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Abstract: The complex application environments of gas detection, such as in industrial
process monitoring and control, atmospheric and environmental monitoring, and food
safety, require real-time and online high-sensitivity gas detection, as well as the accurate
identification and quantitative analysis of gas samples. Despite the progress in gas analysis
and detection methods, high-precision and high-sensitivity detection requirements for
target gases of multiple components in mixed gases are still challenging. Here, we demon-
strate a micro-electromechanical system (MEMS) with near-infrared (NIR) spectral gas
detection technology and spectral model training, which is used to improve the detection
and classification of multi-component gases in food. During blind sample testing, the
NIR spectral gas sensor demonstrated over 90% accuracy in identifying mixed gases, as
well as achieving the classification of ethanol concentration. We envision that our design
strategy of an NIR spectral gas sensor could enhance the gas detection and distinguish-
ing ability under the conditions of background gas interference and cross-interference in
multi-component detection.

Keywords: MEMS; micro-electromechanical systems; near-infrared spectroscopy; gas sensor

1. Introduction
With the increasing demand for human health and life quality, the rapid detection of

foods’ freshness based on food odor is a rapidly developing field [1–3]. Especially in the
fields of food preservation [4,5], perfume formulation, and environmental protection, the
usual approach is to use a combination of gas sensors with different gas sensitivities to
detect different types of gases, but this often leads to cross-interference response problems
between chips with different gas-sensitive principles. Although progress in many gas
analysis and detection methods has been made, such as in gas chromatography-mass spec-
trometry, semiconductor gas sensor detection, and electrochemical gas sensor detection,
and so on [6–10], conventional spectrometers are usually heavy, expensive, and demand
high installation and maintenance costs, limiting the broader applicability of these meth-
ods [11,12]. Constructing such a gas sensor in an integrated miniaturized format to achieve
high-precision and high-sensitivity detection of target gases of multiple components in
mixed gases is still challenging [13–18]. For this reason, miniaturized spectrometers have
gained both academic and industrial momentum in the last few years with many proposals
using different technologies, where MEMS technology is a strong candidate [19–21].
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While mid-infrared (MIR) gas sensors are well-established, the photodetectors in MIR
gas sensors usually face challenges, such a higher noise and slower response times than NIR
sensors. Additionally, MIR gas sensors typically require cooling, which further complicates
their use [22–27]. However, in the context of low-cost gas detection, despite their lower
sensitivity (i.e., it is less effective for detecting gases at concentrations below 0.1%w), NIR
gas sensors feature distinctive characteristics, such as not requiring the injection of high-
purity nitrogen to obtain a baseline under non-absorption conditions, while their ability to
carry out long-distance measurements reduces the restrictions on the test environment; as
such, they have received substantial interest. The working principle of NIR gas sensors
relies on the unique absorption fingerprints in the NIR spectral band (780–2526 nm) of
gas molecules, and the frequency and harmonic frequencies of this regime match the
vibration frequencies of the hydrogen-containing groups in gas molecules; the different
organic molecules of gases can experience a unique resonant absorption with the NIR
light at specific wavelength positions, further allowing us to distinguish between mixed
gases [28,29]. With the progress of MEMS technology, the opto-electromechanical system
of NIR spectrometers can be integrated into a chip, achieving compactness and reduced
cost, and reliable MEMS NIR spectral gas sensors with a miniaturized size are highly
desirable [30].

