Nanoindentation and TEM to Study the Cavity Fate after Post-Irradiation Annealing of He Implanted EUROFER97 and EU-ODS EUROFER
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Irradiation and Thermal Treatment
2.3. Nanoindentation Tests
2.4. Transmission Electron Microscopy
3. Results
3.1. Nanoindentation
3.1.1. EUROFER97
3.1.2. EU-ODS EUROFER
3.2. TEM Characterization
3.2.1. Cavity Characterization on EUROFER97
3.2.2. Cavity Characterization on EU-ODS EUROFER
4. Discussion
5. Conclusions
- The annealing treatment at 450 °C for 100 h has led to an increase in hardness values of 157% for EUROFER97 steel and of 84% for EU-ODS EUROFER with respect to the as-received condition when a load of 5 mN is applied with a Berkovich tip.
- It was experimentally demonstrated that for faster tests, a row matrix is valid to analyze the surface transverse to the implantation, as long as it covers the entire implanted surface and no indentations are duplicated.
- Experimental observations by TEM indicate that EUROFER97 steel experienced an increase in population density of cavities as a function of He concentration. The values of distribution density have been quantified, assuming that most cavity sizes were between 1 and 2 nm. The estimate of the calculated distribution density was 9.6 × 1023 m−3 in zone A, 3.25 × 1023 m−3 in zone B, and 1.63 × 1023 m−3 in zone C. These values suggest that the population density is directly proportional to the concentration of He implanted after the annealing heat treatment at 450 °C for 100 h.
- The EU-ODS EUROFER steel, on the other hand, shows a notable increase in the size of the cavities, which decreases depending on the concentration of He implanted. It should be borne in mind that only cavities larger than 2 nm were taken into consideration; those ones with a smaller diameter were not taken into account due to their low influence on the swelling phenomenon (or volumetric fraction). In zone A, the average size was 4.7 nm with a distribution density of 1.846 × 1022 m−3 and a swelling of 0.17%. In zone B, the mean diameter was 3.2 nm, its population density was 3.656 × 1021 m−3, and swelling of 0.12% was calculated, and, finally, in zone C, the average size of the cavities was between 1 and 2 in almost all cases, with some cavities of 4 and even 5 nm. Therefore, its distribution density was calculated analogously to EUROFER97 (9.656 × 1022 m−3) and its volumetric fraction was almost negligible (0.002%). The effect of the inherent vacancies in the EU-ODS EUROFER steel seems to play a very important role, as it is possible that the annealing temperature chosen favors the mobility of these defects, thus enhancing the creation and growth of He cavities. It has also been observed that their size depends strongly on the concentration of He implanted.
- It is not possible to conclude which mechanism governs the nucleation and growth of cavities after a process of annealing at 450 °C for 100 h in both materials when only considering the maturation of the Ostwald and migration and coalescence (MC) models. In order to do so, further experiments would be required to study other annealing times and temperatures and different He concentrations in order to obtain a more complete spectrum of cavity evolution or, if not, to establish a model that fits better than those mentioned in the paper.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schäublin, R.; Chiu, Y.L. Effect of helium on irradiation-induced hardening of iron: A simulation point of view. J. Nucl. Mater. 2007, 362, 152–160. [Google Scholar] [CrossRef]
- Terentyev, D.; Juslin, N.; Nordlund, K.; Sandberg, N. Fast three dimensional migration of He clusters in bcc Fe and Fe–Cr alloys. J. Appl. Phys. 2009, 105, 103509. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Dudarev, S.L.; Zheng, S.; Packer, L.W.; Sublet, J.-C. An integrated model for materials in a fusion power plant: Transmutation, gas production, and helium embrittlement under neutron irradiation. Nucl. Fusion 2012, 52, 083019. [Google Scholar] [CrossRef]
