA) are Micra AV and Micra VR2. Each has a length of 25.9 mm, an outer diameter
of 6.7 mm, and a mass of 1.75 g. Materials in chronic contact with human tissue include
titanium, titanium nitride, parylene C, PEEK, nitinol, platinum–iridium alloy, and silicone
rubber. Nitonal FlexFixTM tines are used for fixation. A monolithic controlled release
device (MCRD) provides steroid elution to help maintain acceptable pacing thresholds.
The nominal pacing cathode measures 2.5 mm2, is point-sintered and coated with titanium
nitride. The minimum pacing anode measures 22 mm2 and is coated with titanium nitride.
The cathode-to-anode spacing is 18 mm. Both have a 3.2-volt lithium-hybrid CFx silver
vanadium oxide battery [27,28].

The AVEIR leadless ventricular pacemaker has a length of 38 mm, a diameter of
6.5 mm. and a mass of 2.4 g. The outer shell/can of the device is composed of titanium.
Fixation is achieved via a nonretractable helix. Its tip electrode is a titanium nitride-coated,
platinum–iridium disk located at the center of the fixation helix, which measures about
2.2 mm2. The tip electrode includes a single dose of dexamethasone sodium phosphate
(DSP) intended to reduce inflammation. The ring electrode is the uncoated part of the
titanium pacemaker case, and its surface area measures > 127 mm2. The inter-electrode
space is >24 mm [29].

The AVEIR leadless atrial pacemaker has a length of 32.2 mm, a diameter of 6.5 mm.
and a mass of 2.1 g. The LP distal tip electrode comprises a titanium nitride-coated,
platinum–iridium helix (LSP201A) or disk (LSP202V) located at the center of the fixation
helix. The tip electrode includes a single dose of dexamethasone sodium phosphate (DSP)
intended to reduce inflammation. The ring electrode is the uncoated part of the titanium
pacemaker case, and its surface area measures ~124 mm2. The inter-electrode space is
>24 mm [29]. All leadless conductors use MP-35N alloys. Table 2 provides additional
comprehensive details of leadless pacing devices [30].

Table 2. Characteristics of leadless pacemakers.

Nanostim Aveir VR Micra VR a Micra AV b Aveir AR c Empower d

Dimensions (mm) 42 × 5.99 38 × 6.5 25.9 × 6.7 25.9 × 6.7 32.2 × 6.5 32.0 × 6.1

Volume (cc) 1.0 1.1 0.8 0.8 1.0 0.75

Sheath size, F,
ID/OD 18/21 25/27 23/27 23/27 25/27 21/23

Pacing mode VVI(R) VVI(R) VVI(R) VVI(R) or
VDD(R) AAI(R) VVI(R) + SCD

diraected ATP

Able to use as
dual chamber LP No Yes No No Yes No

Fixation Screw-in helix Screw-in helix 4 nitinol tines 4 nitinol tines Screw-in helix 4 nitinol tines

Battery Lithium carbon
monofluoride

Lithium carbon
monofluoride

Lithium-hybrid
carbon

monofluoride
silver vanadium

oxide

Lithium-hybrid
carbon

monofluoride
silver vanadium

oxide

Lithium carbon
monofluoride

Lithium carbon
monofluoride

Battery longevity
at standard

settings (years)
N/A 9.9 VVIR

7.3 DDDR 4.7 VVIR 4.8 VVIR 6.8 AAI(R)
5 DDI(R) N/A
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Table 2. Cont.

Nanostim Aveir VR Micra VR a Micra AV b Aveir AR c Empower d

Battery longevity
at alternate

setting e
N/A

16.1 (1.25 V at
0.4 ms. 60 bpm,

100% VP,
500 ohm, single
chamber mode);

9.8 (1.25 V at
0.4 ms. 60 bpm,

100% VP,
500 ohm, dual

chamber mode).

9.6 (1.5 V at
0.4 ms. 60 bpm,

100% VP,
500 ohm)

8.6 (1.5 V at
0.4 ms. 60 bpm,

100% VP,
500 ohm)

N/A

MRI-compatible 1.5 T 1.5 T, 3 T 1.5 T, 3 T 1.5 T, 3 T 1.5 T, 3 T 1.5 T, 3 T

Remote
monitoring No No Carelink Carelink No No

Magnet mode

100 bpm for
8 cycles, then rate

dependent on
battery status

100 bpm for
5 cycles, then rate

dependent on
battery status

No No

Yes, AOO (VOO
in case of dual

chamber pacing)
at 100 bpm for

5 cycles, then rate
dependent on
battery status

N/A

a Micra VR2: similar values but estimated battery longevity 6.3 years (at ISO standard programming: 2.5 V at
0.24 ms, 60 beats/min, 100% VP, 600 ohm, VVIR mode) or 12.4 years (1.5 V at 0.24 ms, 60 beats/min, 100% VP,
600 ohm, VVIR/VVI mode). b Micra AV2: similar values but estimated battery longevity 6.1 years (at ISO standard
(at ISO standard programming: 2.5 V at 0.24 ms, 60 beats/min, 100% VP, 600 ohm) or 11.6 years (1.5 V at 0.24 ms,
60 beats/min, 100% VP, 600 ohm, VDD mode). c Atrial LP can be connected to the Aveir VR LP to provide dual
chamber leadless pacing. Regulatory approval for sole atrial use has been granted. d Currently does not have
regulatory approval. e Battery longevity is shown for the ISO standard and an alternative setting more applicable
to real world use. Adapted from reference [30], with permission.