In fact, quantitative analysis of gas spectra using an NIR spectrometer has been
reported successfully in the literature. In addition to the MEMS NIR spectrometers’ porta-
bility, which enables their use in unconventional applications and environments, they
do not interact with the measured gases and can detect multiple gases and identify their
concentrations simultaneously. Manzardo et al. [31] first reported a MEMS moving mirror
which attached to a comb-drive actuator to implement the function of one movable arm
of a Michelson interferometer. After that, various gas sensors taking advantage of MEMS
core components assembled with discrete optical elements were developed. The use of a
silicon Bragg reflector in a Michelson interferometer was reported by Saadany et al. [32],
where the use of the Bragg mirrors reduced the device footprint, thus overcoming the extra
space needed by the technology to metallize vertical surfaces. A miniaturized Fourier
transform infrared (FT-IR) spectrometer with the resolution and the SNR limits of minia-
turization was also reported by Erfan et al. [33]: it performed a clear identification of the
different compositions of a mixed gas as acetylene (C2H2), carbon dioxide (CO2), and
water vapor (H2O). Although the detection of multiple gases simultaneously is one of the
important advantages of using infrared spectroscopy with a wide spectral range in gas
sensing applications, and the MEMS NIR spectral gas sensors achieved lightweight gas
detection, there are still the issues of the rapidity, high sensitivity, and accuracy of the gas
detection module of MEMS NIR spectral gas sensors, restricting their wide usage in optical
gas detection (the absorption intensity in the NIR band is relatively low). It is noticed
that, in NIR spectroscopy analysis, there is a certain functional relationship between the
composition and structure of the gas sample and the near-infrared spectrum. Therefore,
using chemometric methods would establish a model between the chemical values and
the spectral information. The established models in the software could be used for quick
multi-component detection and for the performance enhancement of mixed gas samples
information using the hardware.

Herein, to address the problem of low gas density and the difficulty of capturing
spectral absorption information, we employed a silicon wafer surface treatment method to
design a Fabry–Perot cavity with six layers of optical stacked films in the hardware part
to increase the optical path and enhance the gas spectral absorption information. In the
software part, spectral preprocessing and spectral modeling algorithms were combined to
effectively differentiate mixed gases and perform high-precision and high-sensitivity gas
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detection. Using three-dimensional stacked packaging to reduce the overall volume of the
microsystem, we realized a MEMS NIR spectral gas sensor with a fingertip size. Notably,
the presented MEMS NIR spectral gas sensor displays selective and sensitive detection
within seconds toward ethanol, Korean kimchi, and durian pulp, which are easy to taint
and difficult to distinguish. Moreover, the platform can also be used for the simultaneous
detection of the concentration of ethanol and is applicable to practical household and
industrial environments because of its portability, small size, ethanol detection limit of
around 369 ppm. The MEMS NIR spectral gas sensor provides novel perspectives for the
performance enhancement of gas sensors, which enables the creation of NIR gas sensors
with high sensitivity, a fast response/recovery, and low power consumption, which are
promising traits for mass production and commercialization.

2. Detection System and Methods
2.1. Fabrication of MEMS Fabry–Perot Cavity

Here, we adopted the silicon wafer surface treatment method to process the Fabry–
Perot cavity. Firstly, we used the chemical vapor deposition (CVD) method to grow a SiO2

buffer layer film with a thickness of 1/4 the center wavelength (around 1700 nm) in 6 inches
of silicon wafer with a thickness of 450 µm, as shown in Figure 1a(i). Then, according to
the high and low refractive index matching method of DBR (distributed Bragg reflector)
film, polysilicon (with a refractive index of 3.5) was selected as the high refractive index
material, and SiNx was used as the low refractive index material (with a refractive index
of 2.0), and the CVD process was used to alternately grow a polysilicon/SiNx film (with
6 layers optical stacked films) with a thickness of 1700 nm, as shown in Figure 1a(ii). Next,
we performed photolithography on the basis of the SiNx film to form an electrode pattern,
as shown in Figure 1a(iii). We then continued to grow a polysilicon film on this basis and
doped it, as shown in Figure 1a(iv). The doped polysilicon film, as the last layer of the DBR
film, needed to be photolithographically processed again to design an electrode pattern, as
shown in Figure 1a(v).
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Figure 1. Appearance of the NIR spectral gas sensor. (a) The step for the preparation of the high
reflectivity layer. (b) The step for the preparation of the gap layer. (c) The step for the preparation of
the anti-reflection layer. (d) The step for the preparation of the electrode layer. (e) The step for the
removal of the sacrificial layer.

