Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry
Abstract
:1. Introduction
2. Operating Principle
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Synthetic Data Streams Generation in a Virtual Laboratory
Appendix A.1. Data Streams
- : population index, denoting the population the event belongs to, drawn from the finite sample space with the probabilities , where is the total particle concentration;
- : particle diameter, drawn from the Gaussian distribution with mean and standard deviation ;
- : -coordinates of the particle trajectory in the channel cross-section, drawn from a uniform distribution in the available cross-section region (a 2 m gap between particle boundary and channel walls has been assumed);
- : particle velocity, determined as a function of assuming laminar flow [26] (in fact, Reynolds number is typically in the order of units);
- : particle entrance time (i.e., time instant the particle center passes through the entrance cross-section). Occurrence of particles was assumed to be a Poisson process [18]. Accordingly, particle inter-arrival times were drawn from an exponential distribution with rate parameter .
Layout | Wiring | [m] | [#/L] | [nA] | |||
---|---|---|---|---|---|---|---|
facing | conventional | 3 | 5, 6, 7 | 2.5, 1, 1 | 8.4 | ||
facing | novel | 3 | 5, 6, 7 | 2.5, 1, 1 | 8.4 | ||
coplanar | conventional | 3 | 5, 6, 7 | 2.5, 1, 1 | 7.0 | ||
coplanar | novel | 3 | 5, 6, 7 | 2.5, 1, 1 | 7.0 | ||
facing | conventional | 1 | 6 | 0 | 0 | ||
facing | novel | 1 | 6 | 0 | 0 | ||
coplanar | conventional | 1 | 6 | 0 | 0 | ||
coplanar | novel | 1 | 6 | 0 | 0 |
Appendix A.2. Finite Element Model Equations
(rad/s) | (mF/m) | (S/m) | (S/m) | ||
---|---|---|---|---|---|
2 | 33 | 1.1 | 80 | 2.5 |
Appendix B. Mapping of Bead Trajectories onto the DV-, DY-, and YV-Planes
- iso-y lines (Figure A1a) are mapped onto iso-D lines (Figure A1b,c). In fact, the electric field is homogeneous along the x-axis, such that different x values yield the same value of D; on the other hand, the quotient map just defines the positional dependence issue addressed in this paper (the higher the distance from the channel axis, the higher D). A top–bottom asymmetry is observed when using the conventional wiring scheme, whereas symmetry top-to-bottom is obtained using the novel wiring scheme (e.g., top and bottom iso-y lines BC and FE overlap and are mapped on the right straight line of the boundary of (Figure A1c). Moreover, iso-y lines are mapped onto iso-Y lines (Figure A1d,e), confirming that Y is a suitable estimate of y;
- iso-x lines (Figure A1a) are mapped onto curved contours (Figure A1b) or straight lines (Figure A1c). The closer to the center the iso-x line, the higher V, the higher is the contour; peak velocity on BAF (respectively, CDE) corresponds to central trajectory A (respectively, D) yielding the smallest electric diameter D. Moreover, iso-x lines are mapped onto parabolic profiles in the plane (Figure A1e), typical of laminar flow;
- the top contour of (Figure A1g,h) is the image of the isolines (Figure A1f); the branches AB and AF overlap using the proposed wiring scheme (Figure A1h) due to symmetry top to bottom. The left contour of is the image of the isoline AD, because particles equidistant from top and bottom electrodes have the smallest electrical diameter D.
References
- Sun, T.; Morgan, H. Single-cell microfluidic impedance cytometry: A review. Microfluid. Nanofluid. 2010, 8, 423–443. [Google Scholar] [CrossRef]
- Petchakup, C.; Li, K.H.H.; Hou, H.W. Advances in Single Cell Impedance Cytometry for Biomedical Applications. Micromachines 2017, 8. [Google Scholar] [CrossRef]
- McGrath, J.S.; Honrado, C.; Spencer, D.; Horton, B.; Bridle, H.L.; Morgan, H. Analysis of Parasitic Protozoa at the Single-cell Level using Microfluidic Impedance Cytometry. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Cheng, Z.; Xu, Y.; Liu, R.; Li, Q.; Cheng, J. A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing. Anal. Methods 2017, 9, 1201–1212. [Google Scholar] [CrossRef]
- Mansor, M.; Takeuchi, M.; Nakajima, M.; Hasegawa, Y.; Ahmad, M.R. A Novel Integrated Dual Microneedle-Microfluidic Impedance Flow Cytometry for Cells Detection in Suspensions. Int. J. Electr. Comput. Eng. 2017, 7, 1513–1521. [Google Scholar]
- Esfandyarpour, R.; DiDonato, M.J.; Yang, Y.; Durmus, N.G.; Harris, J.S.; Davis, R.W. Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis. Proc. Natl. Acad. Sci. USA 2017, 114, E1306–E1315. [Google Scholar] [CrossRef] [PubMed]