5. Clinical Trials Investigating Leadless Pacing’s Safety and Efficacy
LEADLESS was a prospective, non-randomized, single-arm multicenter study of

the safety and clinical performance of a completely self-contained leadless cardiac pace-
maker (Nanostim Inc., Sunnyvale, CA, USA). The 33 patients enrolled had a mean age
of 77 ± 8 years, and 67% of the patients were male. Implantation was successful in 97%
(32/33) of the cohort. Five patients (15%) required the use of more than one pacing de-
vice due to inadvertent LV placement, malfunction of the release knob, delivery catheter
damage, damage to the device’s helix, and difficulty with the delivery catheter’s wire de-
flection mechanism. The one inadvertent device placement in the LV (via a patent foramen
ovale) was successfully retrieved without sequelae. A new device was implanted in the
RV apex. Another patient developed cardiac tamponade. He underwent emergent median
sternotomy on cardiopulmonary bypass and surgical repair of an RV apical perforation.
Despite gradual recovery, he suffered left-sided hemiplegia attributable to a right-sided
main cerebral artery ischemic infarct and died on post-procedure day 18 [26].

Follow-up of the other 31 patients who underwent successful implantation revealed
no pacemaker-related adverse events reported between 3 and 12 months of follow-up.
At 6 and 12 months of follow-up, the pacing performance results were as follows: mean
pacing threshold (at a 0.4 ms pulse width), 0.40 ± 0.26 Volts [V] and 0.43 ± 0.30 V; R-wave
amplitude 10.6 ± 2.6 millivolts [mV] and 10.3 ± 2.2 mV; and impedance 625 ± 205 Ohms
[Ω] and 627 ± 209 Ω. At the 12-month follow-up, 61% of the patients had their rate response
sensor activated. Adequate rate response was observed in all of these patients [26,31].

A subsequent report from the Leadless II study [32] reviewed data from the first
300 Nanostim (acquired by St. Jude Medical, Sylmar, CA, USA) device recipients followed
for 6 months as well as the entire cohort of 526 patients enrolled as of June 2015. The
primary composite efficacy end point was an acceptable pacing capture threshold (≤2.0 V
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at 0.4 ms) and an acceptable sensing amplitude (R wave ≥ 5.0 mV, or a value equal to or
greater than the value at implantation) through 6 months.

Implantation was successful in 289 of the initial 300 patients (96.3%) and 270 patients
(90%) had an acceptable primary composite end point. Inadequate pacing capture thresh-
olds were noted in 4 patients. Inadequate sensing was noted in 14 patients and one patient
had inadequate pacing and sensing parameters [32].

The primary safety end point was freedom from serious device-related adverse events
during the initial 6 months post-implantation. Twenty-two serious device-related adverse
events occurred in 20 patients (6.7%). Included among these complications were cardiac
perforation (4 [1.3%]), device dislodgement (5 [1.7%], elevated pacing thresholds requiring
device replacement (4 [1.3%]) and vascular complications in 4 [1.3%] patients [32].

There were 28 deaths (5.3%) in the total cohort, 19 (68%) occurred within 6 months,
8 (29%) between 6 and 12 months, and 1 (3%) after 12 months. The mean age of patients
who died was 79.1±10.9 years. Two deaths (0.4%) were classified by the clinical events
committee as procedure-related [32].

St. Jude Medical (now Abbott) halted implantation of its Nanostim leadless pacemaker
in October 2016, due to reports of battery malfunction resulting in loss of telemetry and
pacing output. St. Jude Medical had previously halted implantations of the Nanostim
leadless pacemaker after reports surfaced of problems with the device’s docking button,
which was designed to connect with the retrieval catheter, allowing the Nanostim device to
be retrieved and removed after implantation.

The redesigned version of Nanostim, Aveir LP (Abbott Cardiovascular, Plymouth, MN,
USA) incorporated important design improvements, including the use of standard transve-
nous pacemaker lithium carbon-monofluoride battery chemistry with a 12% (1.1 years)
longer battery life (up to 10.4 years), an altered form factor (10% shorter, 1.5-F wider, to
19.5-F), a modified docking button (facilitating retrievability), a modified delivery system
with an ergonomic design, and a new application-specific integrated circuit (ASIC) chip
designed to support a dual-chamber pacing system once approved [33].

The LEADLESS II–Phase 2 trial evaluated the efficacy and safety of the AVEIR LP
system in 200 patients with standard VVI(R) pacing indications. The primary efficacy end
point was a composite score of acceptable pacing thresholds (≤2.0 V at 0.4 ms) and R-wave
amplitudes (≥5.0 mV) at implantation through six weeks of follow-up.

The implant success rate was 98% and 83.2% did not require repositioning. The
primary safety end point “serious complications” occurred in eight patients. The most
common complications were cardiac tamponade and premature device deployment. The
primary efficacy end point was achieved in 188 of 196 (95.9%) patients who underwent
successful device implantation [33].

Shortly before the time when implantation of Nanostim was halted, Ritter and col-
leagues reported early experience with implantation of the Micra transcatheter [leadless]
pacing system (TPS, Model MC1VR01, Medtronic plc, Mounds View, MN, USA) [34]. Mi-
cra (physical characteristics noted above) was a single-chamber ventricular pacemaker
(Figure 2) [34]. A total of 140 patients underwent device implantation. The prespecified
safety goal was >85% freedom from unanticipated serious adverse device-related events
and efficacy was assessed via the mean 3-month pacing capture threshold. During a mean
follow-up of 1.9 ± 1.8 months, there were no unanticipated serious adverse events. How-
ever, 30 adverse events related to the system or procedure occurred (primarily transient
arrhythmias or femoral access complications) [34]. Among patients followed for 3 months
(n = 60), the mean pacing threshold was 0.51 ± 0.22 V, and none exceeded 2 V. The mean
R-wave amplitude was 16.1 ± 5.2 mV, and the mean impedance was 650.7 ± 130 Ω [34].
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Figure 2. Micra transvenous pacing system positioned in the right ventricle. RA = Right atrium;
RV = Right ventricle; LA = Left atrium; LV = Left ventricle; SVC = Superior vena cava; IVC = Inferior
vena cava. Reproduced from reference [35] with permission.

In 2016, Reynolds et al. reported an interim (6-month) analysis of the safety and
efficacy of the Micra transcatheter pacing system. The device was successfully implanted in
719 of 725 patients (99.2%). The primary efficacy end point was the percentage of patients
with low (≤2 V at a pulse width of 0.24 ms) and stable pacing thresholds (an increase of
≤1.5 V from the time of implantation) at 6 months post-implantation. The primary safety
end point was freedom from system-related or procedure-related major complications [35].