So far, the first high reflectivity layer of the Fabry–Perot cavity has been manufactured.
The next step is to design the gap layer. We used the plasma-enhanced CVD (PECVD)
process to grow a 1950 nm thicker single-sided SiO2, as shown in Figure 1b(i). At the same
time, since an electrostatically tuned positive and negative electrode connection area was
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designed below the gap layer, it is necessary to perform photolithography patterning in
the corresponding electrode area of the gap layer, as shown in Figure 1b(ii). After the gap
layer is manufactured, we used low-pressure CVD (LPCVD) to grow a polysilicon film
with a thickness of 1700 nm above the gap layer and then performed ion implantation to
form a film which has a common potential with the electrode area below the gap layer,
as shown in Figure 1b(iii). After the polysilicon film above the gap layer was grown, we
continued to use the LPCVD process to alternately grow a high and low refractive index
SiNx/polysilicon film (Panovasic Technology Co., Ltd, Chengdu, China), as shown in
Figure 1b(iv).

Next, in order to design a light shielding on the back to avoid the interference from
stray light, an Al film with the thickness of 800 nm was grown on the back, and a hole
was photolithographically opened at the position of the device’s aperture, as shown in
Figure 1c(i). In order to improve the transmittance of the device, an optical anti-reflection
film should be designed to improve the transmittance of the Fabry–Perot cavity, as shown
in Figure 1c(ii).

After the anti-reflection layer was made, the entire wafer needed to be turned over to
continue making the front structure of the Fabry–Perot cavity. First, the electrode contact
hole needed to be made, as shown in Figure 1d(i). Then, Al was sputtered into a film and
the electrode production was completed using photolithography, as shown in Figure 1b(ii).
After the electrode layer was made, the sacrificial layer needed to be released. Here, we
used the dry etching process to evenly arrange release holes on the 6 layers of optical
stacked films above the sacrificial layer, as shown in Figure 1e(i). After the release holes
were made (the diameter of the release holes was around 3 µm), the gap layer of the
Fabry–Perot cavity could be etched by wet etching technology to form a gap layer (the
thickness of gap layer was around 22 µm). As a result, the device was completed, as shown
in Figure 1e(ii).

2.2. Construction of the Gas Detection System

After the preparation of the NIR MEMS Fabry–Perot cavity spectral sensing chip was
completed (the images are shown in Figure 2), we constructed the hardware system of the
NIR spectral gas sensor, which consisted of the NIR MEMS Fabry–Perot cavity spectral
sensing chip, a collimating lens, a halogen lamp, and a White cell, as shown in Figure 3.
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Figure 2. Appearance of the internal chip of the NIR spectral gas sensor. (a) The image of the
NIR MEMS Fabry–Perot cavity spectral sensing chip. (b) The specific composition of the spectral
sensing chip. (c) Side SEM image of the spectral sensing chip. (d) The appearance of the NIR spectral
gas sensor.
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As shown in Figure 2b, the spectral sensing chip consisted of three parts, namely the
pin pads, the filter area, and the voltage tuning area. Specifically, the four pin pads (named
PAD1 and PAD2) were used to drive the chip by applying voltage, while the filter area
refers to the area through which the light passes, and the Voltage tuning area refers to the
area in which the voltage forms an electrostatic field. When the chip is working, the upper
six layers of the optical stacked films with different refractive indexes will sink under the
action of the electrostatic field formed by the voltage difference loaded between PAD1 and
PAD2 (the details are shown in Figure 2c), changing the height of the air chamber and
thereby achieving the effect of filtering light of different wavelengths.