- Gawad, S.; Cheung, K.; Seger, U.; Bertsch, A.; Renaud, P. Dielectric spectroscopy in a micromachined flow cytometer: Theoretical and practical considerations. Lab Chip 2004, 4, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.C.; Di Berardino, M.; Schade-Kampmann, G.; Hebeisen, M.; Pierzchalski, A.; Bocsi, J.; Mittag, A.; Tárnok, A. Microfluidic impedance-based flow cytometry. Cytom. Part A 2010, 77, 648–666. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Green, N.G.; Gawad, S.; Morgan, H. Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. IET Nanobiotechnol. 2007, 1, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.; Morgan, H. Positional dependence of particles in microfludic impedance cytometry. Lab Chip 2011, 11, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Errico, V.; De Ninno, A.; Bertani, F.R.; Businaro, L.; Bisegna, P.; Caselli, F. Mitigating positional dependence in coplanar electrode Coulter-type microfluidic devices. Sens. Actuators B Chem. 2017, 247, 580–586. [Google Scholar] [CrossRef]
- Clausen, C.H.; Skands, G.E.; Bertelsen, C.V.; Svendsen, W.E. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy. Micromachines 2015, 6, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Rollo, E.; Tenaglia, E.; Genolet, R.; Bianchi, E.; Harari, A.; Coukos, G.; Guiducci, C. Label-free identification of activated T-lymphocytes through tridimensional microsensors on chip. Biosens. Bioelectron. 2017, 94, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Shaker, M.; Colella, L.; Caselli, F.; Bisegna, P.; Renaud, P. An impedance-based flow micro-cytometer for single cell morphology discrimination. Lab Chip 2014, 14, 2548–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenvall, C.; Antfolk, C.; Bisgaard, C.; Laurell, T. Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration. Lab Chip 2014, 14, 4629–4637. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.; Caselli, F.; Bisegna, P.; Morgan, H. High accuracy particle analysis using sheathless microfluidic impedance cytometry. Lab Chip 2016, 16, 2467–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ninno, A.; Errico, V.; Bertani, F.R.; Businaro, L.; Bisegna, P.; Caselli, F. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry. Lab Chip 2017, 17, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Hassan, U.; Bashir, R. Coincidence detection of heterogeneous cell populations from whole blood with coplanar electrodes in a microfluidic impedance cytometer. Lab Chip 2014, 14, 4370–4381. [Google Scholar] [CrossRef] [PubMed]
- Caselli, F.; De Ninno, A.; Reale, R.; Businaro, L.; Bisegna, P. A novel wiring scheme for standard chips enabling high-accuracy impedance cytometry. Submitted paper. 2017. [Google Scholar]
- Sun, T.; van Berkel, C.; Green, N.G.; Morgan, H. Digital signal processing methods for impedance microfluidic cytometry. Microfluid. Nanofluid. 2009, 6, 179–187. [Google Scholar] [CrossRef]
- Caselli, F.; Bisegna, P. A simple and robust event-detection algorithm for single-cell impedance cytometry. IEEE Trans. Biomed. Eng. 2016, 63, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Demierre, N.; Braschler, T.; Linderholm, P.; Seger, U.; van Lintel, H.; Renaud, P. Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 2007, 7, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Mernier, G.; Duqi, E.; Renaud, P. Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis. Lab Chip 2012, 12, 4344–4349. [Google Scholar] [CrossRef] [PubMed]
- Gawad, S.; Schild, L.; Renaud, P. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 2001, 1, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Caselli, F.; Bisegna, P. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout. Med. Eng. Phys. 2017. [Google Scholar] [CrossRef] [PubMed]
- Spiga, M.; Morini, G.L. A symmetric solution for velocity profile in laminar flow through rectangular ducts. Int. Commun. Heat. Mass 1994, 21, 469–475. [Google Scholar] [CrossRef]
- Caselli, F.; Bisegna, P.; Maceri, F. EIT-Inspired Microfluidic Cytometer for Single-Cell Dielectric Spectroscopy. J. Microelectromech. Syst. 2010, 19, 1029–1040. [Google Scholar] [CrossRef]
- Caselli, F.; Shaker, M.; Colella, L.; Renaud, P.; Bisegna, P. Modeling, Simulation and Performance Evaluation of a Novel Microfluidic Impedance Cytometer for Morphology-Based Cell Discrimination. J. Microelectromech. Syst. 2014, 23, 785–794. [Google Scholar] [CrossRef]
d (m) | a (m) | b | c |
---|---|---|---|
5.0 | 5.01 | 0.90 | −0.001 |
6.0 | 6.00 | 0.90 | −0.001 |
7.0 | 7.00 | 0.85 | −0.001 |
Mean | – | 0.89 | −0.001 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caselli, F.; Reale, R.; Nodargi, N.A.; Bisegna, P. Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry. Micromachines 2017, 8, 283. https://doi.org/10.3390/mi8090283
Caselli F, Reale R, Nodargi NA, Bisegna P. Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry. Micromachines. 2017; 8(9):283. https://doi.org/10.3390/mi8090283
Chicago/Turabian StyleCaselli, Federica, Riccardo Reale, Nicola Antonio Nodargi, and Paolo Bisegna. 2017. "Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry" Micromachines 8, no. 9: 283. https://doi.org/10.3390/mi8090283
APA StyleCaselli, F., Reale, R., Nodargi, N. A., & Bisegna, P. (2017). Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry. Micromachines, 8(9), 283. https://doi.org/10.3390/mi8090283