The primary efficacy goal was evaluated in 297 patients and was achieved in
292 (98.3%). In comparison to a historical (transvenous pacing) cohort, the safety pro-
file was comparable to that of a transvenous system while providing low and stable pacing
thresholds [35].

There were 28 major complications in 25 patients (4%), including four of six patients
who underwent unsuccessful attempts at implantation. Among these, one death occurred,
eleven patients had cardiac perforation or pericardial effusions, two patients had venous
thrombosis (one also had a pulmonary embolus), two had elevated pacing thresholds and
five developed arteriovenous fistulae at their femoral venous entry site [35].

For Micra™, the long term (12 months) safety objective of freedom from major com-
plications was achieved in 96%. Four new major complications occurred. Three patients
developed heart failure and one was associated with pacemaker syndrome (atrioventricular
dyssynchrony associated with a constellation of symptoms such as dyspnea, fatigue, and
exercise intolerance) [36,37]. Although there were 26 patients with 33 systemic infectious
events during the trial, none were attributed to implantation of the device.

Among the 630 patients with pacing threshold data available at 12 months, 93% had a
threshold of ≤1 V (mean 0.60 ± 0.38 V) at 0.24 ms pulse duration, and out of the 58 patients
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with available pacing threshold data at 24 months, 97% had a pacing threshold of ≤1 V
(mean 0.53 ± 0.23 V) also at 0.24 ms. Pacing thresholds tended to decrease after implant
and subsequently remained stable [36]. R-waves (ventricular sensing) were 15.1 mV at
12 months and 15.5 mV at 24 months [36].

In 2017, the acute performance of the Micra transcatheter pacemaker was reported from
a worldwide post-approval registry. Performance of the Micra transcatheter pacemaker in
the real-world setting demonstrated a high rate (99.6%) of implant success and low rate
(1.51%) of major complications over 30 days post-implant. The rates of pericardial effusion,
device dislodgement, and infection were low, reinforcing the results of the investigational
study [38].

The Longitudinal Coverage With Evidence Development Study on Micra Leadless
Pacemakers (Micra CED) is a continuously enrolling observational cohort study evaluating
complications, utilization, and outcomes of leadless VVI pacemakers in the US Medicare
fee-for-service population. At a 5-year follow-up, data from the post-approval registry
on 1809 patients enrolled between July 2015 and March 2018 revealed that Micra leadless
pacemaker outcomes continued to demonstrate low rates of major complications and
system revisions as well as an extremely low incidence of infection. There were no Micra
removals due to infection. At 36 months, system revision rates were significantly lower
with Micra compared to transvenous systems (3.2% vs. 6.6%, p < 0.001) [39].

Because single-chamber ventricular pacemakers do not provide atrial pacing or con-
sistent atrioventricular synchrony, implantation is limited to approximately 20% of patients
who have indications for a pacemaker [40,41]. In 2023, Knops and colleagues reported
90-day results from 300 patients who received a dual-chamber leadless pacing system
AVEIR DR (Abbott Cardiovascular, Plymouth, MN, USA) [40]. The system consisted of two
devices implanted percutaneously (in a single procedure), one in the right atrium and one
in the right ventricle. AVEIR AR LP was designed to accommodate the right atrial size and
sensitivity, with unique features designed to achieve implant stability and optimization. A
1.63 mm inactive outer helix provide primary fixation while the recessed inner helix acts as
the pacing electrode while also providing additional fixation and electrical stability [30,40].
As previously noted, the atrial leadless pacemaker is shorter (32.2 mm in length). The
right ventricular leadless pacemaker is physically identical to the commercially available
single-chamber leadless device. Both leadless devices are 6.5 mm in diameter (Figure 3).
The leadless pacemakers wirelessly communicated bidirectionally (implant-to-implant),
on a beat-to-beat basis via a series of short pulses delivered through the blood and my-
ocardial tissue after each locally paced or sensed event, thus maintaining atrioventricular
synchrony [40].

Procedural success was attained in 295 of 300 patients (98.3%). The atrial pacing device
was not implanted in 2 patients, and 3 had inadequate implant-to-implant communication.
Intraprocedural device dislodgment (6; 5 atrial) was successfully managed with retrieval
and repositioning. Five additional dislodgements occurred at 26 ± 17 days post procedure.
Another atrial device was implanted in three patients. The authors recommended targeting
the ostium of the appendage to optimize implant-to-implant communication and possibly
limit atrial lead dislodgement [40]. Eight revision procedures were performed. The indi-
cations for these revisions were atrial dislodgement (6), suboptimal implant-to-implant
communication (1), and intermittent ventricular capture (1). Successful percutaneous
retrieval was achieved in each instance. Six new leadless pacemakers were implanted suc-
cessfully. At the discretion of the investigator, two patients did not receive a replacement
atrial leadless pacemaker [40].
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Figure 3. (A) Device placement. The RV LP is positioned at the interventricular septum aiming to
reduce the risk of perforation. (B) The RA LP measures 5.8 mm and is shorter than the RV LP. It
is ideally positioned at the ostium of the RA appendage. RA = Right atrium; RV = Right ventricle.
Adapted from reference [40] with permission.

Four patients died. The deaths were adjudicated (by an independent clinical events
committee) to be unrelated to the device or the procedure [40].

The first primary performance end point, a combination of adequate atrial capture
threshold (≤3.0 V at 0.4 ms) and atrial sensing amplitude (P wave of ≥1.0 mV) at the
3-month visit was achieved in 90.2%. The second primary performance end point was
AV synchrony at the 3-month visit, defined as a paced or sensed ventricular beat within
300 ms of a paced or sensed atrial beat in ≥70% of the cardiac cycles evaluated during a
5 min seated recording, and was found in 97.3% [40]. The FDA-approved the AVEIR™ dual
chamber (DR) leadless pacemaker system on 5 July 2023 [42,43].

