Growth of Ultra-Long ZnO Microtubes Using a Modified Vapor-Solid Setup
Abstract
:1. Introduction
2. Experimental Setups
2.1. Previous Setup
2.2. Modified Setup
3. Results and Discussion
3.1. The Evolution of ZnO Structures
3.2. Growth Mechanism
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Willander, M.; Nur, O.; Zhao, Q.; Yang, L.; Lorenz, M.; Cao, B.; Pérez, J.Z.; Czekalla, C.; Zimmermann, G.; Grundmann, M. Zinc oxide nanorod based photonic devices: Recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009, 20, 332001. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Hu, L.; Xu, J.; Liao, M.; Wu, L.; Fang, X. ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small 2011, 7, 2449–2453. [Google Scholar] [PubMed]
- Hu, L.; Yan, J.; Liao, M.; Xiang, H.; Gong, X.; Zhang, L.; Fang, X. An optimized ultraviolet-a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater. 2012, 24, 2305–2309. [Google Scholar] [CrossRef] [PubMed]
- Hsu, N.-F.; Chung, T.-K.; Chang, M.; Chen, H.-J. Rapid synthesis of piezoelectric ZnO-nanostructures for micro power-generators. J. Mater. Sci. Technol. 2013, 29, 893–897. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, H.J.; Ino, K.; Shiku, H.; Yao, T.; Matsue, T. Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires. J. Phys. Chem. C 2009, 113, 19376–19381. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, J.; Wang, A.; Wang, N.; Yang, X. Synthesis of aluminium-doped ZnO nanocrystals with controllable morphology and enhanced electrical conductivity. J. Mater. Chem. 2011, 21, 4161–4167. [Google Scholar] [CrossRef]
- Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R.C.; Qian, F.; Zhang, J.Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.S.; Li, D.; Witte, C.M.; Lu, J.G. Weak localization and electron—Electron interactions in indium-doped ZnO nanowires. Nano Lett. 2009, 9, 3991–3995. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—From materials to nanodevices. Adv. Mater. 2003, 15, 432–436. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z.L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Fang, X.; Hao, Y.; Teng, X.; Zhang, L. Zinc oxide nanostructures: Morphology derivation and evolution. J. Phys. Chem. B 2005, 109, 19758–19765. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Xu, T.; He, M.; Li, J. Simultaneous catalyst-free growth of highly oriented ZnO nanowires and microtubes. J. Nanosci. Nanotechnol. 2013, 13, 5919–5923. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Qin, Y.; Dai, L.; Wang, Z.L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2008, 4, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zeng, H.C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhou, Y.; Wang, S.; Yang, R.; Ding, Y.; Wang, X.; Bando, Y.; Wang, Z.L. Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 2012, 23, 055604. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H.-J. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 2002, 12, 323–331. [Google Scholar] [CrossRef]
- Yao, B.; Chan, Y.; Wang, N. Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 2002, 81, 757–759. [Google Scholar] [CrossRef]
- Chang, P.-C.; Fan, Z.; Wang, D.; Tseng, W.-Y.; Chiou, W.-A.; Hong, J.; Lu, J.G. ZnO nanowires synthesized by vapor trapping CVD method. Chem. Mater. 2004, 16, 5133–5137. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Han, M.; Hao, X.; Zhu, F. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 2005, 127, 2378–2379. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ji, Y.L.; Xu, H.; Simon, P.; Wu, Z. Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc. 2002, 124, 14864–14865. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Li, X.; Zhuge, F.; Gan, X.; Gao, X.; He, W.; Park, S.-J.; Kim, H.-K.; Hwang, Y.-H. Solution-derived 40 μm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells. Nanotechnology 2010, 21, 195602. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wei, Y.; Kirkham, M.; Liu, J.; Mai, W.; Davidovic, D.; Snyder, R.L.; Wang, Z.L. Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 2008, 130, 14958–14959. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Song, J.; Xu, S.; Yang, R.; Gao, Z.; Hu, C.; Wang, Z.L. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J. Mater. Chem. 2009, 19, 9260–9264. [Google Scholar] [CrossRef]
- Martinson, A.B.; Elam, J.W.; Hupp, J.T.; Pellin, M.J. ZnO nanotube based dye-sensitized solar cells. Nano Lett. 2007, 7, 2183–2187. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Shen, W.; Zheng, M.; Zhu, Y.; Lu, J. Integration of ZnO nanotubes with well-ordered nanorods through two-step thermal evaporation approach. J. Phys. Chem. C 2007, 111, 9116–9121. [Google Scholar] [CrossRef]
