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Abstract: Microfluidic system is widely employed in the detection of environmental contaminants
and biological specimens. One of the critical issues which limits the applications of microfluidic
chips is the limit of detection of trace specimens. Liquid–liquid extraction is of great importance in
the preprocessing in microfluidic devices. In this paper, we developed a real-time fluorescence
detection microfluidic chip combined with a microstructure-enhanced liquid–liquid laminar
extraction technique, which concentrated the trace compound and realized real-time monitoring.
Auxiliary microstructures integrated in the microfluidic chip were applied to increase the extraction
efficiency, which was proved by the FEM (finite element method) simulation as well. A common
fluorescence probe, Rhodamine 6G (Rh6g), was used in the experiment to demonstrate the
performance of the microfluidic system. It revealed that the liquid–liquid laminar extraction
combined with auxiliary microstructures of a cross shape was an effective method for enrichment.
The efficiency of microstructure-enhanced liquid–liquid extraction was increased by 350% compared
to the traditional laminar flow extraction.
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1. Introduction

Micro total analysis system (µTAS), which is called “lab-on-a-chip,” has developed rapidly in past
decades [1–4]. Various microfluidic devices have been manufactured, such as material synthesis [5],
chemical analysis [6], and cell manipulation [7]. Moreover, lab-on-a-chip devices take advantage
of various detection strategies to achieve micro volume detection, such as high performance liquid
chromatography [8], surface-enhanced Raman spectroscopy [9,10], etc. Additionally, laser-induced
fluorescence spectroscopy has received great attention as potential applications for environmental
monitoring [11] due to its easy coupling, rapid response, low solvent consumption, and high sensitivity.
However, it is complex for the preprocessing of specimens and the subsequent monitoring operation,
and it takes up the vast majority of labor and time in the whole process of analysis [12].

Great efforts have been applied to the preprocessing in microfluidic devices. Diffusion-based
extraction was applied to separate particles and molecules by transferring them from one fluid
to another [13,14]. However, it is not suitable to separate particles with similar sizes or diffusion
coefficients. Furthermore, two-phase laminar extraction was applied to separate or concentrate targeted
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chemical compounds or analytes in industrial and laboratory areas [15–17]. Through the concentration
and separation of analytes, the limit of detection was improved fundamentally. In the aforementioned
microfluidic devices, the stable laminar flow is the most common fluid status, which is formed between
aqueous and organic phase solutions. There are still several devices that are insufficient in stable
liquid–liquid laminar extraction. The enrichment factor was affected by the solvent concentration
and distribution ratio of the two phases. At low Reynolds numbers, the extraction efficiency is
limited by the slow interfacial exchange rate [17]. For that reason, how to increase the extraction
efficiency in the microfluidic chip deserves a further comprehensive study. Promoting the mixture
in each phase and improving mass transfer in the interface were considered to be effective solutions.
Maruyama et al. proposed a method to promote solvent extraction of metal ions in a microfluidic
device through the use of intermittent partition walls [18]. The periodic partition walls induced
turbulence in the two-phase flow, promoting transport of the metal ions. The periodic partition walls
served as guidelines rather than promoters of the laminar extraction with limited improvement of
extraction efficiency. Marschewski et al. presented herringbone-inspired microstructures in co-laminar
microfluidic devices [19]. The reaction and extraction were enhanced by promoting convective mixing
in each reactant region to improve mass transfer to the reactive boundaries.

In this study, we designed and manufactured a real-time fluorescence detection microfluidic
chip, integrated with the advantages of fluorescence detection and liquid–liquid extraction.
Auxiliary microstructures of a cross shape were designed in the microfluidic chip to improve the
laminar flow extraction, with the purpose to introduce a slight turbulence after the bulge of the
cross shape and keep a steady laminar flow in the whole channel, which were proved by the finite
element method (FEM) simulation. The proposed microfluidic chip with auxiliary microstructures
was put into use and its performance was demonstrated by common fluorescence probe, Rhodamine
6G. The auxiliary microstructure of the cross shape was demonstrated effectively by accelerating
the enrichment of preconcentration prior to fluorescence detection. The extraction efficiency of the
microstructure-enhanced microfluidic system was increased by 350% compared to the traditional
laminar flow extraction. The microfluidic device provided a quick and in situ detection method with
great potential in the application of environmental monitoring and biological detection.