Unlike traditional dual-chamber transvenous permanent pacemakers, which sense
atrial electrical activity directly through a lead implanted in the right atrium, the Micra AV
algorithm (Medtronic, Inc., Minneapolis, MN, USA) identifies mechanical atrial contraction,
detected by the device implanted in the ventricle, and allows AV synchronous pacing. The
algorithm relies on a three-axis accelerometer to detect atrial contraction [44]. Micra AV
accelerometer signals and their relationship to surface ECG waves are depicted in Figure 4.
The A1 signal corresponds to closure of the tricuspid and mitral valves and the onset of ven-
tricular isovolumic contraction. Hence, A1 falls at the end of the electrocardiographic (ECG)
QRS complex (electrical systole precedes mechanical systole). The A2 signal corresponds to
aortic and pulmonic valve closures, corresponding to the end of ventricular systole. Hence,
the A2 signal typically falls at the end of T wave. The A3 signal corresponds to passive
ventricular filling while the A4 signal corresponds to atrial contraction. These (A3 and A4)
signals correspond to the E and A mitral inflow echocardiographic measurements [44]. In
Micra AV2, the AV conduction mode switch to a lower rate is programmable to facilitate AV
conduction. A3 and A4 thresholds were improved. The Auto+ A3 adjusts the A3 threshold
more appropriately to facilitate tracking at higher sinus rates. The auto A4 threshold could
be adjusted too high in Micra AV. Therefore, a programmable max A4 threshold was added
in Micra AV2 with a nominal value of 3.0 m/s2 (meters per second squared). A change in
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battery composition and a decrease in current drain increased longevity by 4+ years for
Micra AV2 and Micra VR2 devices. Micra AV2 and Micra VR2 have expanded labeling for
MRI scans < 1.5T [45].
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The MARVEL 2 (Micra Atrial tRacking using a Ventricular accELerometer 2, Min-
neapolis, MN, USA) study assessed the ability to provide AV synchronous pacing by me-
chanically sensing atrial contractions via a right ventricular Micra leadless pacemaker [46].
The algorithm facilitated AV synchrony ≥ 70% at rest in 95% of patients with complete
atrioventricular block (AVB) [46]. Micra AV2 was approved by the FDA in 2020 based on
the results of the MARVEL 2 study [45].

The AccelAV study was a prospective, non-randomized, multicenter clinical trial
conducted in the United States and Hong Kong and reported in 2023 [47]. The primary
aim of the AccelAV study was to characterize chronic atrioventricular synchrony in pa-
tients implanted with Micra AV (Model MC1AVR1, Medtronic, Inc., Minneapolis, MN,
USA). As noted above, Micra AV is implanted in the RV and uses the device’s accelerom-
eter to mechanically sense atrial contractions and facilitate VDD pacing. In this mode,
V = ventricular pacing, D = sensing in the atrium and ventricle, D = an intrinsic QRS can
inhibit ventricular pacing, and an intrinsic P-wave can trigger an AV delay resulting in
P-wave tracking and maintenance of AV synchrony via RV pacing [48]. In complete AV
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block, the intrinsic P-wave does not conduct to the ventricle and the end of the AV delay is
followed by a paced ventricular complex [48].

Among 54 patients with normal sinus node function and complete AVB, Micra AV
mean resting AV synchrony was 85.4% at 1 month, and ambulatory AV synchrony was
74.8%. In a subset of 20 patients with programming optimization, mean ambulatory AV
synchrony was 82.6% [47]. Medtronic received the CE mark for these devices in January
2024 [49].

6. Implantation Techniques
The vast majority of leadless pacemakers have been implanted via the following

sequence: Right femoral vein access, introduction and advancement of a large (e.g., 27 F)
sheath under fluoroscopy navigating the delivery system to superior vena cava and the
right interventricular septum, deployment, and fixation. If difficulty with venous stenosis,
occlusion, or severe tortuosity of the right femoral vein is encountered, a left femoral
venous approach may also be used [50]. As previously noted, right atrial devices are ideally
advanced to the ostium of the right atrial appendage [40].

In addition to the difficulties noted above, femoral vein access may be accompanied
by complications in the groin area, such as hematomas, arteriovenous fistulae, or arterial
pseudoaneurysms, each occurring with an approximate risk of 1%. Moreover, stenosis or a
tortuous anatomy of the inferior vena cava (IVC) may hinder the successful implantation
of a femoral leadless pacemaker. Therefore, Molitor et al. compared peri-procedural
safety and efficacy in the first 100 consecutive patients who underwent Micra™ leadless
pacemaker implantation via the right internal jugular vein (at two centers) to the first
100 patients using a femoral implantation approach at the University Hospital Zurich.
The mean procedure (35.63 ± 10.29 versus 48.9 ± 21.0 min; p < 0.01) and fluoroscopy
times (4.66 ± 5.16 min versus 7.7 ± 7.8 min; p < 0.01) were shorter compared to the
femoral approach. Electrical parameters were similar between the two techniques. Two
complications occurred during jugular veinous implantation (1 pericardial effusion and
1 dislocation), versus 16 complications using the femoral approach (1 pericardial effusion,
2 femoral artery injuries, and 13 major groin hematomas). This difference was statistically
significant (p= 0.0005) [51]. Additional experience with this technique is needed to shed
further light on its efficacy and safety.

El-Chami and Shah have suggested ways to avoid ventricular perforation (see Section 8,
below). They suggest: (1) Always advancing the delivery system over a stiff wire under
fluoroscopic guidance; (2) Withdrawing the delivery sheath in the right atrium rather than
advancing the delivery system out of the sheath; (3) Avoiding traumatic manipulation
of the delivery system by starting counter-clockwise rotation in the lower one-third of
the RA to steer the delivery system anteriorly toward the tricuspid valve; (4) Avoiding
suddenly popping the delivery system across the tricuspid valve and into the right ventricle;
(5) Making sure the delivery system is free in the right ventricle and applying clockwise
torque toward the right ventricular septum (to avoid the risk of perforation [see below] in
the inferior right ventricular recess and apex); and (6) Avoiding frequent deployments (>5)
if a good position or electrical characteristics are not achieved [50].