In the gas detection and distinguishing process of the NIR spectral gas sensor, the
spectral absorption of gas is based on Lambert–Beer’s law, as follows:

A = lg(1/T) = kcd (1)

where A is the absorbance, T is the translucency (T = l/l0, where l is the outgoing light
intensity; l0 is the incident light intensity.), k is the molar absorption coefficient, c is the
concentration of the absorbing substance, and d is the optical path length. From Equation (1),
we obtain the monotone increase in A with d, that is, increasing the d would be another
effective method to improve detection sensitivity with selected absorption spectral lines,
which could be achieved by using multiple reflection technology and cavity-enhanced
absorption spectroscopy (CEAS). As a multiple reflection absorption cell, the White cell
allows the light beam to reflect back and forth multiple times between high reflectivity
mirrors (Figure 4a), allowing the d to be increased to several hundred meters (Figure 4b).
However, increasing the d limits the dynamic range of measurement (i.e.,the maximum
measurable gas concentration) and severe interference noise. Therefore, software-based
filtering technology and mathematical model training recognition are applied to improve
the maximum measurable gas concentration. Here, the effective optical path length was
designed and calculated using Light Tools (version 8.4). In the simulation, the divergence
angle of the halogen lamp was set to 0 degrees, and we modeled the path of light as it
reflected multiple times between mirrors within the White cell. As shown in Figure 4c, the
length of a single light ray, indicated by the blue line, is 102.5 mm. The light ray travels
back and forth 20 times within the White cell, resulting in an effective d of approximately
20 × 102.5 mm = 2050 mm.
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Figure 4. The diagram of the White cell and the effect of the light beam reflecting back and forth
multiple times between the first concave mirror and the second concave mirror of the White cell.
(a) The diagram of the White cell: the blue line represents the light beam that multiple reflections in
the White cell. (b) The illumination spot on the first concave mirror. (c) The actual gas absorption
light beam between the first concave mirror and the second concave mirror. The single light ray,
indicated by the blue line, is 102.5 mm in length.

The software system of the NIR spectral gas sensor consists of a sensor sampling
algorithm, embedded software, an Android client, and a spectral data processing platform.
The sensor sampling algorithm and embedded software realize high-precision sampling,
fast calculation, and intelligent control of the NIR spectral gas sensor. The gas detection
module is connected to the Android client via Bluetooth, and the Android client can realize
functions, such as collection, analysis, and spectral data display. Furthermore, the Android
client collects and interconnects with the spectral data processing on the cloud platform,
and the collected data is stored on the cloud platform, which performed various functions,
such as data analysis, platform modeling, and local model importing.

2.3. Performance Test of the NIR MEMS Fabry–Perot Cavity Spectral Sensing Chip

The NIR MEMS Fabry–Perot cavity spectral sensing chip has the effect of filtering light
of a specific wavelength. The schematic diagram of the test system for this performance is
shown in Figure 5a. Here, for testing the transmittance of different wavelengths, we used
a monochromator as the light source. Since the NIR MEMS Fabry–Perot cavity spectral
sensing chip is voltage-modulated, when different voltages are applied to the device,
this will affect the Fabry–Perot cavity length and, furthermore, the central transmission
wavelength of the maximum transmittance. As shown in Figure 5b, which shows the
different optical transmittance characteristics under 4 different voltages, the wavelength
corresponding to the 26 V voltage exhibits the highest transmittance, which is caused by
the length of the MEMS Fabry–Perot cavity.

In addition, we also designed a test system to check whether the device could be
pressurized and controlled, that is, whether the distance can be tuned. The test system
is shown in Figure 5a. Here, for testing the electrostatic tuning of different voltages, we
used a cold light source as the light source. As shown in the Figure 5c, as the applied
voltage increases, the cavity length of the Fabry–Perot interferometer decreases, creating
wedge-shaped gaps with varying wedge angles at the edges. Under optical microscope
observation, the wavelength of the microscope’s light source forms an equal thickness
interference phenomenon at the wedge gap position, resulting in distinct interference rings
of different shapes.
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2.4. Response and Recovery Time of the MEMS NIR Spectral Gas Sensor

