Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yeh, H.C.; Chang, C.C.; Yang, R.J. Reverse electrodialysis in conical-shaped nanopores: Salinity gradient-driven power generation. RSC Adv. 2014, 4, 2705–2714. [Google Scholar] [CrossRef]
- Wick, G.L. Power from salinity gradient. Energy 1978, 3, 95–100. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Kim, D.K. Power generation from concentration gradient by reverse electrodialysis in dense silica membranes for microfluidic and nanofluidic systems. Energies 2016, 9, 49. [Google Scholar] [CrossRef]
- Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manag. 2001, 42, 1357–1378. [Google Scholar] [CrossRef]
- Ackermann, T. Wind energy technology and current status a review. Int. J. Heat Mass Transf. 2000, 4, 315–374. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57, 582–594. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Leitz, F.B. Electric power from differences in salinity: The dialytic battery. Science 1976, 191, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, J.D.; Seymour, R.J. The ocean as a power resource. Int. J. Environ. Stud. 1973, 4, 201–205. [Google Scholar] [CrossRef]
- Suda, F.; Matsuo, T.; Ushioda, D. Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water. Energy 2007, 32, 165–173. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.; Harmsen, G. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 2009, 327, 136–144. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Pennathur, S.; Eijkel, J.C.T.; van den Berg, A. Energy conversion in microsystems: Is there a role for micro/nanofluidics? Lab Chip 2007, 7, 1234–1237. [Google Scholar] [PubMed]
- Eijkel, J.C.; Van Den Berg, A. Nanofluidics: What is it and what can we expect from it? Microfluid. Nanofluid. 2005, 1, 249–267. [Google Scholar] [CrossRef]
- Kim, D.K.; Duan, C.; Chen, Y.F.; Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 2010, 9, 1215–1224. [Google Scholar] [CrossRef]
- Kang, B.D.; Kim, H.J.; Lee, M.G.; Kim, D.-K. Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores. Energy 2015, 86, 525–538. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, R.J. Electrokinetic energy conversion in micrometer-length nanofluidic channels. Microfluid. Nanofluid. 2009, 9, 225–241. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, R.J. Electrokinetic energy conversion efficiency in ion-selective nanopores. Appl. Phys. Lett. 2011, 99, 083102. [Google Scholar] [CrossRef]
- Guo, W.; Cao, L.; Xia, J.; Nie, F.Q.; Ma, W.; Xue, J.; Song, Y.; Zhu, D.; Wang, Y.; Jiang, L. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 2010, 20, 1339–1344. [Google Scholar] [CrossRef]
- Tandon, V.; Bhagavatula, S.K.; Nelson, W.C.; Kirby, B.J. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis 2008, 29, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S.; Wang, Y.; Jiang, L.; Zhu, D. Towards understanding the nanofluidic reverse electrodialysis system: Well matched charge selectivity and ionic composition. Energy Environ. Sci. 2011, 4, 2259. [Google Scholar] [CrossRef]
- Chang, C.R.; Yeh, C.H.; Yeh, H.C.; Yang, R.J. Energy conversion from salinity gradient using microchip with nafion membrane. In International Journal of Modern Physics: Conference Series; World Scientific Publishing Company: Singapore, 2016; Volume 42, pp. 1660183-1–1660183-12. [Google Scholar]
- Lee, J.H.; Song, Y.A.; Han, J. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 2008, 8, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cho, Y.; Han, S.; Lim, C.S.; Lee, J.H.; Chung, S. Microfluidic in-reservoir pre-concentration using a buffer drain technique. Lab Chip 2014, 14, 2778–2782. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayanaiah, N. Transport Phenomena In Membranes; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Fundamentals and applications. In Electrochemical Methods, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Koryta, J.; Dvorak, J.; Kavan, L. Principles of Electrochemistry; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Fair, J.C.; Osterle, J.F. Reverse electrodialysis in charged capillary membranes. J. Chem. Phys. 1971, 54, 3307–3316. [Google Scholar] [CrossRef]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, T.-C.; Liu, C.-W.; Yang, R.-J. Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane. Micromachines 2016, 7, 205. https://doi.org/10.3390/mi7110205
Tsai T-C, Liu C-W, Yang R-J. Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane. Micromachines. 2016; 7(11):205. https://doi.org/10.3390/mi7110205
Chicago/Turabian StyleTsai, Tsung-Chen, Chia-Wei Liu, and Ruey-Jen Yang. 2016. "Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane" Micromachines 7, no. 11: 205. https://doi.org/10.3390/mi7110205
APA StyleTsai, T. -C., Liu, C. -W., & Yang, R. -J. (2016). Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane. Micromachines, 7(11), 205. https://doi.org/10.3390/mi7110205