7. Indications for Leadless Pacing
Transvenous permanent pacing is typically performed by accessing the subclavian

and axillary veins via puncture, or the cephalic vein via cutdown to implant transvenous
leads [52]. Common acute transvenous system-related issues include lead dislodgement,
thoracic trauma, vascular injury, pocket hematoma, and infection. Common long-term
transvenous pacemaker complications (which may require transvenous lead extraction)
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include lead conductor fractures, abnormal lead sensing or pacing values, insulation
failures, device header or connector problems, premature battery depletion, and pocket
infection [53]. Leadless permanent pacing was developed to bypass the two major weak-
nesses of the transvenous systems, the lead(s) and the subcutaneous (or submuscular)
pocket [54–56]. They are an excellent alternative approach in case of specific comorbidities,
such as limited upper venous access, transvenous pacemaker infection (see below) and
kidney failure patients receiving hemodialysis (who are also likely to have limited central
venous access) [54,56]. While femoral implantation of transvenous leads is possible, it is
technically challenging and is a far less desirable option [57].

The initial indication for leadless pacing therapy was mainly limited to patients who
had persistent or permanent AF with a slow ventricular response. Single chamber ventric-
ular leadless pacing may also be indicated in patients with paroxysmal atrioventricular
(AV) block, sinus node disease or syncope, in which infrequent ventricular pacing is ex-
pected [54]. A European Heart Rhythm Association (EHRA) survey regarding the use of
leadless pacing in Europe revealed that, among 52 centers from 21 countries, the most com-
mon indications for leadless pacing were permanent AF (83%), a history of complications
with a conventional pacemaker (87%), anticipated difficult vascular access (91%) and an
expected higher risk of infection (70%) [54,58].

The 2021 European Society of Cardiology (ESC) guidelines on cardiac pacing and
cardiac resynchronization therapy provided similar recommendations for leadless pacing.
As noted above, the guidelines recommended patients without upper-extremity venous
access (making the usual transvenous pacing approaches impossible or, at least, impractical)
as the most appropriate candidates (ESC Class IIa-B). The low infection rates associated
with leadless pacing were noted to make LP attractive for patients on hemodialysis and
those with a previous history of a pacemaker infection (ESC Class IIa-B). These guidelines
also recommended that LP be considered in all single-lead pacemaker candidates, such as
those with permanent atrial fibrillation and patients likely to have a low pacing burden
(ESC Class IIb-C). Given the uncertainty surrounding the optimal LP replacement strategy,
older patients (with a limited life expectancy) may be more suitable candidates for leadless
pacing [30,59].

In the previously noted prospective, multicenter, single-group study to evaluate the
safety and performance of a dual-chamber leadless pacemaker system, the most com-
mon indications for dual-chamber pacemaker implantation were sinus-node dysfunction
(190 patients [63.3%]) and atrioventricular block (100 patients [33.3%]) [40].

8. Risks and Complications of Leadless Pacing
Despite the potential advantages of leadless pacing (see below), the risk of procedural

complications is far from insignificant. In 2022, Haddadin et al. reported the rate of com-
plications in 7821 patients who underwent leadless pacemaker implantation (Table 3) [60].
Immediate procedure-related complications occurred in 7.5% of patients. Pericardial
effusion that did not require pericardiocentesis occurred in 1.9% of patients, and pericar-
diocentesis was performed in 1.0%. Vascular complications occurred in 2.3% of patients
(0.33% required repair), and device dislodgment occurred in 0.51%. The most significant
predictors of procedural complications were end-stage renal disease (odds ratio [OR] 1.65;
95% confidence interval [CI] 1.17–2.32; p = 0.004), congestive heart failure (OR 1.28; 95%
CI 1.01–1.62; p = 0.04), and coagulopathy (OR 1.77; 95% CI 1.34–2.34; p < 0.001). All-cause
readmission occurred in 17.9% of patients within 30 days of device implantation, and
1.36% were procedure-related. At 30 days post-implant, 0.25% of patients needed a new
pacemaker, and 0.18% had pericardial complications [60]. It is important to understand
that these data were extracted from the United States National Readmission Database
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(NRD), between 2016 and 2018. Therefore, it is likely that this study reflects a relatively
early clinical experience. A substantial operator learning curve exists for LP implantations,
and the implanters might not have been at the end of their learning phase. Additional
safety data from large (>500 patients) single-chamber LP large registries and regulatory
trials is summarized in Table 4 [30]. Table 5 compares complication rates between patients
implanted with leadless versus transvenous pacemakers

Table 3. Leadless pacemaker implant complications. In-hospital clinical and procedural outcomes.

Clinical Outcomes

All-cause death 513 (6.6)

Acute venous thromboembolism 443 (5.7)

Acute stroke 285 (3.6)

Any bleeding 1179 (15.1)

Blood transfusion 693 (8.9)

Immediate procedural outcomes

Total procedure-related complication rates * 588 (7.5)

All vascular complications 181 (2.31)

Vascular complications requiring repair 26 (0.33)

Procedure-related bleeding 194 (2.48)

Pericardial effusion without requiring
pericardiocentesis 146 (1.9)

Pericardial effusion without pericardiocentesis 82 (1.0)

Thoracotomy among patients with effusion † 26 (11.5)

Device dislodgment 40 (0.51)

Removal or repositioning of leadless pacemaker 253 (3.25)

Resource Utilization

Post-procedure length of stay (d) 2 days (1–6)

Cost (US$) $34,483 (23,602–57,040)
Values are given as n (%) or median (IQR). IQR = interquartile range. * Total procedure-related complications
included vascular complications, pericardial effusion, device dislodgment, and procedure-related bleeding. † The
percentage of thoracotomy was calculated among patients with pericardial effusion (n = 228). Reproduced from
reference [60] with permission.

Table 4. Short-term and long-term complications of leadless pacing.

