
micromachines

Article

Rapid and Effective Electrical Conductivity
Improvement of the Ag NW-Based Conductor by
Using the Laser-Induced Nano-Welding Process

Phillip Lee 1,†, Jinhyeong Kwon 2,†, Jinhwan Lee 2, Habeom Lee 2, Young D. Suh 2,
Sukjoon Hong 3,* and Junyeob Yeo 4,*

1 Photo-Electronic Hybrids Research Center, National Agenda Research Division, Korea Institute of Science
and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea; phillip@kist.re.kr

2 Applied Nano and Thermal Science (ANTS) Lab, Department of Mechanical Engineering, Seoul National
University, 1 Gwanak-ro, Gwanak-gu, Seoul 00826, Korea; jhs0909k@snu.ac.kr (J.K.);
mir.ljh@gmail.com (J.L.); habeom.lee@snu.ac.kr (H.L.); youngduksuh@gmail.com (Y.D.S.)

3 Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan,
Gyeonggi-do 15588, Korea

4 Novel Applied Nano Optics (NANO) Lab, Department of Physics, Kyungpook National University,
80 Daehak-ro, Bukgu, Daegu 41566, Korea

* Correspondence: sukjoonhong@hanyang.ac.kr (S.H.); junyeob@knu.ac.kr (J.Y.); Tel.: +82-31-400-5249 (S.H.);
+82-53-950-7360 (J.Y.)

† These authors contributed equally to this work.

Academic Editor: Zhigang Wu
Received: 2 April 2017; Accepted: 16 May 2017; Published: 19 May 2017

Abstract: To date, the silver nanowire-based conductor has been widely used for flexible/stretchable
electronics due to its several advantages. The optical nanowire annealing process has also received
interest as an alternative annealing process to the Ag nanowire (NW)-based conductor. In this study,
we present an analytical investigation on the phenomena of the Ag NWs’ junction and welding
properties under laser exposure. The two different laser-induced welding processes (nanosecond
(ns) pulse laser-induced nano-welding (LINW) and continuous wave (cw) scanning LINW) are
applied to the Ag NW percolation networks. The Ag NWs are selectively melted and merged at the
junction of Ag NWs under very short laser exposure; these results are confirmed by scanning electron
microscope (SEM), focused-ion beam (FIB), electrical measurement, and finite difference time domain
(FDTD) simulation.

Keywords: laser; laser-induced nano-welding; pulse laser; silver nanowires; silver nanowire
percolation networks; transparent flexible conductor

1. Introduction

For almost two decades, the flexible transparent conductor and stretchable conductor have
received huge interest from many researchers and industry professionals. Since flexible electronics and
stretchable sensors are core devices in wearable computer systems, as a next generation electronics
platform, manufacturing/fabrication process technologies as well as flexible electronics compatible
materials will be more important in the future.

Meanwhile, among the materials for the transparent conductor, fluorine-doped tin oxide (FTO)
thin film is the most popular and famous material in research and industry fields. However, FTO thin
film is not an appropriate material for the flexible transparent conductor since it is usually delicate and
brittle. Hence, instead of FTO thin film, alternative conducting nanomaterials such as carbon nanotube
(CNT) [1,2], graphene [3–5], metal nanoparticle (NP) mesh [6–9], metal nanowires (NWs) [10–19],
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and metal nano-thin film [20,21] are used in the research field for the flexible transparent conductor
and stretchable conductor.

Among the nanomaterials for flexible electronics, silver (Ag) NWs have been widely used as a
flexible transparent conductor [10–13,16,22–24] and stretchable conductor [15,17,25] due to various
advantages such as high electrical conductivity, high transparency, high ductility and simple fabrication
process methods. However, a post thermal annealing process is usually required to increase electrical
conductivity since Ag NWs are usually too short (up to ~100 µm) to cover the wide area and are
generally covered by capping polymer such as polyvinylpyrrolidone (PVP) which hinders electrical
conductivity. The conventional thermal annealing process, such as a hot plate and convection
oven, is simple and easily applicable to the Ag NW percolation networks for electrical conductivity
improvement, while the thermal annealing process has disadvantages such as oxidation problems
and long processing time. In particular, the thermal annealing process is not suitable to the flexible
polymer substrate due to the low melting temperature of the polymer. Thus, it is important to conduct
a post thermal annealing process with low temperature (below 200 ◦C) to prevent the damages of the
flexible polymer substrate.