2. Materials and Methods

2.1. Chemicals and Apparatus

All of the reagents used were analytically pure grade, and pure water was used throughout the
experiment. An aqueous stock solution of Rhodamine 6G (Rh6g) was prepared by dissolving Rh6g
in pure water and sequentially diluting the stock solution with water into variable concentrations.
Meanwhile, the standard organic stock solution of Rh6g was prepared by dissolving in n-octyl alcohol
and sequentially diluting the stock solution with n-octyl alcohol into variable concentrations.

The microfluidic chip device, equipped with a syringe pump (LSP01-1A, Baoding Longer Precision
Pump., Ltd., Baoding, China) and a peristaltic pump (BT100-2J, Baoding Longer Precision Pump., Ltd.)
via silastic tube, was used for liquid–liquid laminar extraction. A 532-nm green laser (MLL-III-532,
Changchun New Industries Optoelectronics Tech. Co., Ltd., Changchun, China) and a fiber optic
spectrometer (USB2000+, Ocean Optics, Dunedin, FL, USA) was coupled into the microchip device
with multimode optical fibers, which were applied for real-time fluorescence detection.

2.2. Design and Fabrication

Three kinds of auxiliary microstructures were designed to promote the liquid–liquid extraction—a
blank channel, a rectangle shape, and a cross shape. The first two cases were frequently used in
microfluidic devices [18,20]. The auxiliary microstructure of the rectangle shape serves as guidelines
rather than promoters of extraction. The cross shape was designed to improve the extraction efficiency
by introducing a slight turbulence after the bulge of the cross shape [21]. The auxiliary microstructures
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were assembled along the center line of the microchannel with a period of 2 mm spread across the
channel with the length of 30 mm and the width of 600 µm. The microstructure of the cross shape
was 50 µm wide and 1 mm long. In order to avoid jams in the microchannel and form sufficient
perturbation in the microfluidic chip, the bulge of the cross shape was 70 µm wide and 150 µm long
after comprehensive consideration, perpendicular in the middle of the long strip.

Photolithography was performed to pattern microchannels onto an 80 mm ˆ 80 mm ˆ 1.7 mm
glass substrate with SU-8 2100 negative photoresist (MicroChem Corp., Westborough, MA, USA)
with a height of 125 µm. Polydimethylsiloxane (PDMS, SYLGARD 184 Silicone Elastomer Kit, Dow
Corning, Midland, MI, USA) molding was used for duplicating the microchannels and bonding the
PDMS microchannels onto a 1.7-mm-thick 20 mm ˆ 70 mm glass slide [22]. The schematic diagram
of the microfluidic chip fabricating procedures is illustrated in Figure 1. In detail, the glass substrate
was sliced into squares (80 mm ˆ 80 mm), washed with ultrasonic detergent in acetone for 4 min,
rinsed in deionized (DI) water step by step, and dried on the heated platen at 120 ˝C for 30 min
immediately. The 125-µm-thick negative photoresist of SU-8 2100 was then spin-coated on the glass
substrate. After photolithography and developing processes as shown in Figure 1a,b, a thick layer
of PDMS (3 mm) was cast on the patterned glass substrate subsequently. The PDMS was a two-part
system with a mix ratio of cross-linker/curing agent A:siloxane B = 1:10. Upon manually stirring
with a glass rod, the PDMS was degassed in a vacuum oven afterwards. An appropriate amount of
PDMS was poured on the patterned glass substrate, as shown in Figure 1c. Then, a 24-h curing process
was operated by placing the PDMS and photoresist in an oven at 50 ˝C. After gradually cooling to
ambient temperature, the PDMS mold could be easily detached from SU-8 2100 microchannels without
resistance, as shown in Figure 1d. Thereafter, after edge modifying and ultrasonic cleaning in acetone
for 4 min, the PDMS replica and the 1.7-mm-thick 20 mm ˆ 70 mm glass slide were surface-treated by
O2 plasma. Immediately, the PDMS was pressed against the pretreated glass substrate. A self-made
clamp was used to fasten and force the PDMS and glass slide to adhere to each other closely, as shown
in Figure 1e. After 1 h of thermal compression bonding process in an oven at 90 ˝C and gradually
cooling to ambient temperature, a real-time detection microfluidic chip was fabricated [23].
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solvent was pumped into the PDMS microfluidic chip via a syringe pump continuously from inlet 1. 
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turned up in the microchannel. The Rh6g molecule was extracted from the aqueous phase into the 
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Figure 1. The scheme of the microfluidic chip fabrication: (a) photolithography process; (b) developing
process; (c) cast process; (d) PDMS demolding process; (e) bonding process.