Leadless Leadless II Leadless
Observational

Leadless II
Phase 2

Micra
IDE

Micra
PAR

MAP
EMEA

Italian
Registry Total

LP model Nanostim Nanostim Nanostim Aveir VR Micra VR Micra VR Micra VR Micra VR

Short-term
complication rate, % 6.1 5.8 5.3 4.8 2.9 2.5 2.6 0.5 3.0

No. of patients 33 718 300 210 726 1809 928 665 5389

Follow-up duration,
months 3 1 6 a 1.5 1 1 1 1 1.3

Pericardial
effusion/cardiac

perforation
3.0 1.5 1.3 1.9 1.4 0.4 0.6 0.0 0.8

Dislodgement during
procedure 0.0 0.3 0.0 1.4 0.0 0.1 0.0 n/a 0.1

Dislodgement after
procedure 0.0 1 0.3 0.0 0.0 0.1 0.0 0.2 0.2
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Table 4. Cont.

Leadless Leadless II Leadless
Observational

Leadless II
Phase 2

Micra
IDE

Micra
PAR

MAP
EMEA

Italian
Registry Total

Vascular complications 0.0 2.2 1.3 1.0 1.2 0.6 1.1 0.2 0.7

Other 3.0 1.1 3.0 1.0 0.7 1.6 0.9 0.2 1.4

Long-term
complication rate, % b 3.0 0.6 n/a 1.9 1.1 c 1.8 1.0 0.0 1.1

No. of patients 33 718 n/a 210 726 1809 928 665 5089

Mean follow-up
duration, months 38 d 10.6 d n/a 14.4 16.4 51.1 d 9.7 39 e 29.7

Dislodgement 0.0 0.0 n/a 0.0 0.0 0.0 0.0 0.0 0.0

Infection 0.0 0.0 n/a 0.0 0.0 0.1 0.1 0.0 0.0

Other 3.0 0.6 n/a 1.9 1.1 1.8 1.1 0.0 1.2

Event rates are unadjusted rates in patients with ≥1 occurrence(s) of the specified complication (except for “Other”
which is the combined number or rate of “Other” complications). a All complications occurred within 3 months. b

Occurring after short-term follow-up period. c Combined 30 days to 6 months and >6 months rates. d Median.
e Median of LP and TV-PM cohort combined. Adapted from reference [30] with permission.

Table 5. Complications between cohorts patients implanted with a leadless pacemaker compared to
patients implanted with a transvenous pacemaker.

All Complications

LPs TVPMs

Type of Analysis Follow-Up
(Months) n Rate, % n Rate, % p-Value HR (95% CI)

Leadless II
(Nanostim)

Matched.1:2 short-term
complications.

Matched. 1:2 long-term
complications.

1
LPs 10.6

TV-PM 13.4 b

718
718

5.8
0.6

1435
1435

9.4
4.9

0.010
<0.001

Overall
0.44

(0.32–0.60)

Micra IDE
(MicraVR)

Unmatched, unadjusted a

Matched. 1:1.
12
12

726
726

4.0
4.0

2667
726

7.6
n/a

0.001
<0.001

0.46
(0.35–0.77)

0.52
(0.30–0.72)

Micra PAR
(MicraVR)

Unmatched, unadjusted.
Adjusted rates of

complications.

36-month
estimate

36-month
estimate

1809
1809

4.1
n/a

2667
2667

8.5
n/a

<0.001
<0.001

0.47
(0.36–0.61)

0.43
(0.29–0.65)

Micra CED
(MicraVR)

Adjusted rates of
short-term complications.

Adjusted rates of
long-term complications. c

1
3-year

estimate

5746
6219

7.7
4.9

9662
10,212

7.4
7.1

0.49
<0.0001

Not reported
0.68

(0.59–0.78)

Micra AV CED
(Micra AV)

Adjusted rates of
short-term complications.

Adjusted rates of
long-term complications. c

1
6-month
estimate

7471
7471

8.6
3.5

107,800
107,800

11.0
7.0

<0.0001
<0.0001

Not reported
0.50

(0.43–0.57)

U.S. data
(NRD 2017-2019;

Micra VR) d
Unmatched, unadjusted. In hospital 5986 16.0 131,746 6.4 <0.001 Not reported

U.S. data
(NIS 2017-2019;

Micra VR) d

Unmatched, unadjusted.
Matched. 1:1.

In hospital
In hospital

16,825
3084

8.6
8.0

565,845
3084

11.2
13.2

<0.001
<0.001

Not reported
Not reported

Italian Registry
(MicraVR d)

Unmatched, unadjusted.
Matched. 1:1.

39 e

39 e
665
442

0.5
0.7

2004
442

2.8
1.3

0.003
0.129

Not reported
Not reported

Event rates are the rates of patients with ≥1 complication. a Occurring after the short-term window. b Median.
c includes all complications after implantation. d Studies may overlap. e Median of LP and TVPM combined.
Adapted from reference [30] with permission.
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9. Advantages and Disadvantages of LPs
Table 6 [61–73] contrasts the advantages and disadvantages of leadless pacing. One

of the major drawbacks of LPs is the higher rate of perforation and pericardial effusion at
implantation compared to transvenous pacing systems. LP-related perforations are not
only more common, but also more severe [30]. LP-related perforations are associated with
a high number of deaths, tamponades, and rescue thoracotomies. A 2021 analysis from
the MAUDE database revealed that 96% of reported major adverse events with LPs were
related to perforation and 27% of major adverse events required a sternotomy [69]. Patient
characteristics associated with an increased risk of cardiac perforation included advanced
age, female sex, low body mass index (<20), chronic obstructive pulmonary disease, heart
failure, prior myocardial infarction, COPD, absence of prior cardiothoracic surgery, and
dialysis [30,70]. A recent position paper recommended that LP implantation should prefer-
ably be performed at centers with on-site cardiothoracic surgery support [30,71]. For RV
pacing, placement of the device at the interventricular septum rather than the apex may
reduce the likelihood of perforation (see Figures 2 and 3).