The MEMS NIR spectral gas sensor operates based on optical principles, meaning that
its response time depends primarily on the time required to scan the spectrum and the gas
diffusion time. When the gas diffusion time is not considered, the response time is mainly
determined by the spectrum scanning time, which is influenced by the sensor’s sampling
frequency and the data transmission time. Here, we measured the relationship between the
time elapsed after the water vapor sample, with a relative humidity (RH) of 80%, entered
the test environment (with RH maintained at 50% ± 10%) and the light intensity recorded
by the sensor at 1543 nm wavelength (Figure 6). Figure 6 shows a sudden drop in light
intensity. We considered this sudden drop in light intensity to be the response time of the
sensor, which is about 5–6 s, and the slow rise of the light intensity after a sudden drop is
considered as the recovery time, which is about 20–25 s.
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2.5. Configuration of Gas Samples

Gas samples are divided into three categories, namely ethanol (AR), the smell of
Korean kimchi, and the smell of durian pulp. Among them, ethanol is a characteristic
smell produced by fruit corruption, Korean kimchi is an odor source that mixes easily the
refrigerator, and the smell of durian pulp is an odor source with a characteristic smell but
one not caused by food corruption.

During the gas sample collection and classification process, the above three repre-
sentative gas samples were collected as single samples, pairwise random combination
samples, and all combination sample. Specifically, there were 8 combinations, namely
ethanol, Korean kimchi, durian pulp, ethanol–Korean kimchi, ethanol–durian pulp, Korean
kimchi–durian pulp, ethanol–Korean kimchi–durian pulp, and air. Here, air was designed
as a blank sample because it does not have a smell.

2.6. Gas Samples Classification and Identification Experiment

The experiment was carried out in a sealed 52 L transparent plastic box, with one gas
sample corresponding to one transparent plastic box. The NIR spectral gas sensor and a
gas sample were placed in a same transparent plastic box.

During the experiment, we put the odor source in the box for 1 min before starting the
test to ensure that the gas sample in the box was evenly diffused. The volume of ethanol
was 0.2 mL, the mass of the Korean kimchi was 5 g, and the mass of the durian pulp is 20 g,
in order to ensure that the concentrations of the gas samples were the same.

After the experiment was completed, we opened the box lid for 2 h to remove the odor
before conducting the next test. At the same time, the experimental environment was kept
well ventilated to prevent odor remaining in the environment.

2.7. Ethanol Concentration Grading Experiment

The experiment was carried out in a sealed 52 L transparent plastic box, in which the
NIR spectral gas sensor and the electronic balance were placed. During the experiment,
different volumes of ethanol (0.05 mL, 0.1 mL, 0.15 mL, 0.2 mL, 0.25 mL, 0.3 mL, 0.35 mL,
and 0.4 mL) were injected into a petri dish on the tray of electronic balance, and then the
transparent plastic box was quickly sealed. It can be observed that the data displayed on the
electronic balance gradually decreased because of the continuous evaporation of ethanol.
The spectrum of the gas sample in the transparent plastic box was collected within 1 min
after the ethanol had completed its volatilization and diffusion, in order to ensure that the
concentrations of the gas samples were the same. After the experiment was completed, we
opened the box lid for 2 h to remove the odor before conducting the next test. At the same
time, the experimental environment was kept ventilated to prevent the odor remaining in
the environment.

2.8. Spectral Data Preprocessing and Model Training

The model was trained by combining different spectral data preprocessing methods
with multiple qualitative modeling method hyperparameters. Spectral data preprocessing
mainly used smoothing, derivation, baseline calibration, detrending, standard normal vari-
ate (SNV) transformation, normalization, logarithm, etc. The qualitative modeling method
mainly uses linear discriminant analysis and support vector machines with different kernel
functions. The cross-validation method is used to optimize the model parameters, and the
optimized model is used for blind sample testing.
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3. Results and Discussions
3.1. Classification and Identification of Mixed Gases