2.3. Procedures

The laser-induced fluorescence detection was performed using a laser source and a fiber optic
spectrometer (USB2000+, Ocean Optics, Dunedin, FL, USA). As shown in Figure 2a, the testing Rh6g
solvent was pumped into the PDMS microfluidic chip via a syringe pump continuously from inlet 1.
Cycling extraction was realized by a peristaltic pump, connecting inlet 2 and outlet 2 together. Owing to
the low Reynolds numbers, a stable laminar flow of aqueous phase and organic phase turned up in
the microchannel. The Rh6g molecule was extracted from the aqueous phase into the organic phase
on the interface of two phases. After the extraction circulation of about half an hour, the fluorescence
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detection of the organic phase containing a high concentration of the Rh6g molecule was carried out
in a liquid pool prior to outlet 2. The microfluidic chip coupled with the laser source and fiber optic
spectrometer by multimode optical fibers. The optical fibers were inserted into the PDMS microfluidic
chips by reserved channels, which were fabricated in the microfluidic chip duplicated simultaneously.
In order to reduce the interference of exciting light, the emission fiber was set up perpendicular to the
excitation fiber [16].
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Figure 2. (a) An operation schematic diagram of the real-time fluorescence microfluidic chip (blue lines:
aqueous phase; orange lines: organic phase), (b–d) the microphotograph of auxiliary microstructures lay
in the center line of microchannels: the blank channel, the rectangle shape, the cross shape respectively.

3. Results and Discussion

3.1. Selection of Flow Rate

A stable laminar flow extraction came to being in the middle of the channel of a hollow
microfluidic chip. For the sake of comparison, the condition of two-phase must be controlled carefully.
Theoretically, the ratio of width is inversely proportional to the viscosity of two phases [24]. The larger
the viscosity, the narrower the phase flow is. The standard curve of the relationship between the
flow width ratio and the velocity ratio was carried out as shown in Figure 3. The velocity of organic
phase was fixed at 0.1 mL¨ h´1, and the velocity of the aqueous phase was set from 0.1 to 0.9 mL¨ h´1.
The image of stable laminar flow was observed under the microscope (Nikon Optiphot 100, Tokyo,
Japan), as shown in the inset of Figure 3. The top phase was the aqueous phase of pure water, and the
bottom phase was the organic phase of n-octyl alcohol. The slope of the fitted curve was calculated as
0.152. The equation of the relationship between the flow width ratio and the velocity ratio could be
expressed as:

wa

wo
– 0.152 ˆ

va

vo
(1)

where wa and wo is the width of the aqueous phase and the organic phase, respectively, and va and vo

the velocity of the aqueous phase and the organic phase, respectively.
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Figure 3. The standard curve of the relationship between the flow width ratio and the velocity ratio
(inset: the microphotograph of stable laminar flow corresponding to individual velocity ratio, the
top phase was the aqueous phase of pure water and the bottom phase was the organic phase of
n-octyl alcohol).

