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Abstract: Space particle radiation induces charging and discharging phenomena in space-
craft dielectric materials, leading to electrostatic discharge (ESD) and electromagnetic
pulses (EMP), which pose significant risks to spacecraft electronic systems by causing
interference and potential damage. Accurate and timely monitoring of these phenom-
ena, combined with a comprehensive understanding of their underlying mechanisms,
is critical for developing effective protection strategies against satellite charging effects.
Addressing in-orbit monitoring requirements, this study proposes the design of a compact
sleeve monopole antenna. Through simulations, the relationships between the antenna’s
design parameters and its voltage standing wave ratio (VSWR) are analyzed alongside
its critical performance characteristics, including frequency band, gain, radiation pattern,
and matching circuit. The proposed antenna demonstrates operation within a frequency
range of (28.73–31.25) MHz (VSWR < 2), with a center frequency of 30 MHz and a relative
bandwidth of 8.4%. Performance evaluations and simulation-based experiments reveal that
the antenna can measure pulse signals with electric field strengths ranging from (−1000
to −80) V/m and (80 to 1000) V/m, centered at 25.47 MHz. It reliably monitors discharge
pulses generated by electron irradiation on spacecraft-grade FR4 (Flame-Retardant 4) di-
electric materials, providing technical support for the engineering application of discharge
research in space environments.

Keywords: spacecraft electrostatic discharge; FR4 (Flame-Retardant 4) dielectric materials;
monopole antenna; impedance matching; standing wave ratio; real-time monitoring

1. Introduction
During orbital deployment, spacecraft materials and components are inevitably ex-

posed to various environmental stressors, including space plasmas, intense charged particle
radiation, and solar radiation. These factors collectively contribute to radiation damage,
which manifests in diverse forms such as total dose effects, single-event effects, and, most
critically, charging and discharging phenomena [1,2]. Such effects significantly influence
the reliability, lifespan, and overall success of spacecraft missions. Among these, particle
radiation-induced charging and discharging within spacecraft dielectric materials pose
a severe threat to spacecraft integrity and operational safety [1–3]. The phenomenon of
Spacecraft Charging-Induced Electrostatic Discharge (SESD) encompasses two key pro-
cesses. The first involves the interaction of space plasmas, high-energy electrons, and
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other environmental factors with dielectric materials, resulting in the gradual accumulation
of electrostatic charges and the establishment of the electric field within and around the
material. The second occurs when the intensity of this electric field exceeds the dielectric
material’s breakdown threshold, initiating a charge-discharge process. On the external
surfaces of dielectric materials, electrostatic discharge can take the form of corona discharge,
flashover, or breakdown. Within the bulk of the dielectric material, discharge occurs when
the rate of charge accumulation surpasses the rate of dissipation, creating an internal electric
field that exceeds the material’s breakdown strength. This rapid discharge event releases
substantial charges and electromagnetic pulses (EMP) within a short duration, posing
risks of damage to satellite electronic systems and potentially causing sustained discharge
in high-voltage components through multiple pathways [4,5]. Consequently, a detailed
investigation of satellite charging and discharging mechanisms, alongside the development
of real-time, accurate in-orbit monitoring systems, is essential. These efforts serve as funda-
mental prerequisites for the comprehensive evaluation and design of effective protection
strategies against spacecraft charging and discharging effects. Such advancements are
critical for ensuring the reliability, safety, and mission success of spacecraft operating in the
harsh space environment.

SESD can generate high voltage, strong electric fields, and transient heavy currents,
accompanied by intense electromagnetic radiation, resulting in an electrostatic discharge
(ESD) electromagnetic pulse. This pulse can directly penetrate electronic devices or couple
into sensitive circuits within equipment through pathways such as holes, slots, and cables,
leading to damage or malfunction of these circuits. Such effects not only cause severe
interference and damage to electronic equipment but also compromise the operational
reliability of the satellite platform, posing significant risks to the safe and stable operation
of satellites in orbit [6].

