Sequential Atmospheric Pressure Plasma-Assisted Laser Ablation of Photovoltaic Cover Glass for Improved Contour Accuracy
Abstract
:1. Introduction
2. Basic Considerations
3. Experimental Setup and Procedure
3.1. Investigated Glass
3.2. Plasma Pre-Treatment and Evaluation
3.3. Sequential Laser Ablation and Evaluation
4. Results and Discussion
4.1. Plasma Pre-Treatment
Parameter | tplasma = 0 s | tplasma = 60 s | Δ in % |
---|---|---|---|
γsp in mJ·m−2 | 18.76 | 46.82 | +149.62 |
γsd in mJ·m−2 | 37.47 | 31.99 | −14.63 |
γs in mJ·m−2 | 56.22 | 78.81 | +40.16 |
P = γsp/γs | 0.33 | 0.59 | +78.1 |
4.2. Sequential Laser Ablation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Deubener, J.; Helsch, G.; Moiseev, A.; Bornhöft, H. Glasses for solar energy conversion systems. J. Eur. Ceram. Soc. 2009, 29, 1203–1210. [Google Scholar] [CrossRef]
- Nostell, P.; Roos, A.; Karlsson, B. Antireflection of glazings for solar energy applications. Sol. Energy Mater. Sol. Cells 1998, 54, 223–233. [Google Scholar] [CrossRef]
- Nostell, P.; Roos, A.; Karlsson, B. Optical and mechanical properties of sol-gel antireflective films for solar energy applications. Thin Solid Films 1999, 351, 170–175. [Google Scholar] [CrossRef]
- Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholz, J.; Zanke, C.; Bläsi, B.; Heinzel, A.; Horbelt, W.; Sporn, D.; Döll, W.; Wittwer, V.; Luther, J. Glazing with very high solar transmittance. Sol. Energy 1998, 62, 177–188. [Google Scholar] [CrossRef]
- Chung, B.C.; Virshup, G.F.; Hikido, S.; Kaminar, N.R. 27.6% efficiency (1 sun, air mass 1.5) monolithic Al0.37Ga0.63As/GaAs two-junction cascade solar cell with prismatic cover glass. Appl. Phys. Lett. 1989, 55, 1741–1743. [Google Scholar] [CrossRef]
- Wilson, S.J.; Hutley, M.C. The optical properties of ‘moth eye’ antireflection surfaces. Opt. Acta 1982, 29, 993–1009. [Google Scholar] [CrossRef]
- Gombert, A.; Rose, K.; Heinzel, A.; Horbelt, W.; Zanke, C.; Bläsi, B.; Wittwer, V. Antireflective submicrometer surface-relief gratings for solar applications. Sol. Energy Mater. Sol. Cells 1998, 54, 333–342. [Google Scholar] [CrossRef]
- Heine, C.; Morf, R.H. Submicrometer gratings for solar energy applications. Appl. Opt. 1995, 34, 2476–2482. [Google Scholar] [CrossRef]
- Zhang, J.; Sugioka, K.; Midorikawa, K. Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser. Opt. Lett. 1998, 23, 1486–1488. [Google Scholar] [CrossRef]
- Sugioka, K.; Midorikawa, K. Novel technology for laser precision micro-fabrication of hard materials. RIKEN Rev. 2001, 32, 36–42. [Google Scholar]
- Wang, J.; Niino, H.; Yabe, A. One-step microfabrication of fused silica by laser ablation of an organic solution. Appl. Phys. A 1999, 68, 111–113. [Google Scholar] [CrossRef]
- Ding, X.; Kawaguchi, Y.; Niino, H.; Yabe, A. Laser-induced high-quality etching of fused silica using a novel aqueous medium. Appl. Phys. A 2002, 75, 641–645. [Google Scholar]
- Böhme, R.; Zimmer, K. Low roughness laser etching of fused silica using an adsorbed layer. Appl. Surf. Sci. 2004, 239, 109–116. [Google Scholar] [CrossRef]
- Zimmer, K.; Böhme, R.; Rauschenbach, B. Laser etching of fused silica using an adsorbed toluene layer. Appl. Phys. A 2004, 79, 1883–1885. [Google Scholar]
- Hopp, B.; Vass, C.; Smausz, T.; Bor, Z. Production of submicrometre fused silica gratings using laser-induced backside dry etching technique. J. Phys. D 2006, 39, 4843–4847. [Google Scholar] [CrossRef]
- Gerhard, C.; Tasche, D.; Brückner, S.; Wieneke, S.; Viöl, W. Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma. Opt. Lett. 2012, 37, 566–568. [Google Scholar] [CrossRef]
- Gerhard, C.; Weihs, T.; Tasche, D.; Brückner, S.; Wieneke, S.; Viöl, W. Atmospheric pressure plasma treatment of fused silica, related surface and near-surface effects and applications. Plasma Chem. Plasma Process. 2013, 33, 895–905. [Google Scholar] [CrossRef]
- Brückner, S.; Hoffmeister, J.; Ihlemann, J.; Gerhard, C.; Wieneke, S.; Viöl, W. Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma. J. Laser Micro Nanoeng. 2012, 7, 73–76. [Google Scholar] [CrossRef]
- Hoffmeister, J.; Gerhard, C.; Brückner, S.; Ihlemann, J.; Wieneke, S.; Viöl, W. Laser micro-structuring of fused silica subsequent to plasma-induced silicon suboxide generation and hydrogen implantation. Phys. Procedia 2012, 39, 613–620. [Google Scholar] [CrossRef]
- Gerhard, C.; Heine, J.; Brückner, S.; Wieneke, S.; Viöl, W. A hybrid laser-plasma ablation method for improved nanosecond laser machining of heavy flint glass. Lasers Eng. 2013, 24, 391–403. [Google Scholar]
- f|solarfloat data sheet; f|solar GmbH: Osterweddingen, Germany, 2013.
