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Electromagnetic devices are a continuous driving force in cutting-edge research and
technology, finding applications in diverse fields such as optics [1–3], photonics [4], RF
waves [5], and many others [6–8]. The design and optimization of electromagnetic devices
have become essential to meet the demanding performance requirements for high efficiency,
high power density, and reduced form factors. Over the years, various methods, such as
analytic designs [9], evolutionary-based designs [10], gradient-based optimization [11,12],
and neural network-based design techniques [13,14], have been employed to improve the
design of electromagnetic devices.

Underpinning these design and optimization strategies are the fundamental principles
of optics, photonics, and electromagnetics, which collectively drive modern technological
advancements across a broad spectrum of applications. The field of optics focuses on the
behavior and manipulation of light, including reflection, refraction, and diffraction, while
photonics focuses on generating, controlling, and detecting photons for use in devices
such as lasers, optical fibers, and imaging systems. Electromagnetics, the overarching
discipline that unifies electric and magnetic phenomena, provides a theoretical framework
for understanding how electromagnetic waves propagate and interact with various materi-
als. Together, these fields enable innovations in high-speed communication systems [15],
optical computing [16], and photonic integrated circuits [17], among others [18,19]. Con-
tinued research into advanced materials [20], fabrication processes [21], and simulation
techniques [22–24] drives further progress, leading to the development of more compact,
energy-efficient, and high-performance devices that continue to push the boundaries of
what is possible in both fundamental science and practical applications.

This Special Issue features a diverse collection of recent advances in electromag-
netic devices, offering insights and practical approaches that will be of significant value
to researchers.

Zhang et al. [25] introduced a multifunctional metasurface designed for full-space
electromagnetic wavefront control, which holds promise for applications in 6G communi-
cations. This work exemplifies how reconfigurability and compact designs can meet the
growing demands for versatile electromagnetic systems. The authors achieved polarization
conversion and reflection-beam pattern tuning, demonstrating a robust combination of
theoretical modeling, simulation, and experimental validation.

Ma et al. [26] presented a 60 GHz slotted array horn antenna optimized for radar
sensing in industrial scenarios. This work demonstrates the potential of millimeter-wave
technologies in next-generation radar systems by achieving a high gain and wide band-
width. Their method involved meticulous radiation-band structure design and array
optimization to achieve a high gain and a wide impedance bandwidth, validated through
fabrication and testing.
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Zhao et al. [27] explored a five-degree-of-freedom electromagnetic levitation actuator
for laser cutting machines. Their work offers a compelling solution for achieving high-speed,
high-precision control, which is crucial for advanced manufacturing. They employed non-
linear analytical modeling, finite element simulations, and PID-based centralized control to
achieve high-speed and high-precision lens manipulation in laser cutting applications.

Huang et al. [28] proposed a high-efficiency 2.45 GHz rectifying circuit for RF energy
collection systems. This innovative approach could pave the way for sustainable energy
solutions in IoT and low-power devices. Their approach focused on suppressing harmonic
components and optimizing the rectifier’s DC-RF conversion efficiency through detailed
simulation and experimental comparisons.

Ahmed et al. [29] and Abdou et al. [30] introduced compact and high-performance
devices for 5G and beyond. Ahmed et al. focus on a quasi-twisted branch-line coupler,
while Abdou et al. present a multiband millimeter-wave dielectric resonator antenna
with omnidirectional radiation capabilities. By utilizing a double-layered microstrip line
structure with a slow-wave design, Ahmed et al. achieved a significant size reduction and
enhanced bandwidth, supported by their simulation and fabrication results. Abdou et al.
utilized the excitation of specific electromagnetic modes and validated their design through
simulation and measurements.

Behera et al. [31] investigated circularly polarized metasurface antennas tailored for
hybrid wireless applications. This study emphasizes energy-efficient designs that cater to
IoT and smart sensor networks. Behera et al. adopted AI-driven surrogate model-assisted
optimization to design a polarization-reconfigurable metasurface antenna. Their study
combined the use of smart metasurfaces with reconfigurable monopole antennas to achieve
high gain and broad bandwidth.

Li et al. [32] contributed a novel dual-polarized patch antenna with enhanced isolation,
showcasing its utility in modern wireless communication systems, where signal clarity
and separation are paramount. Their design methodology incorporated equivalent circuit
modeling and rigorous design formulas to enhance isolation and bandwidth.

Hu et al. [33] examined the compatibility of flexible UHF antenna sensors with SF6/N2
gas mixtures. Their findings support the development of reliable sensors for high-voltage
applications. Their experimental approach combined Fourier-transform infrared spec-
troscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy to analyze
material interactions.

Zhan et al. [34] proposed a Ka-band MEMS delay with low insertion loss and high ac-
curacy. This design has significant implications for phased-array radar and communication
systems. Their method involved optimizing the structure to minimize insertion loss and
enhance delay accuracy through system simulations.

Neto et al. [35] explored the development, applications, and potential of planar printed
structures inspired by Matryoshka geometries. These structures leverage the nesting princi-
ples of Matryoshka dolls to achieve compact, multi-resonance, and wideband configura-
tions. This study demonstrates various applications of planar printed circuit technology,
focusing on frequency-selective surfaces (FSSs), filters, antennas, and sensors.

Wang et al. [36] introduced a terahertz metamaterial absorber based on vanadium
dioxide (VO2) that achieves switchable ultra-wideband and ultra-narrowband absorption
by leveraging the material’s phase-transition properties. The proposed absorber comprises
a multilayer structure with VO2 as the topmost layer, supported by an insulating Topas
layer, a PMI dielectric layer, and a gold reflector.
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Weng et al. [37] proposed a miniaturized loaded open-boundary quad-ridge horn (LO-
QRH) antenna engineered for interferometric direction-finding systems. By optimizing the
ridge structure and incorporating resistive loading and a self-balanced feed, they effectively
suppressed common-mode currents, ensuring radiation pattern symmetry and minimiz-
ing phase center fluctuations. This work underscores the potential of compact LOQRH
antennas to improve accuracy and efficiency in multiprobe interferometric applications.

In conclusion, this Special Issue focused on the potential of recent progress in elec-
tromagnetic devices to address critical challenges across various applications. The papers
included in this Special Issue demonstrate the diversity and impact of cutting-edge re-
search in this field, from advanced wireless communication systems and energy-harvesting
technologies to precision manufacturing and high-performance antennas. A key theme
emerging from these works is the emphasis on innovative design methods and multi-
disciplinary approaches. For example, the development of reconfigurable metasurfaces,
compact and high-efficiency components for 5G and beyond, and advanced actuators for
laser machining illustrates the continuous push for solutions that combine functionality,
precision, and scalability. Similarly, efforts to enhance energy-harvesting efficiency, im-
prove antenna isolation, and enable omnidirectional radiation patterns reflect the field’s
commitment to addressing practical needs in real-world applications. Another notable
aspect is the range of applications explored, from 6G communications, radar sensing, and
hybrid wireless systems to high-voltage power monitoring and phased-array systems.
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