The current array of detection equipment for monitoring electrostatic discharge (ESD)
electromagnetic radiation pulses in spacecraft includes monopole, dipole [7–9], TEM
horn [10], log-periodic [11], long-wire, planar, flexible antennas, and planar interdigi-
tal sensors [12]. However, these systems face significant limitations in monitoring space
discharge pulses, such as frequency band mismatches and excessive antenna sizes. The
operating frequency bands of these antennas often fail to align with the primary energy
frequency range of spacecraft ESD radiation, resulting in electromagnetic signals that do not
accurately or comprehensively capture the radiation characteristics of ESD. Additionally,
performance requirements, such as antenna gain and operating frequency, necessitate large
antenna designs that are unsuitable for spaceborne applications [6,12–14]. For example,
the monopole antenna described in [14] has a length of approximately 2 m, rendering
it impractical for satellite-based ESD measurement missions. Consequently, optimizing
antenna systems to achieve compact size and lightweight designs is critical to meet the
stringent payload requirements of satellite missions.

Monopole antennas are characterized by their simple structure, omnidirectional re-
ception, high-frequency adaptability, fast response, high reliability, and low cost, making
them highly suitable for applications in space communications, telemetry and remote
control, navigation and positioning, as well as electromagnetic environment monitoring
and electrostatic discharge detection. For example, Ref. [15] proposed a multi-band U-
shaped monopole antenna with resonant frequencies of 2.8 GHz, 5.8 GHz, and 10.8 GHz
and impedance bandwidths of 880 MHz, 2500 MHz, and 3000 MHz, respectively; Ref. [16]
designed a planar C-shaped monopole antenna with impedance bandwidths of 201 MHz,
330 MHz, and 1195 MHz in the 2.6 GHz, 3.5 GHz, and 5.5 GHz frequency bands, re-
spectively, for global microwave access interoperability (WiMAX) applications; Ref. [17]
designed a three-band E-type monopole antenna for WLAN communication applications
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at 2.4 GHz, 5.4 GHz, and 5.8 GHz; Refs. [8,18] proposed a monopole antenna deployment
mechanism for VHF (144–146 MHz) and UHF (435–440 MHz) communication applications
on the BIRDS-2 CubeSat. Monopole antennas are particularly suitable for spacecraft dis-
charge pulse monitoring applications, where discharge time and orientation are difficult to
predict, and pulse rise times are short. For instance, Ref. [19] designed a monopole antenna
for electrostatic discharge from spacecraft solar cells. However, there are currently very
few reports in the literature on in-orbit discharge monitoring experiments of dielectric ma-
terials prone to electrostatic charge accumulation using monopole antennas. The existing
literature primarily describes antenna designs from simulation or simple experimental
perspectives [14–20]. This lack of research has impeded the development of mature tech-
nologies and the systematic accumulation of data for spacecraft ESD monitoring systems.

Therefore, this paper, focusing on in-orbit flight applications, discusses the adaptive
design and feasibility simulation test verification of monopole antennas for monitoring
electrostatic discharge in spacecraft dielectric materials, providing technical guidance for
the practical space application of such antennas. To meet the requirements of in-orbit
flight experiments, the key technical specifications set for the pulse monitoring antenna in
this study are as follows: the pulse electric field measurement range is (−1000~−80) V/m
and (80~1000) V/m, with a lower limit of 80 V/m for electric field measurement; the
center frequency for transient pulse measurement is 30 MHz ± 5 MHz. Based on these
design objectives, research on small monopole antennas was conducted, investigating
the effects of different antenna design parameters and matching circuits on antenna per-
formance through simulation. This work aims to optimize the antenna design, conduct
discharge pulse performance testing, and carry out in-orbit simulations for monitoring
electrostatic discharge pulses from spacecraft dielectric materials, providing a reference for
the implementation of discharge pulse detection in spacecraft and strengthening spacecraft
protection technologies.

