Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Analysis via Finite Element Modelling
- (1)
- If the heating element is electrically and structurally well-defined, the resistivity profile is directly fed into the model.
- (2)
- For a rough approximation of heating elements that are not well-defined, the linear approximation of resistivity [26] is used: .
- (3)
- For PTC thermistors with known coefficients, the Steinhart–Hart equation is used [27].
2.2. Open-Source Thermostat
2.3. Plastic NINAAT Thermal Models and Measurement Setup
2.4. Heating Elements and Thermal Interface
3. Results and Discussion
3.1. Steady-State Performance for Multiple NAAT Protocols
3.2. Spatiotemporal Performance Analysis for Specific NAAT Protocol
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Chen, C.-C.; Wei, S.-C.; Lu, H.-H.; Liang, Y.-H.; Lin, C.-W. Diagnostic Devices for Isothermal Nucleic Acid Amplification. Sensors 2012, 12, 8319–8337. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.M.; Wong, W.S.; Liu, L.; Dewar, R.; Klapperich, C.M. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab Chip 2016, 16, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Park, J.; Kim, C.-J.; Cho, Y.-K. Fully Integrated Lab-on-a-Disc for Nucleic Acid Analysis of Food-Borne Pathogens. Anal. Chem. 2014, 86, 3841–3848. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Yang, T.; Cremer, P.S. A Microfluidic Device with a Linear Temperature Gradient for Parallel and Combinatorial Measurements. J. Am. Chem. Soc. 2002, 124, 4432–4435. [Google Scholar] [CrossRef] [PubMed]
- Velve-Casquillas, G.; Fu, C.; Le Berre, M.; Cramer, J.; Meance, S.; Plecis, A.; Baigl, D.; Greffet, J.J.; Chen, Y.; Piel, M.; et al. Fast microfluidic temperature control for high resolution live cell imaging. Lab Chip 2011, 11, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Velve-Casquillas, G.; Costa, J.; Carlier-Grynkorn, F.; Mayeux, A.; Tran, P.T. A Fast Microfluidic Temperature Control Device for Studying Microtubule Dynamics in Fission Yeast. Methods Cell Biol. 2010, 97, 185–201. [Google Scholar] [PubMed]
- Scorzoni, A.; Tavernelli, M.; Placidi, P.; Zampolli, S. Thermal Modeling and Characterization of a Thin-Film Heater on Glass Substrate for Lab-on-Chip Applications. IEEE Trans. Instrum. Meas. 2015, 64, 1098. [Google Scholar] [CrossRef]
- Moschou, D.; Vourdas, N.; Kokkoris, G.; Papadakis, G.; Parthenios, J.; Chatzandroulis, S.; Tserepi, A. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sens. Actuators B Chem. 2014, 199, 470–478. [Google Scholar] [CrossRef]
- Jiao, Z.; Huang, X.; Nguyen, N.-T.; Abgrall, P. Thermocapillary actuation of droplet in a planar microchannel. Microfluid. Nanofluid. 2008, 5, 205–214. [Google Scholar] [CrossRef]
- Wyzkiewicz, I.; Grabowska, I.; Chudy, M.; Brzozka, Z.; Jakubowska, M.; Wisniewski, T.; Dybko, A. Self-regulating heater for microfluidic reactors. Sens. Actuators B Chem. 2006, 114, 893–896. [Google Scholar] [CrossRef]
- Buser, J.R.; Diesburg, S.; Singleton, J.; Guelig, D.; Bishop, J.D.; Zentner, C.; Burton, R.; LaBarre, P.; Yager, P.; Weigl, B.H. Precision chemical heating for diagnostic devices. Lab Chip 2015, 15, 4423–4432. [Google Scholar] [CrossRef] [PubMed]
- Weigl, B.; Domingo, G.; LaBarre, P.; Gerlach, J. Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab. Chip 2008, 8, 1999–2014. [Google Scholar] [CrossRef] [PubMed]
- Miralles, V.; Huerre, A.; Malloggi, F.; Jullien, M.-C. A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications. Diagnostics 2013, 3, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Craw, P.; Balachandran, W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review. Lab Chip 2012, 12, 2469–2686. [Google Scholar] [CrossRef] [PubMed]
- Nunes, P.S.; Ohlsson, P.D.; Ordeig, O.; Kutter, J.P. Cyclic olefin polymers: Emerging materials for lab-on-a-chip applications. Microfluid. Nanofluid. 2010, 9, 145–161. [Google Scholar] [CrossRef]
- Mannella, G.A.; la Carrubba, V.; Brucato, V. Peltier cells as temperature control elements: Experimental characterization and modeling. Appl. Therm. Eng. 2014, 63, 234–245. [Google Scholar] [CrossRef]