A stable laminar flow came up in the hollow microchannel of microchip device. In order to
separate the two phases at the end-junction of the microchannel conveniently, the flow rate was set to
be half apart empirically [16]. Furthermore, if the width of the aqueous phase was larger than that of
the organic phase, the solvent far from the two-phase interface had nothing to do with the extraction.
More feed solvent was needed. Similarly, if the width of the aqueous phase was narrower than the
organic phase, it was difficult to acquire a high concentration in the organic phase. To obtain the same
enrichment ratio, more extraction cycles and efforts were needed. Hence, the half-and-half flow state
was controlled in the laminar extraction. In order to maintain the stable half-and-half divided flow
state, the value of va/vo should be limited to approximately 6 for convenience.

3.2. Simulation of Flow Flied

To acquire a deep understanding of the mechanism of flow promotion, 2-dimensional vector
maps and the corresponding streamlines were obtained by the FEM simulation, as shown in Figure 4.
The velocity vector map is on the right and the corresponding streamline is on the left. The flow state
in the plain blank channel was laminar and the streamlines remained parallel. Thus, convection in
the direction transverse to the main flow was negligible and the crossover remained diffusion-limited.
In the case of the rectangle shape, the streamlines converged toward the center after the fluid barrier
at the end of the long strip, which caused a swirling current and perturbation [18]. The tiny swirling
quickly trended toward laminar. The periodic partition walls served as guidelines rather than
promoters of the laminar extraction. Additionally, compared to the rectangle shape, a slight turbulence
was formed behind the bulge of the cross shape [21]. The employed auxiliary microstructures perturbed
the laminar flow field. In each individual phase, transverse transport of solutes quickened, and the
solute concentration changed to a relatively uniform value. The diffusion of solvent molecules from
high to low concentration in the aqueous feed phase and the organic extractant phase was expedited,
respectively. Thus, it maintained a relatively high concentration difference in the interface of the two
phases. The mass transfer in the interface of the two phases was accelerated by the rapid movement of
solvent molecules and the relatively high concentration difference. In the case of the cross shape, the
extraction efficiency was improved through not only increasing transverse transport of solutes in each
phase, but also promoting the mass transfer on the interface of the two phases.
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channel within the same amount of extracting duration, and the fluorescence intensity of the cross 
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shape was more effective than the rectangle shape, and the rectangle shape was better than the plain 
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Figure 4. Velocity vector map (right) and corresponding streamline (left) of the plain blank
microchannel, the microchannel with microstructure of the rectangle shape, and the microchannel with
microstructure of the cross shape (velocity vector: red arrows; streamline: black lines).

Figure 5 shows the simulation result of the enrichment factor in the center of the organic extractant
phase for one single extraction cycle. Several significant rise and flat fluctuations appear in the curves,
which correspond to the periodic auxiliary microstructures. It is assumed that the rise of the fitted
curves corresponds to a fast extraction process in the interface, and the curve became flat in the
division of microstructures. In the same site of the channel, the slope of the curve in the cross shape is
superior to that of the rectangle shape, and the plain blank is the worst, as shown by the dashed lines in
Figure 5. A large slope factor led to a high extraction efficiency of the microfluidic chip. Therefore, the
microfluidic chip integrated with the auxiliary microstructure of the cross shape is assumed to be more
effective in the extraction. Theoretically, increasing the slope of the rise and shortening the flat portion
of the curve could enlarge the enrichment factor of the system, as well as the extraction efficiency.
One important rule to design the size of the auxiliary microstructure is ensuring the recovery of the
laminar flow in the microchannel. Another rule is to enhance the perturbation in the microchannels as
much as possible. On account of the small Reynolds numbers far less than 1 and the guideline function
of auxiliary microstructures, the laminar flow state in the microfluidic devices kept steady despite the
turbulence caused by the auxiliary microstructures.
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3.3. Performance of Microfluidic Chip