2. Simulation-Based Structural Design and VSWR Analysis of Monopole
Antennas for Spacecraft ESD Monitoring
2.1. Principles and Structures of Monopole Antennas

Based on the discharge pulse characteristics discussed earlier, we designed and opti-
mized the monopole antenna. As illustrated in Figure 1a, the monopole antenna consists of
three primary components: the radiating element, the sleeve, and the coaxial transmission
line. The outer surface of the radiating element functions as the receiver and radiator of
electromagnetic waves, while the inner surface of the sleeve serves as the outer conductor
of the coaxial transmission line [8]. In the spherical coordinate system, angular variables
θ and φ define the direction, point p represents the radiation point, and r is the distance
from the radiation point to the origin. The feed point of the sleeve monopole antenna is
located within the sleeve, with the detected signals transmitted through a 50 Ω coaxial
radio frequency (RF) cable to the backend detection circuitry [7–9].

The sleeve monopole antenna functions as a transducer that converts spatial electro-
magnetic wave energy into high-frequency current energy. Its measurement bandwidth is
closely linked to the acquired electrostatic discharge (ESD) information. To meet the require-
ments of spatial ESD monitoring, the antenna should have as wide a frequency band as pos-
sible. In this design, the impedance bandwidth—defined as the frequency range where the
VSWR falls below a specified value—is used as an indicator of the antenna’s performance.

Using equivalent circuit analysis (Figure 1b), the antenna can be modelled as a voltage
generator comprising an ideal voltage source Voc and an internal impedance Zin, where
Zin represents the antenna impedance and is expressed as Zin = Rin + jXin. Here, ZL is
the load impedance. When the monopole antenna’s maximum receiving direction aligns
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with the incoming wave direction, the antenna’s polarization matches that of the incoming
wave, and Zin is conjugate-matched to ZL (ZL = Rin − jXin). Under these conditions,
the receiving antenna operates optimally, maximizing the power delivered to the load(

P2
Lmax = Voc/8Rin

)
.
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Figure 1. Structural and circuit characteristics of the monopole antenna: (a) schematic of the sleeve
monopole antenna structure; (b) equivalent receiving circuit diagram of the antenna.

The dimensions of the monopole antenna significantly influence its input impedance
Zin, which in turn affects the antenna’s impedance bandwidth and load power PL. To
achieve better radiation power from the antenna and improve the discharge pulse mea-
surement results, apart from reducing transmission losses, it is essential to enhance the
electromagnetic signal induction capability, which depends on the antenna’s structural
dimensions. Therefore, for the detection of discharge pulses from spacecraft dielectric
materials, it is necessary to investigate the factors influencing the performance of monopole
antennas, including structural dimensions and matching circuits, to design a discharge
pulse detection device suitable for spacecraft charging and discharging.

When an electrostatic discharge (ESD) pulse with an electric field intensity Ei is incident
on a monopole antenna of length l and radius d/2 at an angle θ, the equivalent source
voltage Voc(t) corresponds to the open-circuit voltage Vl(t) of the antenna. Here, le represents
the effective length of the antenna, defined as half the length of the radiating element.

Voc(t) = Vl(t) = Ei(t)·le·cos(θ) (1)

To account for the precision of the electronic system, the influence of system noise
on measurements, and the effects of discharges on spacecraft during in-orbit operations,
the antenna length l is set to 50 mm. Under these conditions, the minimum electric field
intensity of space ESD detectable by the system is approximately 40 V/m.

2.2. Configuration and Modeling of Antenna Parameters

As shown in Figure 2a, the sleeve monopole antenna parameters include the height of
the inner conductor within the sleeve (H1), the overall height of the sleeve (H), the height of
the feed point (L), the radius of the inner conductor (R0), and the outer radius of the sleeve
(R1). Specifically, H1 is set to 50 mm, and R1 is constrained to a maximum of 7.5 mm. The
shaded area in the figure represents the polytetrafluoroethylene (PTFE) insulation layer,
which has a minimum thickness of 2 mm. This layer provides structural support for the
inner conductor and prevents short circuits.
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Figure 2. Basic dimensions and modeling of a sleeve monopole antenna: (a) cross-sectional diagram
of the sleeve monopole antenna; (b) 3D model of the sleeve monopole antenna.