Table 6. Strengths and weaknesses of leadless pacing.

LP Advantages LP Disadvantages

Reduced risk of pocket infection, hematoma
LP implantation after extraction of an infected TVPM has been
performed without recurrent infection [65]

Potential cardiac perforation, effusion, and tamponade [69–72]

Should be strongly considered in dialysis recipients to preserve
upper extremity venous access and limit the risk of transient
bacteremia and device infection [64]

Inexperienced operators may have poorer results [30,68]

No risk of lead dislodgement, fracture or insulation break Device may dislodge and retrieval may be needed (this is not
always easy or even feasible)

AVEIR DR uses 2 devices to provide AV synchrony [62]
Micra AV permits atrial tracking and ventricular pacing Micra limited to single chamber pacing

Cosmetic: No chest incision or bulging [61] Uncertain whether old or dysfunctional devices should be
routinely removed

Micra VR2 provides rate response No defibrillation capabilities * [61,65,66]

Battery life of single chamber devices comparable to
transvenous devices (~16–17 years) [49]

Battery life of dual chamber devices reduced (particularly atrial
device in AVEIR DR [6.4 years]) [62]

Usually safe for MRI, but there may be a limit based on the
strength of the magnet in the MRI machine [61] Indications are evolving and are incompletely defined.

Length of hospital stay may be shorter [67]
30-day all-cause readmission rates have been reported to be
significantly higher
(17.9% vs. ~13%) than for transvenous PPM procedures [60,63]

* Solutions in development.

Despite their potential problems, LPs are associated with a substantially lower overall
complication rate, mainly caused by a low rate of long-term complications [30]. The major
advantage of LPs is the elimination of lead and pocket-related complications. Avoiding
pocket and lead revision reduces the rate of infection. This predominantly reflects the lack
of a subcutaneous pocket (the major source of device-related infection) and to a lesser extent
the absence of transvenous leads [30]. In a sub-analysis of Micra PAR, 105 patients had
Micra LP implanted after extraction of an infected TV-PPM (37% of Micra were implanted
the same day as device removal and lead extraction) [65,69]. No reinfection of the Micra LP
was seen [65].
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10. Investigational Devices *
* = Without FDA approval, without CE mark or without both.
Boston Scientific has investigated the use of a Modular CRM (modular cardiac rhythm)

management system (mCRM™). The system combines use of a subcutaneous ICD (EM-
BLEM™ S-ICD) and a leadless pacemaker EMPOWER™ LP. Modular CRM therapy aims
to reduce the risk of transvenous leads while providing the option to pace for bradycardia
or receive antitachycardia pacing (ATP) for ventricular tachyarrhythmias [66].

Knops et al. recently reported results from a multinational, single-group study that
enrolled patients at risk of sudden death from ventricular arrhythmias and followed them
for six months after implantation of the modular pacemaker–defibrillator system [67].
The investigators enrolled 293 patients and 151 completed the 6-month follow-up period.
Wireless device communication was successful in 98.8% of communication tests and 97.5%
were free from leadless pacemaker-related major complications. Pacing thresholds ≤ 2.0 V
were achieved in 97.4% [67].

The combined system exceeded performance goals for freedom from major complica-
tions. Eight patients died. None of the deaths were judged to be related to arrhythmias
or the implantation procedure [67]. Boston Scientific will pursue FDA approval for the
EMPOWER leadless pacemaker and mCRM system in 2025 [73].

The subcutaneous ICD (S-ICD) was developed to avoid the vascular risks of transve-
nous ICDs. The first S-ICD, the SQRX (Cameron Health, San Clemente, CA, USA), was
approved by the United States Food and Drug Administration in 2012. Cameron Health
was acquired by Boston Scientific (Natick, MA, USA) and the second and third generations
of the device were released in 2015 and 2016 [74]. In a secondary analysis of the PRAETO-
RIAN trial, significantly fewer lead-related complications and systemic infections occurred
in the S-ICD group compared with the TV-ICD group (p < 0.001, p = 0.03, respectively).
In addition, more complications required invasive interventions in the TV-ICD group
compared with the S-ICD group (8.3% vs. 4.3%, HR: 0.59; p = 0.047) [75]. Medtronic has
developed an extravascular implantable cardioverter-defibrillator (ICD) that has a subster-
nally implanted single lead to enable pause-prevention pacing, antitachycardia pacing, and
defibrillation energy, similar to transvenous ICDs [76]. While none of these devices are
leadless, they send a clear message that transvenous leads are an imperfect option.

Cardiac physiological pacing (CPP) refers to any form of cardiac pacing intended to
restore or preserve synchrony of ventricular contraction. Biventricular (BiV) pacing is the
most common method used to achieve resynchronization. Left ventricular leads are usually
implanted epicardially via the coronary sinus (CS) into the cardiac veins (Figure 5), ideally
targeting areas of late activation (most often the lateral or posterolateral wall) [77,78]. When
CRT cannot be obtained with a CS LV lead due to anatomical or functional considerations,
options include surgical placement of an epicardial lead, His-bundle pacing and left bundle
branch pacing [77]. His-bundle pacing has been limited by relatively high pacing thresholds
and lead instability. Left bundle branch pacing has been increasingly used because it
overcomes those issues and is more likely to result in the narrowing of the QRS complex
when conduction disease is more distal [79].

Reasons for failure or abandonment of CRT with BiV pacing include: venous inacces-
sibility (subclavian, innominate vein, or superior vena cava occlusion), CS inaccessibility
(occlusion, dissection, perforation, obstructive Thebesian valve), cardiac vein inaccessibility
(small, angulated, or tortuous vein branches), suboptimal vein location (non-lateral vein,
anterior interventricular vein), persistent SVC, poor lead stability (prone to dislodgment),
high-capture thresholds, diaphragmatic stimulation, and major complications such as
pericardial effusion/tamponade, CS or vascular dissection, sustained ventricular tach-
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yarrhythmias/cardiac arrest, pulmonary embolism, respiratory failure or stroke [77]. These
issues make potential leadless options exciting.
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Figure 5. (A) Posteroanterior and (B) lateral radiographs showing tip of left ventricular lead (arrows)
in a tributary of the middle cardiac vein. Despite proximity to the left hemidiaphragm, phrenic
near stimulation did not take place. The right ventricular lead points anteriorly toward the rib cage.
Reproduced from reference [78] with permission.