- Wang, Y.; Song, H.; Pant, K. A reduced-order model for whole-chip thermal analysis of microfluidic lab-on-a-chip systems. Microfluid. Nanofluid. 2014, 16, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Cartas-Ayala, M.A.; Thorsen, T. Thermal modeling and design analysis of a continuous flow microfluidic chip. Int. J. Therm. Sci. 2013, 67, 72–86. [Google Scholar] [CrossRef]
- Pardy, T.; Rang, T.; Tulp, I. Finite element modelling of the resistive heating of disposable molecular diagnostics devices. In Computational Methods and Experimental Measurements XVII; WIT Transactions on Modelling and Simulation: Opatija, Croatia, 2015; pp. 381–391. [Google Scholar]
- Pardy, T.; Rang, T.; Tulp, I. Modelling and experimental characterisation of thermoelectric heating for molecular diagnostics devices. In Proceedings of the 2016 15th Biennial Baltic Electronics Conference Electronics Conference (BEC), Tallinn, Estonia, 3–5 October 2016; pp. 27–30. [Google Scholar]
- Pardy, T.; Tulp, I.; Rang, T. Finite Element Modelling for the Optimization of Microheating in Disposable Molecular Diagnostics. In Proceedings of the 14th International Conference on Simulation and Experiments in Heat Transfer and its Applications, Ancona, Italy, 7–9 September 2016; Volume 106. [Google Scholar]
- Von Meier, A. Electric Power Systems: A Conceptual Introduction; Wiley-Interscience [U.A.]: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kandlikar, S.; Garimella, S.; Li, D.; Colin, S.; King, M.R. Heat Transfer and Fluid Flow in Minichannels and Microchannels, 1st ed.; Kandlikar, S.G., Ed.; Elsevier: Amsterdam, The Nederland, 2006. [Google Scholar]
- Griffiths, D.J. Introduction to Electrodynamics; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Rood, P. A Visual Method of Showing The High Temperature Coefficient of Resistance of Metals as Compared with Alloys. J. Opt. Soc. Am. 1928, 16, 357–359. [Google Scholar] [CrossRef]
- Steinhart, J.S.; Hart, S.R. Calibration curves for thermistors. Deep Sea Res. Oceanogr. Abstr. 1968, 15, 497–503. [Google Scholar] [CrossRef]
- Srivastava, M.; Srivastava, M.C.; Bhatnagar, S. Control Systems; Tata McGraw-Hill: New Delhi, India, 2009. [Google Scholar]
- Friess, H.; Haussener, S.; Steinfeld, A.; Petrasch, J. Tetrahedral mesh generation based on space indicator functions. Int. J. Numer. Methods Eng. 2013, 93, 1040–1056. [Google Scholar] [CrossRef]
- DBK David+Baader GmbH. HP Series of PTC Heaters. European Thermodynamics Ltd., 2009. Available online: http://www.farnell.com/datasheets/11488.pdf (accessed on 10 January 2017).
- Shioi, R.; Umeya, K.; Yonezuka, K.; Senzaki, H. Heating Element Made of PTC Ceramic Material. U.S. Patent 05,882,922, 13 January 1981. [Google Scholar]
- Huybrechts, B.; Ishizaki, K.; Takata, M. The positive temperature coefficient of resistivity in barium titanate. J. Mater. Sci. 1995, 30, 2463–2474. [Google Scholar] [CrossRef]
- Minco Products Inc. Flexible Heaters Design Guide HDG01121806(A); Minco Products Inc.: Fridley, MN, USA, 2007. [Google Scholar]
Method | Full Name | Target | Steady-State Error (SSE) (Self-Regulated) | SSE (Thermostat) |
---|---|---|---|---|
NASBA | Nucleic Acid Sequence Based Amplification | 41 °C | 0.1 °C | 0.6 °C |
HDA | Helicase Dependent Amplification | 64 °C | Not tested | 0.3 °C |
LAMP | Loop Mediated Isothermal Amplification | 60–65 °C | 0.6 °C | 0.3 °C |
NEAR | Nicking Enzyme Amplification Reaction | 55–59 °C | Not tested | 0.7 °C |
RCA | Rolling Circle Amplification | 30–65 °C | 0.9 °C | 0.6 °C |
RPA | Recombinase Polymerase Amplification | 37–42 °C | 0.2 °C | 0.2 °C |
SPIA | Single Primer Isothermal Amplification | 45–50 °C | 1.2 °C | 0.2 °C |
RAM | Ramification Amplification Method | 35 °C | 0.75 °C | 0.2 °C |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardy, T.; Rang, T.; Tulp, I. Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT). Micromachines 2017, 8, 180. https://doi.org/10.3390/mi8060180
Pardy T, Rang T, Tulp I. Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT). Micromachines. 2017; 8(6):180. https://doi.org/10.3390/mi8060180
Chicago/Turabian StylePardy, Tamás, Toomas Rang, and Indrek Tulp. 2017. "Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT)" Micromachines 8, no. 6: 180. https://doi.org/10.3390/mi8060180
APA StylePardy, T., Rang, T., & Tulp, I. (2017). Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT). Micromachines, 8(6), 180. https://doi.org/10.3390/mi8060180