Long-Term Tracking of Free-Swimming Paramecium caudatum in Viscous Media Using a Curved Sample Chamber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Imaging System
2.2. Sample Preparation
2.3. Image Acquisition
2.4. Measurement of Velocity Field and Trajectories
3. Results & Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Keller, J.B. Effect of Viscosity on bacterial motility. J. Bacteriol. 1974, 117, 696–701. [Google Scholar]
- Potsaid, B.; Finger, F.P.; Wen, J.T. Automation of challenging spatial-temporal biomedical observations with the adaptive scanning optical microscope (ASOM). IEEE Trans. Autom. Sci. Eng. 2009, 6, 525–535. [Google Scholar] [CrossRef]
- Arpali, S.A.; Arpali, C.; Coskun, A.F.; Chiang, H.H.; Ozcan, A. High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab Chip 2012, 12, 4968–4971. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.O.; Chang, H.M.; Lee, D.; Yu, Y.G.; Han, H.; Kim, J.K. Selective detection and automated counting of fluorescently-labeled chrysotile asbestos using a dual-mode high-throughput microscopy (DM-HTM) method. Sensors 2013, 13, 5686–5699. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Zhan, M.; Srinivasan, J.; Sternberg, P.W.; Gong, E.; Schroeder, F.C.; Lu, H. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab Chip 2011, 11, 3689–3697. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.S.; Descour, M.R.; Liang, C.; Barker, G.; Scott, K.M.; Richter, L.; Krupinski, E.A.; Bhattacharyya, A.K.; Davis, J.R.; Graham, A.R.; et al. An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study. Hum. Pathol. 2004, 35, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Constantinou, P.; Nicklee, T.; Hedley, D.W.; Damaskinos, S.; Wilson, B.C. A high-resolution MACROscope with differential phase contrast, transmitted light, confocal fluorescence, and hyperspectral capabilities for large-area tissue imaging. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 766–777. [Google Scholar] [CrossRef]
- Shourav, M.; Kim, K.; Kim, S.; Kim, J. Wide field-of-view fluorescence imaging with optical-quality curved microfluidic chamber for absolute cell counting. Micromachines 2016, 7, 125. [Google Scholar] [CrossRef]
- Higgs, H.N.; Peterson, K.J. Phylogenetic analysis of the formin homology 2 domain. Mol. Biol. Cell 2005, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sohn, M.H.; Lim, S.; Seo, K.W.; Lee, S.J. Effect of ambient medium viscosity on the motility and flagella motion of Prorocentrum minimum (Dinophyceae). J. Plankton Res. 2013, 35, 1294–1304. [Google Scholar] [CrossRef]
- Malacara, D.; Malacara, Z. Handbook of Optical Design, Second Edition; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0824746139. [Google Scholar]
- Smith, W.J. Modern Optical Engineering; McGraw-Hill Education: New York, NY, USA, 2000; ISBN 0071363602. [Google Scholar]
- Jung, I.; Xiao, J.; Malyarchuk, V.; Lu, C.; Li, M.; Liu, Z.; Yoon, J.; Huang, Y.; Rogers, J.A. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl. Acad. Sci. USA 2011, 108, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Hecht, E. Optics. Am. J. Phys. 1974, 42, 921. [Google Scholar] [CrossRef]
- Rim, S.-B.; Catrysse, P.B.; Dinyari, R.; Huang, K.; Peumans, P. The optical advantages of curved focal plane arrays. Opt. Express 2008, 16, 4965–4971. [Google Scholar] [CrossRef] [PubMed]
Viscous Liquid | Unit (mPa·s) |
---|---|
Control | 1.182 |
Methylcellulose (MC) (5%) | 1. 379 |
MC (10%) | 1.65 |
MC (100%) | 23.85 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shourav, M.K.; Kim, J.K. Long-Term Tracking of Free-Swimming Paramecium caudatum in Viscous Media Using a Curved Sample Chamber. Micromachines 2018, 9, 7. https://doi.org/10.3390/mi9010007
Shourav MK, Kim JK. Long-Term Tracking of Free-Swimming Paramecium caudatum in Viscous Media Using a Curved Sample Chamber. Micromachines. 2018; 9(1):7. https://doi.org/10.3390/mi9010007
Chicago/Turabian StyleShourav, Mohiuddin Khan, and Jung Kyung Kim. 2018. "Long-Term Tracking of Free-Swimming Paramecium caudatum in Viscous Media Using a Curved Sample Chamber" Micromachines 9, no. 1: 7. https://doi.org/10.3390/mi9010007
APA StyleShourav, M. K., & Kim, J. K. (2018). Long-Term Tracking of Free-Swimming Paramecium caudatum in Viscous Media Using a Curved Sample Chamber. Micromachines, 9(1), 7. https://doi.org/10.3390/mi9010007