To enable comprehensive analysis, four discrete values are assigned to each of the
remaining four parameters as follows: H = {5 mm, 10 mm, 15 mm, 20 mm}; L = {3 mm,
4 mm, 5 mm, 6 mm}; R0 = {0.5 mm, 1 mm, 1.5 mm, 2 mm}; R1 = {3 mm, 4.5 mm, 6 mm,
7.5 mm}.

The antenna simulation and analysis of the sleeve monopole were performed using
the parameters mentioned above. The antenna model is shown in Figure 2a, with its 3D
representation shown in Figure 2b.

2.3. Simulation Results of VSWR

Theoretical analysis of the sleeve monopole antenna predicts the first resonance point
to occur around 1.5 GHz. However, the target center frequency for the antenna is 30 MHz,
which is substantially lower than the first resonance point, leading to a voltage standing
wave ratio (VSWR) significantly exceeding the typically required value of 5 for antennas.
Using the parameter values L = 4 mm, R0 = 2 mm, R1 = 6 mm, and H = 5 mm as an example,
the VSWR curve is illustrated in Figure 3a.
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VSWR: (a) impact of frequency variation (L = 4 mm, R0 = 2 mm, R = 6 mm, and H = 5 mm); (b) impact
of sleeve height (H) variation (L = 3 mm, R0 = 1 mm and R1 = 4.5 mm).
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To analyze the relationship between the sleeve height (H) and VSWR, simulations
were conducted by varying H while keeping other parameters constant. As shown in
Figure 3b, increasing the sleeve height improves the VSWR characteristics, demonstrating
a strong dependency of VSWR performance on H.

As illustrated in Figure 4a, when the feed point height (L) is varied independently,
optimizing the VSWR characteristics depends on the specific values of the other three
parameters, with no consistent pattern observed. Additionally, the influence of L on the
antenna’s VSWR is significantly less pronounced compared to the impact of H.
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The antenna’s VSWR is also influenced by the thickness of the insulation layer (t)
within the sleeve, defined as t = R1 − R0. Figure 4b demonstrates that a thinner insulation
layer between the sleeve and the inner conductor generally results in improved VSWR
performance. While isolated cases show better VSWR with a thicker insulation layer, the
overall trend confirms that the radius of the inner conductor (R0) has a significant effect on
the VSWR.

For space applications, where insulation performance is critical, the insulation layer
thickness (t) is set to 2 mm. To investigate the relationship between R0 and VSWR perfor-
mance, the following parameters are configured: H = 20 mm; L = {3 mm, 4 mm, 5 mm,
6 mm}; R0 = {0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm} (limited by the maximum screw thread
inner wall radius), R1 = R0 + 2 mm + 1 mm (where 2 mm is the insulation layer thickness
and 1 mm is the sleeve thickness).

As shown in Figure 5, 20 VSWR curves are generated by combining four possible
values of L and five possible values of R0. These curves exhibit a distinct pattern: variations
in R0 create groups of four curves, each reflecting differences in L. The results indicate
that increasing R0 enhances the VSWR performance of the sleeve monopole antenna,
highlighting the significant influence of the inner conductor radius on overall performance.

The optimal VSWR performance of the sleeve monopole antenna is achieved with
the following parameter configuration: H = 20 mm, L = 3 mm, R0 = 2.5 mm. Under these
conditions, the radiation pattern and gain of the antenna are presented in Figure 6, where the
solid line represents the H-plane and the dashed line represents the E-plane. The antenna
exhibits omnidirectional radiation characteristics in the H-plane within the (20–40) MHz
range, while the E-plane demonstrates strong radiation capability. The maximum gains
for the three cases are −46.9 dB, −39.4 dB, and −33.5 dB, respectively. The corresponding
VSWR results are shown in Figure 7.
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As illustrated in Figure 7, the antenna with the optimal parameters demonstrates a
significant impedance mismatch, leading to considerable energy loss. To address this issue,
an impedance-matching circuit must be designed based on the antenna’s port impedance
at 30 MHz.
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3. Design of Impedance Matching Circuit
Under optimal VSWR conditions, the port impedance of the sleeve monopole antenna