The Wireless Stimulation Endocardial for Cardiac Resynchronization (WiSE-CRT) sys-
tem (EBR Systems, Sunnyvale, CA, USA) includes a receiver electrode (9.1 mm × 2.7 mm)
that can be implanted (via a retrograde aortic or transseptal approach) in the left ventricular
endocardium, a transmitter implanted in the intercostal space that detects RV pacing and
delivers ultrasound energy to the receiver electrode, and a battery. The receiver electrode
transforms ultrasound energy into electrical energy which results in LV pacing [69,80]
(Figure 6).
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In the SELECT-LV (Safety and Performance of Electrodes implanted in the Left Ventri-
cle) multi-center non-randomized trial, 35 patients received the new WiSE-CRT system after
failing conventional CRT. Implantation was successful in 34 patients (97.1%). Biventricular
pacing was seen in 33 patients (97.1%) at one month. Clinical improvement was achieved
in 84.8% of patients. An improvement > 5% in left ventricular ejection fraction was noted
in 66%. Serious complications within 24 h occurred in 3 patients. Additional complications
occurred in 8 patients after 24 h. These included VF during implantation in one patient,
electrode embolization, groin complications, pocket complications, and one cerebrovascular
accident [69,81].

Subsequently, 90 patients from 14 European centers underwent WiSE-CRT system
implantation. The system was successfully implanted in 85 (94.4%) patients. Improvement
in heart failure symptoms occurred in seventy percent of patients. However, acute (<24 h),
1- to 30-day, and 1- to 6-month complications rates were 4.4%, 18.8%, and 6.7%, respectively.
Five deaths (5.6%) occurred within 6 months (three were procedure-related). Because 76%
of complications occurred within centers’ first 10 procedures, the authors speculated that a
learning curve was likely involved in implantation outcomes [69,82].

Data presented at a late-breaking session at Heart Rhythm Society 2023 from the
SOLVE-CRT study revealed that the safety and efficacy end points were met with a 16.4%
improvement in cardiac function (p = 0.003) and an absence of device and procedure-related
complications in 80.9 percent of patients (p < 0.001) [83–85]. The FDA granted the WiSE-CRT
system a Breakthrough Device designation, supporting priority review and paving the way
for premarket approval [85]. The WiSE-CRT system received European CE mark approval
in 2015.
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In 2019, Funasako and colleagues reported two cases of a totally leadless biventricular
pacing approach. The Micra Transcatheter Pacemaker System was used for RV pacing and
was combined with the WiSE-CRT wireless endocardial pacing system to achieve their
goal [86].

The first patient had long-standing persistent atrial fibrillation (AF) with a rapid ven-
tricular response. Following Micra implantation, AV junction ablation was performed.
Unfortunately, the patient developed LV systolic dysfunction (EF 33%) and heart failure.
Subsequently, the WiSE-CRT system was added. At a 6-month follow-up, the patient
reported symptomatic improvement and transthoracic echocardiography revealed normal-
ization of the LV ejection fraction [86].

The second patient had previously undergone mitral and tricuspid annuloplasty
along with a bilateral maze procedure for persistent AF. However, AF continued, and the
patient suffered episodes of complete AV block. A Micra device was implanted 1-year
post-cardiac surgery. Due to progressive LV dysfunction (EF 25%), a WiSE LV system was
implanted [86].

One week after a WiSE LV system was implanted, the patient’s symptoms of heart
failure resolved. At a 6-month follow-up, the patient was completely asymptomatic and
reported large increases in exercise tolerance and quality of life [86].

In 2021, Carabelli et al. reported eight patients with indications for both Micra and
WiSE-CRT systems due to one of the following: (a) heart failure related to a high burden
of RV pacing by Micra; (b) the need to remove a previously infected CRT system and/or
perceived persistent high risk of further system infection; or (c) anatomical conditions such
as venous obstruction or difficult coronary sinus anatomy that resulted in failed attempts
at conventional CRT system implantation [69,87].

Similarly to the procedure described in Funasako’s report [86], the WiSE system was
implanted in two steps. The battery was implanted subcutaneously at the midaxillary
line and connected to the transmitter. The transmitter was placed in the fourth to sixth
intercostal spaces lateral to the left parasternal border at a site (confirmed by echocardiog-
raphy) with a lung- and bone-free acoustic window to the left ventricle [87]. Subsequently,
a combination of fluoroscopy, echocardiography, electrical timing and pacing thresholds
was used to identify an appropriate endocardial LV pacing site. Once this was determined,
the electrode was deployed and anchored into the LV endocardium [87].

Seven patients reached the 6-month follow-up (one died at 4 months due to acute heart
failure). The others had significant improvement in left ventricular EF (+11.29 ± 8.46%;
p = 0.018) and four patients had an improvement in LVEF ≥10% [87]. In both studies, QRS
duration decreased after the WiSE system was turned on [86,87].

11. Conclusions
Leadless pacing is an exciting clinical option and is associated with rapidly evolving

technology. It offers physicians and many patients a viable alternative to transvenous
pacing. It is particularly enticing as a way to reduce procedural morbidity, particularly
the risk of infection, because pocket formation is not needed. It offers an opportunity to
replace an infected transvenous device and minimize or eliminate recurrent infection. It is
clear that implanters require a learning curve, and lack of experience may result in more
complications. Cardiac perforation and pericardial effusions/cardiac tamponade remain
the most problematic issues. Although likely to be controversial, recommendations suggest
that leadless device implantation should not take place in centers that do not perform
cardiac surgery. Optimal management of these devices at end of life remains uncertain and
time will tell whether extraction or simply adding a new device is more advantageous.
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