Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis
Abstract
:1. Introduction
2. Experimental Section
2.1. Device Design and Fabrication
2.2. Electrokinetic Flow
2.3. Chemicals and Reagents
2.4. Characterizing the Magnitude of Mixing
3. Results and Discussion
3.1. Mixing with Fluidic Dielectrophoresis
3.2. The Influence of Field Frequency and Voltage on Mixing
3.3. Using AC Electrokinetic Mixing to Create Finely Tunable Concentration Gradients
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anwar, K.; Han, T.; Yu, S.; Kim, S.M. Integrated micro/nano-fluidic system for mixing and preconcentration of dissolved proteins. Microchim. Acta 2011, 173, 331–335. [Google Scholar] [CrossRef]
- Gambin, Y.; VanDelinder, V.; Ferreon, A.C.M.; Lemke, E.A.; Groisman, A.; Deniz, A.A. Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat. Methods 2011, 8, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.-J.; Maeng, J.-H.; Ahn, Y.; Hwang, S.Y. DNA ligation using a disposable microfluidic device combined with a micromixer and microchannel reactor. Sens. Actuators B Chem. 2011, 157, 735–741. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Ma, X.; Kong, X.; Xu, Z.; Wang, J. Fast DNA hybridization on a microfluidic mixing device based on pneumatic driving. Talanta 2011, 84, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Swennenhuis, J.F.; Rho, H.S.; Le Gac, S.; Terstappen, L.W. Parallel Single Cancer Cell Whole Genome Amplification Using Button-Valve Assisted Mixing in Nanoliter Chambers. PLoS ONE 2014, 9, e107958. [Google Scholar] [CrossRef] [PubMed]
- Viktorov, V.; Mahmud, M.R.; Visconte, C. Design and characterization of a new H-C passive micromixer up to Reynolds number 100. Chem. Eng. Res. Des. 2016, 108, 152–163. [Google Scholar] [CrossRef]
- Tofteberg, T.; Skolimowski, M.; Andreassen, E.; Geschke, O. A novel passive: Lamination in a planar channel system. Microfluid. Nanofluid. 2010, 8, 209–215. [Google Scholar] [CrossRef]
- Buchegger, W.; Wagner, C.; Lendl, B.; Kraft, M.; Vellekoop, M. A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy. Microfluid. Nanofluid. 2011, 10, 889–897. [Google Scholar] [CrossRef]
- Jain, M.; Nandakumar, K. Novel index for micromixing characterization and comparative analysis. Nanofluidics 2010, 4, 031101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Bown, M.R.; O’Sullivan, B.; MacInnes, J.M.; Allen, R.W.K.; Mulder, M.; Blom, M.; van’t Oever, R. Performance analysis of a folding flow micromixer. Microfluid. Nanofluid. 2009, 7, 783–794. [Google Scholar] [CrossRef]
- Kang, T.G.; Singh, M.K.; Anderson, P.D.; Meijer, H.E.H. A Chaotic Serpentine Mixer Efficient in the Creeping Flow Regime: From Design Concept to Optimization. Microfluid. Nanofluid. 2010, 6, 763–774. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Wang, W.-T.; Liu, C.-C.; Fu, L.-M. Passive mixers in microfluidic systems: A review. Chem. Eng. J. 2016, 288, 146–160. [Google Scholar] [CrossRef]
- Matlock-Colangelo, L.; Colangelo, N.; Fenzl, C.; Frey, M.; Baeumner, A. Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems. Sensors 2016, 16, 1238. [Google Scholar] [CrossRef] [PubMed]
- Lynn, N.S., Jr.; Martínez-López, J.-I.; Bocková, M.; Adam, P.; Coello, V.; Siller, H.R.; Homola, J. Biosensing enhancement using passive mixing structures for microarray-based sensors. Biosens. Bioelectron. 2014, 54, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Losey, M.W.; Jackman, R.J.; Firebaugh, S.L. Design and fabrication of microfluidic devices for multiphase mixing and reaction. J. Microelectromech. Syst. 2002, 11, 462–469. [Google Scholar] [CrossRef]
- Jacobson, S.C.; McKnight, T.E.; Ramsey, J.M. Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing. Anal. Chem. 1999, 71, 4455–4459. [Google Scholar] [CrossRef]
- Biswas, S.K.; Das, T.; Chakraborty, S. Nontrivial augmentations in mixing performance through integrated active and passive mixing in serpentine microchannels. J. Appl. Phys. 2012, 111, 054904. [Google Scholar] [CrossRef]
- Ober, T.J.; Foresti, D.; Lewis, J.A. Active mixing of complex fluids at the microscale. Proc. Natl. Acad. Sci. USA 2015, 112, 12293–12298. [Google Scholar] [CrossRef] [PubMed]
- Glasgow, I.; Aubry, N. Enhancement of microfluidic mixing using time pulsing. Lab Chip 2003, 3, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.-H.; Ryu, K.S.; Liu, C. A magnetic microstirrer and array for microfluidic mixing. J. Microelectromech. Syst. 2002, 11, 462–469. [Google Scholar]
- Cao, Q.; Han, X.; Li, L. An active microfluidic mixer utilizing a hybrid gradient magnetic field. Int. J. Appl. Electromagn. Mech. 2015, 47, 583–592. [Google Scholar]
- Scherr, T.F.; Ryskoski, H.B.; Doyle, A.B.; Haselton, F.R. A two-magnet strategy for improved mixing and capture from biofluids. Biomicrofluidics 2016, 10, 024118. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.; Morana, B.; Scholtes, T.; Chu Duc, T.; Sarro, P.M. A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis. J. Appl. Phys. 2016, 120, 074504. [Google Scholar] [CrossRef]
- Shilton, R.; Tan, M.K.; Yeo, L.Y.; Friend, J.R. Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J. Appl. Phys. 2008, 104, 014910. [Google Scholar] [CrossRef]
- Mavrogiannis, N.; Desmond, M.; Gagnon, Z.R. Fluidic dielectrophoresis: The polarization and displacement of electrical liquid interfaces. Electrophoresis 2014, 36, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Desmond, M.; Mavrogiannis, N.; Gagnon, Z. Maxwell-Wagner polarization and frequency-dependent injection at aqueous electrical interfaces. Phys. Rev. Lett. 2012, 109, 187602. [Google Scholar] [CrossRef] [PubMed]
- Mavrogiannis, N.; Ibo, M.; Fu, X.; Crivellari, F.; Gagnon, Z. Microfluidics made easy: A robust low-cost constant pressure flow controller for engineers and cell biologists. Biomicrofluidics 2016, 10, 034107. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavrogiannis, N.; Desmond, M.; Ling, K.; Fu, X.; Gagnon, Z. Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis. Micromachines 2016, 7, 214. https://doi.org/10.3390/mi7110214
Mavrogiannis N, Desmond M, Ling K, Fu X, Gagnon Z. Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis. Micromachines. 2016; 7(11):214. https://doi.org/10.3390/mi7110214
Chicago/Turabian StyleMavrogiannis, Nicholas, Mitchell Desmond, Kenny Ling, Xiaotong Fu, and Zachary Gagnon. 2016. "Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis" Micromachines 7, no. 11: 214. https://doi.org/10.3390/mi7110214
APA StyleMavrogiannis, N., Desmond, M., Ling, K., Fu, X., & Gagnon, Z. (2016). Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis. Micromachines, 7(11), 214. https://doi.org/10.3390/mi7110214