at 30 MHz is (0.71-862.14j) Ω and an impedance matching circuit for the antenna is designed.
To minimize energy consumption within the matching circuit, only capacitors and inductors
are used, although resistors may be introduced in specific cases to broaden the antenna’s
VSWR bandwidth. As shown in Figure 8, based on matching circuit principles, three
types of circuits were designed: C-L Low-pass L-Shaped Matching Circuit, C-L High-pass
L-Shaped Matching Circuit, and R-L Series Matching Circuit.
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As shown in Figure 9, when the C-L Low-pass L-shaped matching circuit is introduced,
the sleeve monopole antenna achieves a VSWR below two within the frequency band
(29.96–30.03) MHz. At 30 MHz, the circuit achieves perfect matching without introducing
losses. Additionally, losses are reduced compared to the antenna without the matching
circuit. Similarly, with the C-L High-pass L-shaped matching circuit, the VSWR remains
below 2 in the frequency band (29.98–30.02) MHz. Perfect matching at 30 MHz again
results in no circuit losses, with reduced losses. However, the practical implementation of
L-shaped matching circuits is hindered by the challenges of fabricating femtofarad-level
capacitors, making these circuits difficult to realize in practice.
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Although L-shaped matching circuits effectively reduce the VSWR below two around
30 MHz, their bandwidth remains limited. For example, the C-L low-pass L-shaped
matching circuit achieves a bandwidth of only 0.088 MHz, corresponding to a relative
bandwidth of 0.23% (see Table 1). To address this limitation and achieve broader bandwidth,
resistors must be incorporated into the matching circuit.
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Table 1. Overview of antenna matching circuit performance.

Matching
Network Type C (pF) L (µH) R (Ω) Bandwidth Characterization

(MHz) (VSWR < 2)
Relative

Bandwidth

C-L Low-pass 884 4.6 / 29.96–30.03 0.23%
C-L High-Pass 0.733 4.1 / 29.98–30.02 0.13%

R-L Series / 4.7 50 28.73–31.25 8.4%

Considering the practical limitations in the manufacturing and procurement of compo-
nents such as resistors and inductors, as well as the demand for bandwidth, the R-L series
matching circuit is configured with a resistance R = 50 Ω and an inductance L = 4.7µH for
simulation. This design extends the operating frequency band of the sleeve monopole an-
tenna to (28.73~31.25) MHz (the VSWR remains below 2), resulting in a relative bandwidth
of 8.4%. Consequently, the R-L series matching circuit is selected as the optimal design due
to its superior bandwidth performance and practical feasibility.

4. Experimental Verification of Discharge Pulse Detection
To evaluate the discharge pulse detection capability and spatial adaptability of the

designed antenna and matching circuit, performance tests were conducted. These included
discharge pulse detection experiments and simulation tests to measure the discharge
characteristics of spacecraft dielectric materials.

4.1. Discharge Pulse Performance Testing of the Antenna

The discharge pulse performance testing system is illustrated in Figure 10 and consists
of the following components: an EMP signal source, a TEM (Transverse Electromagnetic
Wave) cell, an attenuator, an oscilloscope, a DC power supply, a control unit, a monopole
antenna, and ground testing equipment. The EMP signal source consists of a high-precision
pulse generator and a power amplifier and is used in conjunction with the self-developed
TEM cell, a parallel plate test chamber designed to simulate a uniform electric field. The
attenuator regulates signal strength to prevent downstream equipment damage. The
control unit collects data from the antenna and manages the system state.
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Figure 10. System layout for discharge pulse performance testing of the antenna.