The performance of the microfluidic chip was demonstrated in a darkroom. An aqueous solution
of Rh6g with a concentration of 10 ppb was tested in the microfluidic system. The laser-induced
fluorescence intensity of the concentrated Rh6g solvent is presented in Figure 6. A significant
enrichment of the Rh6g solvent was observed in the experiment with an intense color change, first
appearing transparent without the Rh6g molecule diffused and gradually darkening to bright orange
with the increase of the Rh6g concentration. The velocity of the aqueous Rh6g solution was set as
2 mL¨ h´1, and the velocity of the n-octyl alcohol extraction agent was set as 12 mL¨ h´1, which was six
times the aqueous velocity mentioned previously. The data results also reflected the enrichment of the
concentration of the Rh6g solvent. The extraction efficiency was improved as the auxiliary structures
modified the microchannel. In the case of 2 mL¨ h´1 of the aqueous rate, as shown in Figure 6, the
fluorescence intensity of the rectangle shape was 190% that of the plain blank channel within the same
amount of extracting duration, and the fluorescence intensity of the cross shape was almost 350% that
of the plain blank channel. The auxiliary microstructure of the cross shape was more effective than the
rectangle shape, and the rectangle shape was better than the plain blank channel as well. The impact
of auxiliary microstructures was consistent and in good agreement with FEM simulation results, as
shown in Figure 5. The mass transfer and extraction were carried out in the vicinity of the two-phase
interface. The auxiliary microstructures in the center line of the microchannel served as guidelines
and promoted the mixing of the reactants at the same time [19]. The diffusion of the Rh6g molecule in
the aqueous and organic phases was accelerated on account of a limited turbulent flow caused by the
barrier in the microchannel. The cross shape located in the center line of the channel was considered to
be more effective for solvent enrichment in the laminar extraction process.
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Figure 6. The laser-induced fluorescence intensity of the concentrated Rh6g solvent after an
extraction time of half an hour. The velocity of the aqueous and organic phases was set at 2 and
12 mL¨ h´1, respectively.

In order to verify the influence of the velocity of phase flow, various sampling rates were studied
in the subsequent experiment, as shown in Figure 7. In detail, the aqueous velocity was set as
3 mL¨ h´1 in Figure 7a and 4 mL¨ h´1 in Figure 7b, and the organic velocity was set as 18 and
24 mL¨ h´1, respectively. For various sampling rates, the fluorescence intensity of the microfluidic chip
of the cross shape was superior to that of the rectangle shape, and the rectangle shape was greater
than the plain blank channel. There was no significant improvement on extraction efficiency as the
sampling velocity increases. However, the laminar flow became unstable after the long-term extraction
procedure, as manifested in the unsmooth fitted curve of fluorescence intensity as the sampling rate
increases. Therefore, 2–12 mL¨ h´1 or lower was validated as the appropriate sampling velocity value
for long-term extraction.
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Figure 7. The laser-induced fluorescence intensity of the concentrated Rh6g solvent after an
extraction time of half an hour. (a) The velocity of the aqueous and organic phases was set at 3
and 18 mL¨ h´1respectively; (b) the velocity of the aqueous and organic phases was set at 4 and
24 mL¨ h´1, respectively.

4. Conclusions

In this study, a real-time fluorescence detection microfluidic chip integrated with auxiliary
microstructures was fabricated. The situation of phase interface was adjusted by the flow rates
of the two phases. It is efficient to promote the limit of detection of a microfluidic chip integrated
with auxiliary microstructures. The auxiliary microstructure of the cross shape was considered to
be more effective in accelerating mass transfer and enlarging the enrichment factor in the laminar
liquid–liquid extraction system. The microfluidic chip was proved to be stable for long-term extraction
and real-time detection of trace analytes. In future work, the microfluidic system has significant
application prospects in such fields as environmental monitoring and biochemical detection.
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