Recently, the optical NWs annealing process [14,15,18,19,26–28] was introduced to anneal
metal NW percolation networks for the improvement of electrical conductivity. Compared to the
conventional thermal annealing process, since optical energy in the optical NWs annealing process
is irradiated to the sample over a very short time by a ultraviolet (UV) lamp [14], flash light [26]
or scanning laser [18], the optical NWs annealing process is very rapid and suitable for the flexible
polymer substrate without any macroscopic damages or deformation of the substrate [29,30] under
ambient conditions. In addition, oxidation problems on metal NWs during processing are suppressed
due to fast processing [18].

Most previous research [15,18,19,26,27,31] focuses on the fabrication of flexible/stretchable
electronics and their applications. However, in this study, we attempt to examine mainly the
phenomena of Ag NWs’ junction and welding properties when a laser is irradiated to the Ag NW
percolation networks. In particular, we focus on how the local laser exposure time (from ns to µs) affects
the Ag NWs’ percolation networks in laser processing. Thus, we compare two different laser-induced
nano-welding (LINW) processes as a post annealing process of Ag NWs: the continuous wave (cw)
laser scanning system and the nanosecond (ns) pulse laser system. Although the processing mechanism
of two LINW processes is basically the same in terms of using laser energy, there are several similar
and different results, which are mentioned in the text.

2. Methods

2.1. Experimental Procedure

Figure 1a shows the preparation of an Ag NW-based conductor sample. In order to prepare a film
of Ag NW percolation networks on the substrate, Ag NWs are deposited according to the following
procedures. Firstly, Ag NWs are synthesized in a solution via the polyol synthesis method [32].
Afterwards, synthesized Ag NWs are filtered out onto the Teflon filter and transferred onto the glass
substrate successively. The diameter of the transferred Ag NW percolation networks is ~36 mm due to
the size of the Teflon filter. Since transferred Ag NW percolation networks on the glass substrate
are weakly bound, the post thermal annealing process, such as a hot plate and furnace, is required
to increase the electrical conductivity of the Ag NW percolation networks. Additionally, the LINW
process is conducted to the Ag NW percolation networks as an alternative post annealing process
for comparison.
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Figure 1. Schematic diagram of the thermal annealing process and laser-induced nano-welding 
process for Ag nanowires (NWs) percolation networks. (a) Sample preparation flow chart. Firstly, Ag 
NWs are synthesized in a solution by polyol synthesis. Afterwards, they are filtered on the Teflon 
filter and transferred onto the glass substrate to form Ag NW percolation networks on glass substrate. 
Finally, the thermal annealing process or laser-induced welding process is applied to Ag NW 
percolation networks for the improvement of electrical conductivity. The laser-induced nano-welding 
process through (b) the continuous wave (cw) laser scanning system and (c) the ns pulse laser system. 