The experiment is divided into two parts. The first part involves the calibration of
the electric field inside the TEM cell. A standard square pulse signal with a rise time of
20 ns is generated by the EMP signal source and the voltage signal U1 inside the TEM cell
is recorded using an oscilloscope. The transient electric field amplitude E in the EMP cell is
then calculated using the following formula:

E = U1·α/h (2)

where α is the attenuation factor of the attenuator, and h is the spacing between the TEM
cell plates. During the test, the output voltage amplitude of the EMP signal source is
adjusted point by point to achieve the desired field strength. The actual field strength is
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calculated using the measured voltage U1, allowing for the calibration of the electric field
inside the TEM cell within the range of −1000 to 1000 V/m.

The second part involves measuring the electric field measurement performance of
the pre-fabricated antenna using the calibrated standard electric field in the TEM cell.
The ADC code range of the Electronic Control Unit is 0~4095, and its trigger threshold
is set to below 50 V/m. Within the range of −1000 to 1000 V/m, electric field values are
incrementally selected, and the electric field in the EMP cell is adjusted for each test point.
Pulse measurement experiments are conducted at each electric field point, and the transient
electric field amplitude E is correlated with the ADC code values corresponding to the
peaks of the output pulse waveforms.

The experimental results are summarized in Figure 11, where linear regression fitting
and linear error analysis were performed on the input and output data. (The nonlinear
error is defined as the maximum deviation between the output–input curve and its fitted
linear curve, typically expressed as YV = (∆V/VFs) × 100%, where ∆V represents the
maximum nonlinear deviation of the output, and VFs is the full-scale output [21]). It can
be observed that the output of the pre-fabricated antenna and control unit exhibits a good
linear relationship with the input electric field, with the maximum linear error being less
than 0.1%, enabling electric field measurements within the ranges of (−1000~−80) V/m
and (80~1000) V/m. Additionally, the frequency sweep range of the network analyzer
was set to 0–50 MHz, and the measured center frequency of the antenna was found to be
25.47 MHz, meeting the design requirements.

Micromachines 2025, 16, x FOR PEER REVIEW 11 of 15 
 

 

 

Figure 11. Response test results of the monopole antenna to the standard electric field. 

4.2. Simulation Experiments for Discharge Detection of Spacecraft Dielectric Materials 

As shown in Figure 12, the aluminum metal cover, which houses the monopole an-
tenna and aerospace-grade FR4 substrate circuit module, is placed inside the electronic 
accelerator irradiation chamber. The aluminum box, with a certain thickness, simulates 
the spacecraft’s skin and outer shell. The electrical ground of the circuit module is con-
nected to the metal cover, while the metal cover is isolated from the earth ground through 
a high-resistance insulator. The DC power supply and oscilloscope are connected to the 
main power through a series isolation transformer to complete the power supply. The 
above design simulates the isolated suspension of the spacecraft and the electrical ground 
connection state of the spacecraft’s internal circuits. 

R-L impedance matching circuit

Oscillograph

DC power 
supply

Vacuum 
chamber

Electron 
accumulator

V
ac

uu
m

 A
cq

ui
sit

io
n 

Sy
ste

m
s

Circuit 
module 

Monopole 
antenna

Metal cover

 

Figure 12. Schematic diagram of satellite discharge pulse detection simulation experiment. 

In this experiment, electron beams with different beam current densities generated 
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4.2. Simulation Experiments for Discharge Detection of Spacecraft Dielectric Materials

As shown in Figure 12, the aluminum metal cover, which houses the monopole antenna
and aerospace-grade FR4 substrate circuit module, is placed inside the electronic accelerator
irradiation chamber. The aluminum box, with a certain thickness, simulates the spacecraft’s
skin and outer shell. The electrical ground of the circuit module is connected to the metal
cover, while the metal cover is isolated from the earth ground through a high-resistance
insulator. The DC power supply and oscilloscope are connected to the main power through
a series isolation transformer to complete the power supply. The above design simulates
the isolated suspension of the spacecraft and the electrical ground connection state of the
spacecraft’s internal circuits.
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Figure 12. Schematic diagram of satellite discharge pulse detection simulation experiment.