- Brückner, S.; Rösner, S.; Gerhard, C.; Wieneke, S.; Viöl, W. Plasma-based ionisation spectroscopy for material analysis applications. Mater. Test. 2011, 53, 639–642. [Google Scholar] [CrossRef]
- Gredner, A.; Gerhard, C.; Wieneke, S.; Schmidt, K.; Viöl, W. Increase in generation of poly-crystalline silicon by atmospheric pressure plasma-assisted excimer laser annealing. J. Mater. Sci. Eng. B 2013, 3, 346–351. [Google Scholar]
- Kaelble, D.H. Peel adhesion: Influence of surface energies and adhesive rheology. J. Adhes. 1969, 1, 102–123. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Scholze, H. Glas—Natur, Struktur und Eigenschaften, 3rd ed.; Springer Verlag: Berlin Heidelberg, Germany, 1988. (In German) [Google Scholar]
- Carré, A. Polar interactions at liquid/polymer interfaces. J. Adhes. Sci. Technol. 2007, 21, 961–981. [Google Scholar] [CrossRef]
- Bach, H.; Krause, D. Analysis of the Composition and Structure of Glass and Glass Ceramics, 1st ed.; Springer Verlag: Berlin Heidelberg, Germany, 1999. [Google Scholar]
- Gerhard, C.; Weihs, T.; Luca, A.; Wieneke, S.; Viöl, W. Polishing of optical media by dielectric barrier discharge inert gas plasma at atmospheric pressure. J. Eur. Opt. Soc. Rapid Publ. 2013, 8. [Google Scholar] [CrossRef]
- Lawrence, J.; Li, L. Wettability characteristics of an Al2O3/SiO2-based ceramic modified with CO2, Nd:YAG, excimer and high-power diode lasers. J. Phys. D 1999, 32, 1075–1082. [Google Scholar] [CrossRef]
- Tasche, D.; Gerhard, C.; Ihlemann, J.; Wieneke, S.; Viöl, W. The impact of O/Si ratio and hydrogen content on ArF excimer laser ablation of fused silica. J. Eur. Opt. Soc. Rapid Publ. in press.
- Gerhard, C.; Roux, S.; Brückner, S.; Wieneke, S.; Viöl, W. Low-temperature atmospheric pressure argon plasma treatment and hybrid laser-plasma ablation of barite crown and heavy flint glass. Appl. Opt. 2012, 51, 3847–3852. [Google Scholar] [CrossRef]
- Gerhard, C.; Roux, S.; Brückner, S.; Wieneke, S.; Viöl, W. Atmospheric pressure argon plasma-assisted enhancement of laser ablation of aluminum. Appl. Phys. A 2012, 108, 107–112. [Google Scholar] [CrossRef]
- Gerhard, C.; Roux, S.; Peters, F.; Brückner, S.; Wieneke, S.; Viöl, W. Hybrid laser ablation of Al2O3 applying simulataneous argon plasma treatment at atmospheric pressure. J. Ceram. Sci. Technol. 2013, 4, 19–24. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gerhard, C.; Dammann, M.; Wieneke, S.; Viöl, W. Sequential Atmospheric Pressure Plasma-Assisted Laser Ablation of Photovoltaic Cover Glass for Improved Contour Accuracy. Micromachines 2014, 5, 408-419. https://doi.org/10.3390/mi5030408
Gerhard C, Dammann M, Wieneke S, Viöl W. Sequential Atmospheric Pressure Plasma-Assisted Laser Ablation of Photovoltaic Cover Glass for Improved Contour Accuracy. Micromachines. 2014; 5(3):408-419. https://doi.org/10.3390/mi5030408
Chicago/Turabian StyleGerhard, Christoph, Maximilian Dammann, Stephan Wieneke, and Wolfgang Viöl. 2014. "Sequential Atmospheric Pressure Plasma-Assisted Laser Ablation of Photovoltaic Cover Glass for Improved Contour Accuracy" Micromachines 5, no. 3: 408-419. https://doi.org/10.3390/mi5030408
APA StyleGerhard, C., Dammann, M., Wieneke, S., & Viöl, W. (2014). Sequential Atmospheric Pressure Plasma-Assisted Laser Ablation of Photovoltaic Cover Glass for Improved Contour Accuracy. Micromachines, 5(3), 408-419. https://doi.org/10.3390/mi5030408