2.2. Optical Setup 

As we mentioned, two different LINW processes (the cw laser scanning system and the ns pulse 
laser system) are compared in this study. Figure 1b shows the cw laser scanning system which is 
combined with Galvano scanning mirrors and a telecentric lens [30,33]. In the cw laser scanning 
system, a 532 nm cw laser (Millennia 5W, Spectra Physics, Santa Clara, CA, USA) is used on the 
sample. As shown in Figure 1b, the power of the emitted laser beam is easily controlled through the 
half wave plate (HWP) and polarized beam splitter (PBS). The beam expander is placed afterwards 
to enlarge the laser beam for a flat wavefront of laser beam. The angle of the laser beam is deviated 
by a laser scanner (HurryScan II, Scanlab, Puchheim, Germany) which consists of two electrically 
driven Galvano mirrors. Afterwards, the laser beam is uniformly focused (10 μm) on the 2D focal 
plane, without distortion aberration, by a long focal distance f-theta lens (f = 103 mm). The prepared 
sample that consists of Ag NW percolation networks is placed on the focal plane of the f-theta lens. 
Figure 1c shows the ns pulse laser system which consists of a 532 nm ns pulse laser (Tempest 300, 
NewWave, Redwood City, CA, USA) and beam expander. The pulse duration and the repetition rate 
of the ns laser are 5 ns and 10 Hz, respectively. Since the energy of the applied ns pulse laser is 
extremely high, only one single shot with proper energy density (mJ/cm2) is enough for the 
enhancement of electrical conductivity in Ag NW percolation networks. However, excessive laser 
energy can ablate Ag NW percolation networks, thus the energy density in the ns pulse laser and the 
power density (W/cm2) in the cw laser are carefully controlled by adjustment of the beam waist area 
through the beam expander and power adjustment, respectively. 

2.3. Laser Processing 

Firstly, the prepared sample is placed at the focal plane of the applied laser. Afterwards, the 
laser is irradiated on the sample. In the cw scanning LINW process, the diameter of the prepared 
sample is ~36 mm. Additionally, the spot size of the focused laser, the laser scanning speed, and the 

Figure 1. Schematic diagram of the thermal annealing process and laser-induced nano-welding process
for Ag nanowires (NWs) percolation networks. (a) Sample preparation flow chart. Firstly, Ag NWs
are synthesized in a solution by polyol synthesis. Afterwards, they are filtered on the Teflon filter and
transferred onto the glass substrate to form Ag NW percolation networks on glass substrate. Finally, the
thermal annealing process or laser-induced welding process is applied to Ag NW percolation networks
for the improvement of electrical conductivity. The laser-induced nano-welding process through (b) the
continuous wave (cw) laser scanning system and (c) the ns pulse laser system.

2.2. Optical Setup

As we mentioned, two different LINW processes (the cw laser scanning system and the ns pulse
laser system) are compared in this study. Figure 1b shows the cw laser scanning system which is
combined with Galvano scanning mirrors and a telecentric lens [30,33]. In the cw laser scanning
system, a 532 nm cw laser (Millennia 5W, Spectra Physics, Santa Clara, CA, USA) is used on the sample.
As shown in Figure 1b, the power of the emitted laser beam is easily controlled through the half wave
plate (HWP) and polarized beam splitter (PBS). The beam expander is placed afterwards to enlarge the
laser beam for a flat wavefront of laser beam. The angle of the laser beam is deviated by a laser scanner
(HurryScan II, Scanlab, Puchheim, Germany) which consists of two electrically driven Galvano mirrors.
Afterwards, the laser beam is uniformly focused (10 µm) on the 2D focal plane, without distortion
aberration, by a long focal distance f-theta lens (f = 103 mm). The prepared sample that consists of
Ag NW percolation networks is placed on the focal plane of the f-theta lens. Figure 1c shows the ns
pulse laser system which consists of a 532 nm ns pulse laser (Tempest 300, NewWave, Redwood City,
CA, USA) and beam expander. The pulse duration and the repetition rate of the ns laser are 5 ns and
10 Hz, respectively. Since the energy of the applied ns pulse laser is extremely high, only one single
shot with proper energy density (mJ/cm2) is enough for the enhancement of electrical conductivity
in Ag NW percolation networks. However, excessive laser energy can ablate Ag NW percolation
networks, thus the energy density in the ns pulse laser and the power density (W/cm2) in the cw laser
are carefully controlled by adjustment of the beam waist area through the beam expander and power
adjustment, respectively.