- Luo, C.; Xiang, M. Angle inequality for judging the transition from cassie–baxter to wenzel states when a water drop contacts bottoms of grooves between micropillars. Langmuir 2012, 28, 13636–13642. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Xiang, M.; Heng, X. A stable intermediate wetting state after a water drop contacts the bottom of a microchannel or is placed on a single corner. Langmuir 2012, 28, 9554–9561. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Xiang, M. Wetting states on circular micropillars with convex sidewalls after liquids contact groove base. Langmuir 2013, 29, 15065–15075. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Xiang, M. Existence and stability of an intermediate wetting state on circular micropillars. Microfluid. Nanofluid. 2014, 17, 539–548. [Google Scholar] [CrossRef]
- Heng, X.; Xiang, M.; Lu, Z.; Luo, C. Branched ZnO wire structures for water collection inspired by cacti. ACS Appl. Mater. Interfaces 2014, 6, 8032–8041. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, Y.; Guo, R. ZnO microtube ultraviolet detectors. J. Cryst. Growth 2008, 310, 57–61. [Google Scholar] [CrossRef]
- Deng, S.-Z.; Fan, H.-M.; Wang, M.; Zheng, M.-R.; Yi, J.-B.; Wu, R.-Q.; Tan, H.-R.; Sow, C.-H.; Ding, J.; Feng, Y.-P. Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature. ACS Nano 2009, 4, 495–505. [Google Scholar] [CrossRef]
- Sun, Y.; Fuge, G.M.; Fox, N.A.; Riley, D.J.; Ashfold, M.N. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a si wafer coated with a thin ZnO film. Adv. Mater. 2005, 17, 2477–2481. [Google Scholar] [CrossRef]
- Mensah, S.L.; Kayastha, V.K.; Ivanov, I.N.; Geohegan, D.B.; Yap, Y.K. Formation of single crystalline ZnO nanotubes without catalysts and templates. Appl. Phys. Lett. 2007, 90, 113108. [Google Scholar] [CrossRef]
- BumáPyun, Y.; HyunáLee, D.; SooáSon, K.; KeeáYi, D.; IláPark, W. Synthesis of ZnO nanotubes and nanotube-nanorod hybrid hexagonal networks using a hexagonally close-packed colloidal monolayer template. J. Mater. Chem. 2010, 20, 5136–5140. [Google Scholar] [CrossRef]
- Chu, D.; Masuda, Y.; Ohji, T.; Kato, K. Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir 2009, 26, 2811–2815. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, X.-F.; Yin, J.; Zhu, Z.-K. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir 2004, 20, 3441–3448. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, Q.; Gao, S.; Shang, J.K. NH4+ directed assembly of zinc oxide micro-tubes from nanoflakes. Nanoscale Res. Lett. 2011, 6, 491. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, Z.; Wang, L.; Wu, M.; Ouyang, S.; Gu, E. Synthesis of ZnO hexagonal tubes by a microwave heating method. Superlattices Microstruct. 2006, 39, 314–318. [Google Scholar]
- Afanasiev, P. Snapshots of zinc oxide formation in molten salt: Hollow microtubules generated by oriented attachment and the kirkendall effect. J. Phys. Chem. C 2012, 116, 2371–2381. [Google Scholar] [CrossRef]
- Chakraborty, A.; Liu, X.; Wang, H.; Luo, C. Generation of ZnO nanowires with varied densities and lengths by tilting a substrate. Microsyst. Technol. 2012, 18, 1497–1506. [Google Scholar] [CrossRef]
- Geng, C.; Jiang, Y.; Yao, Y.; Meng, X.; Zapien, J.A.; Lee, C.S.; Lifshitz, Y.; Lee, S.T. Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv. Funct. Mater. 2004, 14, 589–594. [Google Scholar] [CrossRef]
- Wong, K.M.; Fang, Y.; Devaux, A.; Wen, L.; Huang, J.; de Cola, L.; Lei, Y. Assorted analytical and spectroscopic techniques for the optimization of the defect-related properties in size-controlled ZnO nanowires. Nanoscale 2011, 3, 4830–4839. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.M. VLSI Technology; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Granger, R.A. Fluid Mechanics; Dover Publications: Mineola, NY, USA, 1995. [Google Scholar]
- Jeong, J.S.; Lee, J.Y.; Cho, J.H.; Suh, H.J.; Lee, C.J. Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chem. Mater. 2005, 17, 2752–2756. [Google Scholar] [CrossRef]
- Zhao, X.; Ren, X.; Sun, C.; Zhang, X.; Si, Y.; Yan, C.; Xu, J.; Xue, D. Morphology evolution at nano-to micro-scale. Funct. Mater. Lett. 2008, 1, 167–172. [Google Scholar] [CrossRef]
- Bakkers, E.P.; Verheijen, M.A. Synthesis of InP nanotubes. J. Am. Chem. Soc. 2003, 125, 3440–3441. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Heng, X.; Chakraborty, A.; Luo, C. Growth of Ultra-Long ZnO Microtubes Using a Modified Vapor-Solid Setup. Micromachines 2014, 5, 1069-1081. https://doi.org/10.3390/mi5041069
Lu Z, Heng X, Chakraborty A, Luo C. Growth of Ultra-Long ZnO Microtubes Using a Modified Vapor-Solid Setup. Micromachines. 2014; 5(4):1069-1081. https://doi.org/10.3390/mi5041069
Chicago/Turabian StyleLu, Zhihui, Xin Heng, Anirban Chakraborty, and Cheng Luo. 2014. "Growth of Ultra-Long ZnO Microtubes Using a Modified Vapor-Solid Setup" Micromachines 5, no. 4: 1069-1081. https://doi.org/10.3390/mi5041069
APA StyleLu, Z., Heng, X., Chakraborty, A., & Luo, C. (2014). Growth of Ultra-Long ZnO Microtubes Using a Modified Vapor-Solid Setup. Micromachines, 5(4), 1069-1081. https://doi.org/10.3390/mi5041069