In this experiment, electron beams with different beam current densities generated
by a 2 MeV electron accelerator were used to irradiate the test object under a vacuum
pressure of 1 × 10−5 Pa, simulating the charge and discharge behavior of FR4 dielectric
material in the circuit board of a spacecraft under typical space radiation conditions. The
self-designed monopole antenna was installed adjacent to the circuit module within the
insulated aluminum housing to detect discharge pulses resulting from electron irradiation.
The antenna was connected to an R-L impedance matching circuit and interfaced with a
high-speed oscilloscope for real-time waveform capture and output.

Figure 13 presents partial results of the discharge pulse detection test and their corre-
sponding frequency spectrum diagrams. The results confirm that the designed antenna
effectively and stably receives electromagnetic signals emitted from FR4 material discharges,
with strong signal acquisition near 30 MHz. Statistical analysis revealed that the rise times
of the captured pulse signals ranged from 10 to 40 ns, while the pulse widths were generally
between 5 and 12µs. Discharge pulses were detected after a period of electron irradiation,
regardless of whether the spacecraft circuit module was powered or unpowered. The
measured discharge occurrences are summarized in Table 2. At an electron beam current
density of 0.16 pA/cm2, the interval between discharge pulses was approximately 30 min.
As the current density increased to 32 pA/cm2, the interval decreased to less than 10 min.
This behavior demonstrates that the charge accumulation and dissipation intervals of FR4
material are inversely proportional to the beam flux: higher beam flux results in shorter
intervals between discharge pulses. This is attributed to the increased deposition of charges
on the FR4 material, making discharge events more frequent. The experimental results
validate the stable signal acquisition capabilities of the designed antenna, demonstrating
its suitability for monitoring and evaluating electromagnetic emissions associated with
dielectric material discharges in spacecraft applications.
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Table 2. FR4 dielectric materials discharge behavior under varied electron beam irradiation.

Beam Density (pA/cm2) Time (min) Number of Discharges (Times)

0.16
0~30 1

30~90 2
90~180 4

0.81
0~30 1

30~90 3
90~180 5

4.2
0~30 2

30~90 4
90~180 7

19
0~30 2

30~90 6
90~180 9

32
0~30 3

30~90 7
90~180 11

5. Conclusions
Based on the results and discussions presented, the following conclusions are drawn:

(1) A sleeve monopole antenna tailored for monitoring the electrostatic discharge (ESD)
processes in spacecraft dielectric materials was successfully designed. The antenna op-
erates in the frequency range (28.73~31.25) MHz (VSWR < 2), with a center frequency
of 30 MHz and a relative bandwidth of 8.4%.

(2) The antenna’s VSWR performance improves with an increase in sleeve height (H),
an increase in the inner conductor radius (R0), and a decrease in the insulation layer
thickness (t) between the sleeve and the inner conductor. The feed point height (L) also
impacts VSWR performance but is dependent on its interaction with other parameters.
Among the three impedance matching circuits designed, the R-L series matching
circuit demonstrated superior bandwidth characteristics, outperforming the other
configurations.

(3) Experimental verification showed that the antenna is capable of measuring pulse signals
with electric field strengths in the ranges (−1000 to −80) V/m and (80 to 1000) V/m.
With a measured center frequency of 25.47 MHz, the antenna reliably monitored
discharge pulses generated by electron irradiation on spacecraft-grade FR4 dielectric
materials, fulfilling the design requirements.

This study comprehensively investigates the application of monopole antennas in
space electrostatic discharge (ESD) monitoring through methods such as antenna sim-
ulation design, performance testing of antenna prototypes, and simulated experiments
for spacecraft dielectric material discharge measurements. The findings offer valuable
engineering guidance for the practical space application of such antennas and will address
the current lack of empirical support for the use of monopole antennas in space ESD testing.
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