2.3. Laser Processing

Firstly, the prepared sample is placed at the focal plane of the applied laser. Afterwards, the laser
is irradiated on the sample. In the cw scanning LINW process, the diameter of the prepared sample
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is ~36 mm. Additionally, the spot size of the focused laser, the laser scanning speed, and the pitch
of scanning are 10 µm, 100 mm/s, and 10 µm, respectively. Since the total processing time in the cw
scanning LINW process is dependent on sample size and laser scanning speed, fast laser scanning
speed is desirable to reduce the processing time. Meanwhile, the laser dwell time, τ (τ = 2W0/v; τ,
W0, and v are dwell time, beam waist, and scanning speed, respectively), is decreased as the scanning
speed increases. Thus, laser energy density (power density by dwell time) and total processing time are
in a trade-off relationship, and a laser scanning speed of 100 mm/s is chosen as an optimum scanning
speed in this study.

In the case of the ns pulse LINW process, the laser beam is expanded by the beam expander to
reduce laser energy density (energy per unit area), since the pulse laser energy is sufficiently high (see
Figure 1c). The prepared sample size of Ag NW percolation networks is 6 mm by 6 mm in the ns pulse
LINW process, and the extended laser beam illuminates and covers the entire prepared sample area
(see Figure S1 in the Supplementary Information).

3. Results and Discussion

Figure 2 shows a photographic image (Figure 2a) and scanning electron microscope (SEM) images
(Figure 2b,c) of Ag NW percolation networks after the LINW process. In the case of the conventional
thermal annealing process, such as a hot plate [15] and convection oven, the thermal annealing process
is often conducted at a low temperature (e.g., below 250 ◦C) on the flexible substrate due to the low
melting temperature of the polymer substrate. Therefore, it is difficult to find meaningful differences
in the SEM images of Ag NW percolation networks after the thermal annealing process compared to
before the thermal annealing process at a low temperature (below 250 ◦C).
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Ag NWs are found in SEM images after the LINW process, as shown in Figure 2b-i–2b-iv. Since the 
irradiated laser energy is intensively absorbed to heat up Ag NWs and the laser irradiation time is 
extremely short (from ns to μs), crossed Ag NWs are only melted and merged at the junction, without 
damaging the other area of Ag NWs, as shown in Figure 2b. 

In order to verify the melting at the junction of Ag NWs, a cross-sectional SEM image at the 
boundary which is cut by a focused-ion beam (FIB), is examined. It is confirmed that the crossed area 
of two Ag NWs (yellow and blue dotted lines) are melted and fused at the junction, as shown in 
Figure 2c. The results for the flexible transparent conductor and stretchable conductor are very noticeable, 

Figure 2. (a) Photographic image of the Ag NW percolation networks on the glass substrate (30%
transmittance). (b) Magnified scanning electron microscope (SEM) images of the Ag NW percolation
networks after the laser-induced welding process. (c) Cross-sectional SEM image of the junction of the
Ag NW percolation networks after the laser-induced welding process. Two Ag NWs are melted and
merged at the boundary of two Ag NWs (yellow dots and blue dots). Red arrows represent a junction
of Ag NWs in (b,c).

However, in the case of the LINW process (same for both ns pulse LINW and cw scanning LINW)
under ambient conditions (room temperature and atmospheric pressure), melted and merged Ag NWs
are found in SEM images after the LINW process, as shown in Figure 2b-i–2b-iv. Since the irradiated
laser energy is intensively absorbed to heat up Ag NWs and the laser irradiation time is extremely
short (from ns to µs), crossed Ag NWs are only melted and merged at the junction, without damaging
the other area of Ag NWs, as shown in Figure 2b.
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In order to verify the melting at the junction of Ag NWs, a cross-sectional SEM image at the
boundary which is cut by a focused-ion beam (FIB), is examined. It is confirmed that the crossed area of
two Ag NWs (yellow and blue dotted lines) are melted and fused at the junction, as shown in Figure 2c.
The results for the flexible transparent conductor and stretchable conductor are very noticeable, since
melted and merged Ag NW percolation networks will have better electrical/mechanical properties
such as electrical conductivity, mechanical elongation, and mechanical strength [13,15,18,19].