In order to avoid the interference of the collinearity of spectral variables, we adopted
the sample set division method (the Kennard–Stone algorithm) to divide the 166 samples
into training set samples and blind test set samples at a ratio of around 3:1. A total of
116 training set samples were used to build the calibration model, and 50 samples were
used as the blind test set to evaluate the performance of the calibration model. This is
because the spectral information of the samples is affected by various factors, such as the
samples’ density, particle size, water content, and environmental temperature and humidity.
Before building a machine learning correction model, the spectral information of samples
needs to be preprocessed to improve the correlation between the spectral information and
the chemical value and improve the prediction performance of the model. Here, we used
the normalization method to process samples of the ethanol, the smell of Korean kimchi,
and the smell of durian pulp, as well as their mixed gas samples. The normalized spectral
information of each gas sample is shown in Figure 7a.
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Figure 7. The near infrared spectra of 8 mixed gas samples. (a) The normalized transmittance of
8 mixed gas samples in the 1350 to 1650 nm wavelength range. (b) The normalized transmittance of
8 mixed gas samples in the 1360 to 1420 nm wavelength range. The air in this test is set as the blank
sample; of the 166 mixed gas samples, we extracted 1 gas sample from each mixed gas samples to
form this near-infrared spectrum.

From Figure 7b, we can find that, compared with other gas samples, the gas samples
containing Korean kimchi had a more obvious difference in spectral information between
the wavelengths of 1375–1425 nm, but there was no obvious difference in the other wave-
lengths. This may be because the sensitivity of the NIR spectral gas sensor is relatively low,
resulting in it struggling to distinguish multi-component gas samples, so it is necessary
to combine the NIR spectral gas sensor with machine learning methods. Table 1 shows
the accuracy of different machine learning methods for distinguishing multi-component
gas samples. As in Table 1, we used normalized spectral preprocessing combined with the
quadratic kernel function support vector machine (SVM) algorithm, which demonstrated
a cross-validation accuracy of 91.4% and a blind test accuracy of 96%. The blind test
confusion matrix is shown in Figure 8.
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Table 1. The accuracy of different machine learning methods for distinguishing multi-component
gas samples.

Classification Algorithm Accuracy

Decision tree 56.9%
Linear discriminant analysis 75.0%

K-NN 82.8%
SVM 91.4%
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3.2. Recognition of the Ethanol Concentration

In the recognition of the ethanol concentration test, we divided the 90 samples of
8 different ethanol concentrations into 63 training set samples and 27 blind test set samples;
the normalized spectral information of each gas sample is shown in Figure 9a. Similarly,
because the sensitivity of near-infrared spectral gas sensors is relatively low and due to
the influence of system noise, although the spectral absorption peak with ethanol gas
samples could be observed, and the transmittance is inversely proportional to the ethanol
gas samples’ concentrations, it is difficult to distinguish between the same gas samples
with small concentration differences, and there are only slight differences in some bands
(as shown in Figure 9b). Then, we used normalized spectral preprocessing combined with
the quadratic kernel function SVM algorithm (the accuracy of the other machine learning
methods is shown in Table 2), which demonstrated a cross-validation accuracy of 92.6%
and a blind test accuracy of 96%.

The blind test confusion matrix is shown in Figure 10. Figure 10 shows that air as a
blank sample and ethanol of various concentrations could be well distinguished. Then,
to test the minimum detection limit of the NIR spectral gas sensor combined with the
quadratic kernel function SVM algorithm, we conducted an experiment using 0.05 mL of
ethanol volatilized in a 52 L sealed transparent plastic box as the ethanol sample, with air
as the blank control. After modeling, we evaluated whether any misclassification occurred
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between the ethanol and air categories. The test was repeated 280 times, with only a single
instance of misidentification at the 369.43 ppm concentration in the wavelength range from
1350 nm to 1650 nm (Figure 11).
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Table 2. The accuracy of different machine learning methods for the recognition of the ethanol
concentration.