Figure 3 shows sheet resistance changes at various times under the thermal annealing process
and ns pulse LINW process. The transmittance of prepared Ag NW percolation networks in (a) and
(b) are 95% and 96%, respectively. As shown in Figure 3a, the sheet resistance of Ag NW percolation
networks is gradually increased and gently dropped below 20 Ω/sq with long processing time (over
1 h) under the thermal annealing process. At first, the sheet resistance is gradually increased due to
oxidation formation and the resistance increase of Ag NWs to temperature change, according to their
temperature coefficient of resistance [34,35]. Once the temperature of the hot plate reaches 220 ◦C
(~1300 s), the sheet resistance starts to drop due to slight melting at the junction of Ag NW percolation
networks. The thermal annealing process ensures stable low sheet resistance in Ag NW percolation
networks and easily scales up the sample size. However, long processing time (over 1 h) is generally
required to increase the electrical conductivity in the thermal annealing process, since a period of
warm-up time for heating is required and only low temperature (below 250 ◦C) is available for the
flexible substrate.
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Figure 3. (a) Sheet resistance changes at various times in the thermal annealing process and ns pulse
laser-induced nano-welding (LINW) process. The inset graph shows a magnified view of the ns
pulse LINW process. SEM images show the laser ablation results of Ag NW percolation networks.
(b) The sheet resistance changes with various numbers of laser scans and various laser power levels in
the cw scanning LINW process.

In contrast, the sheet resistance of Ag NW percolation networks drops rapidly in the ns pulse
LINW process compared to the thermal annealing process. As shown in the inset graph of Figure 3a,
the sheet resistance drops immediately after the start of pulse laser exposure with proper energy
density (17.4 mJ/cm2 and 37.7 mJ/cm2). Even though a single pulse can be enough to improve the
electrical conductivity of Ag NW percolation networks, continued laser pulses (10 Hz repetition rate)
are employed in the sample to further improve the conductivity. However, extremely high laser energy
density (182.4 mJ/cm2) can ablate/destroy Ag NW percolation networks (SEM image of Figure 3a),
resulting in an increase of the sheet resistance of Ag NWs during the laser exposure—so-called
“rebound”, as shown in the inset graph (light blue line) of Figure 3a. Thus, in Ag NW percolation
networks in the ns pulse LINW process, moderate adjustment of the applied laser energy is required.

Similar to the ns pulse LINW process, in the case of the cw scanning LINW process, the sheet
resistance of Ag NW percolation networks drops rapidly below 20 Ω/sq with high power density
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(500 kW/cm2), as shown in Figure 3b. The sheet resistance decreases slightly as the number of scans
increases, while the sheet resistance drops considerably with high power density. The spot size (2W0)
of the focused laser by the telecentric lens in laser scanning system is ~10 µm. Additionally, the dwell
time is 10−4 s (10 µm/100 mms−1), thus it is also a very short time compared to the conventional
thermal annealing process.

As a result, the LINW process is a more rapid and effective process (due to melting and merging)
for improving the electrical conductivity of Ag NW percolation networks than the conventional thermal
annealing process. Moreover, it is noticeable that there are no significant differences with respect to the
different laser exposure time (from ns to µs) in laser processing. These results are confirmed by SEM
images and electrical conductivity measurements. In addition, since the reaction in Ag NWs welding
is conducted within an extremely short time—5 ns laser exposure time—this LINW process can be
applied to the flexible substrate without any macroscopic damages or deformation of the substrate.

Figure 4 shows SEM images of ablated Ag NWs when the excessive laser energy is applied to the
Ag NW percolation networks. Two different LINW processes show fairly different results at excessive
laser energy density. Since an extended laser spot is applied to the Ag NW percolation networks in the
ns pulse LINW process, entire Ag NWs are heated and melted, resulting in a queue of molten silver
micro dots (right SEM images in Figure 4a).
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Figure 4. SEM images of Ag NW percolation networks when (a) the ns pulse LINW process and (b)
the cw scanning LINW process are conducted under extremely high power/energy condition.