Classification Algorithm Accuracy

Decision tree 73.0%
Linear discriminant analysis 57.1%

K-NN 87.3%
SVM 92.6%
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Table 3 lists the different gas sensors used for odor recognition. Among these, the com-
bination of the NIR spectral gas sensor and the quadratic kernel function SVM algorithm
demonstrates a significant enhancement in detecting the ethanol concentration. This com-
bination not only improves the detection accuracy but also reduces the reliance on multiple
sensors for identifying diverse gas samples. By minimizing the number of sensors required,
this approach offers a more efficient and cost-effective solution for multi-gas detection.

Table 3. Odor detection gas sensors.

Sensor Type Gas Type
Simultaneous
Detection of

Multiple Gases

Number of
Sensors

Accuracy
(Highest)

Detection
Limit Reference

Commercial
MOS

Air
contaminants

Yes (binary gas
mixtures) 4 95.7% N/A [34]

Chemically
resistive gas

sensors

Air
contaminants Yes 8 95.14% N/A [35]

Chemiresistive
odor sensor Oil gas Yes 24 93.9% N/A [36]

NIR spectral
gas sensor Ethanol No 1 N/A 1.5% [37]

NIR spectral
gas sensor Natural gases Yes 1 95%

1.42% @ 30 s
(propane)

1.67% @ 30 s
(butane)

[15]

MEMS NIR
spectral gas

sensor

Ethanol,
Korean
kimchi,

durian pulp

Yes 1 96% 369 ppm @ 5 s
(ethanol) This work
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4. Conclusions
In conclusion, we adopted the main method of silicon wafer surface treatment to pro-

cess the Fabry–Perot cavity and performed a high reflectivity analysis in the operating band.
Using three-dimensional stacked packaging to integrate the hardware part, combined with
spectral preprocessing and spectral modeling algorithms in the software part, we realized
a MEMS NIR spectral gas sensor with a compact folded optical path and an enhanced gas
spectral absorption. To demonstrate its reliability and practicality in mixed gases differenti-
ation and gas detection, the MEMS NIR spectral gas sensor was used to simultaneously
monitor multiple parameters, including multiple combinations of gas samples of ethanol,
Korean kimchi, and durian pulp, as well as ethanol concentrations. The designed mi-
crosystem exhibits selective and sensitive detection at room temperature toward multiple
combinations of gas samples comprised of ethanol, Korean kimchi, and durian pulp, with a
cross-validation accuracy of 91.4% and a blind test accuracy of 96%, and also demonstrates
an ethanol detection limit of around 369 ppm (with a cross-validation accuracy of 92.6% and
a blind test accuracy of 96%). Additionally, it shows a fast response (within 6 s) with good
recyclability. However, the MEMS NIR spectral gas sensor may produce misidentifications
when encountering odors outside the existing model library. To address this, we propose
using a clustering-based classification method. Odors not included in the library would be
categorized as an “unknown odor”. The spectral data for these unknown odors would then
be added to the model library, facilitating its continuous expansion. This iterative process
would progressively enhance the library, increasing the variety of odors it can recognize.
The MEMS NIR spectral gas sensor combined with normalized spectral preprocessing and
the quadratic kernel function SVM algorithm outperforms most of the NIR spectral gas
sensors. The demonstrated performance enhancement and multi-component detection
in food of the MEMS NIR spectral gas sensor and its usage in simultaneous detection of
multiple factors provide novel insights for making gas sensors with miniaturized sizes and
high performance, which are promising traits for mass production and commercialization.
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NIR Near-infrared
FT-IR Fourier transform infrared
CVD Chemical vapor deposition



Micromachines 2025, 16, 135 14 of 15

DBR Distributed Bragg reflector
PECVD Plasma-enhanced chemical vapor deposition
LPCVD Low-pressure chemical vapor deposition
CEAS Cavity-enhanced absorption spectroscopy
SNV Standard normal variate
SVM Support vector machine
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