On the other hand, Ag NWs are selectively melted along the laser scanning direction in the cw
scanning LINW process, as shown in Figure 4b (green arrows in SEM images). Since Ag NWs are
ablated along the laser scanning direction, the remaining Ag NWs are locally connected to each other,
thus this laser ablation technique is applied to fabricate patterned Ag NW mesh for flexible capacitive
touch sensors [31].

As shown in previous SEM images, Ag NWs are easily heated and melted in the LINW process
when the proper laser energy is irradiated to the Ag NW percolation networks. It is well known that
the electromagnetic field enhancements on the surface of Ag NW generate localized thermal heating
due to surface plasmon polaritons (SPP) on the surface of Ag NWs [18,36–39]. This behavior can be
seen in finite difference time domain (FDTD) simulation (Lumerical), as shown in Figure 5. In this
simulation, transverse magnetic (TM) and transverse electric (TE) modes are considered for the two
crossed and stacked Ag NWs. In order to simplify the simulation, the diameter size and shape of Ag
NWs are fixed at 100 nm and circle, respectively. The complex permittivity of Ag is adopted from Palik,
and a simulated pulse covers the wavelength range from 300 to 1000 nm. Total-field/scattering-field
(TF-SF), together with perfectly matched layer (PML) formulation, has been employed.
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Figure 5. Finite difference time domain (FDTD) simulation at the junction of crossed Ag NWs.
(a) Simulation layout of two crossed (left) and stacked (right) Ag NWs. (b) Electromagnetic
field distribution at the junction with various conditions: crossed/contact, crossed/small gap,
stacked/contact, stacked/small gap of two Ag NWs. The white arrow is the polarized direction
of irradiated light. The yellow arrow indicates a small gap between two Ag NWs.

As shown in Figure 5b, the electromagnetic field enhancements are extremely maximized at the
junction of two crossed and stacked Ag NWs. In addition, electromagnetic field enhancement are still
maximized near the junction of two Ag NWs, even though two Ag NWs are separated from each other
by a small gap. The optical absorption, or the volumetric heat source density generated inside the
metal, is calculated by [36]

q
(→

r
)
= (ω/2)Im(ε)

∣∣∣E(→r )∣∣∣2 (1)

As can be seen from the above equation, the optical absorption is directly proportional to the
electrical field intensity, and the simulation result in Figure S2 shows that the optical absorption is
concentrated at the regions where the field enhancement adjacent to the surface of the nanowire is
the largest. This is the reason why Ag NWs are well melted and merged at the junction of Ag NWs,
as shown in Figure 2. Additionally, these results are the reason why 5 nanoseconds is enough to
improve the electrical conductivity of Ag NW percolation networks.

In summary, two different laser-induced nano-welding processes (ns pulse LINW and cw scanning
LINW), as alternative post annealing processes, are investigated to enhance the electrical conductivity
of an Ag NW-based conductor in this study. Thus, various phenomena of Ag NWs are examined when
the laser irradiates to the Ag NW percolation networks. Through the various characterizations (SEM,
FIB, and electrical measurements) and FDTD simulation, it is confirmed that there are no significant
differences with respect to the different laser exposure time (from ns to µs). Additionally, the Ag
NWs can be selectively melted and merged at the junction of Ag NWs within less than 5 nanoseconds
laser exposure.

These results indicate that the LINW process is expected to apply to the flexible polymer substrate
without any macroscopic damages or deformation of the substrate due to the rapid processing
time and the effect of localized electromagnetic field enhancements. In addition, since melted and
merged Ag NW percolation networks will have better electrical/mechanical properties, we expect
that the LINW process will be applied to the fabrication of various flexible/stretchable electronics for
better performance.
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Figure S1: The sample preparation of Ag NWs percolation networks for the ns pulse (a) and cw scanning
(b) LINW process. The transmittance of the sample is ~91%. Figure S2: Spatial profile of electrical field intensity
and the corresponding optical power absorption.
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