- Knaster, J.; Moeslang, A.; Muroga, T. Materials research for fusion. Nat. Phys. 2016, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Aiello, G.; Aktaa, J.; Cismondi, F.; Rampal, G.; Salavy, J.F.; Tavassoli, F. Assessment of design limits and criteria requirements for Eurofer structures in TBM components. J. Nucl. Mater. 2011, 414, 53–68. [Google Scholar] [CrossRef]
- Klimenkov, M.; Möslang, A.; Materna-Morris, E. Helium influence on the microstructure and swelling of 9%Cr ferritic steel after neutron irradiation to 16.3dpa. J. Nucl. Mater. 2014, 453, 54–59. [Google Scholar] [CrossRef]
- Wakai, E.; Sawai, T.; Naito, A.; Jitsukawa, S. Microstructural development and swelling behaviour of F82H steel irradiated by dual ion beams. J. Electron Microsc. 2002, 51, S239–S243. [Google Scholar] [CrossRef]
- Fave, L.; Pouchon, M.A.; Döbeli, M.; Schulte-Borchers, M.; Kimura, A. Helium ion irradiation induced swelling and hardening in commercial and experimental ODS steels. J. Nucl. Mater. 2014, 445, 235–240. [Google Scholar] [CrossRef]
- Carvalho, I.; Schut, H.; Fedorov, A.; Luzginova, N.; Desgardin, P.; Sietsma, J. Helium implanted RAFM steels studied by positron beam Doppler Broadening and Thermal Desorption Spectroscopy. J. Phys. Conf. Ser. 2013, 443, 012034. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.; Schut, H.; Fedorov, A.; Luzginova, N.; Sietsma, J. Characterization of helium ion implanted reduced activation ferritic/martensitic steel with positron annihilation and helium thermal desorption methods. J. Nucl. Mater. 2013, 442, S48–S51. [Google Scholar] [CrossRef]
- Trinkaus, H.; Singh, B.N. Helium accumulation in metals during irradiation—Where do we stand? J. Nucl. Mater. 2003, 323, 229–242. [Google Scholar] [CrossRef]
- Takayama, Y.; Kasada, R.; Yabuuchi, K.; Kimura, A.; Hamaguchi, D.; Ando, M.; Tanigawa, H. Evaluation of Irradiation Hardening of Fe-Ion Irradiated F82H by Nano-Indentation Techniques. Mater. Sci. Forum 2010, 654–656, 4. [Google Scholar]
- Wakai, E.; Jitsukawa, S.; Tomita, H.; Furuya, K.; Sato, M.; Oka, K.; Tanaka, T.; Takada, F.; Yamamoto, T.; Kato, Y.; et al. Radiation hardening and -embrittlement due to He production in F82H steel irradiated at 250 °C in JMTR. J. Nucl. Mater. 2005, 343, 285–296. [Google Scholar] [CrossRef]
- Liu, C.; Hashimoto, N.; Ohnuki, S.; Ando, M.; Shiba, K. Dependence of Dose and He on Irradiation-Hardening of Fe-Ion Irradiated Fe8Cr Model Alloy. Mater. Trans. 2013, 54, 96–101. [Google Scholar] [CrossRef]
- Roldán, M.; Fernández, P.; Rams, J.; Jiménez-Rey, D.; Ortiz, C.J.; Vila, R. Effect of helium implantation on mechanical properties of EUROFER97 evaluated by nanoindentation. J. Nucl. Mater. 2014, 448, 301–309. [Google Scholar] [CrossRef]
- Lucas, G.E. The evolution of mechanical property change in irradiated austenitic stainless steels. J. Nucl. Mater. 1993, 206, 287–305. [Google Scholar] [CrossRef]
- Gan, J.; Was, G.S. Microstructure evolution in austenitic Fe–Cr–Ni alloys irradiated with rotons: Comparison with neutron-irradiated microstructures. J. Nucl. Mater. 2001, 297, 161–175. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, Q.; Yang, H.; Duan, H.; Qu, J. A mechanistic model for depth-dependent hardness of ion irradiated metals. J. Nucl. Mater. 2017, 485, 80–89. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Hashimoto, N.; Ohnuki, S. Post-irradiation annealing behavior of helium in irradiated Fe and ferritic-martensitic steels. Nuclear Mater. Energy 2018, 15, 203–207. [Google Scholar] [CrossRef]
- Federici, G.; Bachmann, C.; Biel, W.; Boccaccini, L.; Cismondi, F.; Ciattaglia, S.; Coleman, M.; Day, C.; Diegele, E.; Franke, T.; et al. Overview of the design approach and prioritization of R&D activities towards an EU DEMO. Fusion Eng. Des. 2016, 109–111 Pt B, 1464–1474. [Google Scholar] [CrossRef]
- Stork, D.; Agostini, P.; Boutard, J.-L.; Buckthorpe, D.; Diegele, E.; Dudarev, S.L.; English, C.; Federici, G.; Gilbert, M.R.; Gonzalez, S.; et al. Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group. Fusion Eng. Des. 2014. [Google Scholar] [CrossRef]
- Gruber, E.E. Calculated Size Distributions for Gas Bubble Migration and Coalescence in Solids. J. Appl. Phys. 1967, 38, 243–250. [Google Scholar] [CrossRef]
- Russell, K.C. Nucleation of voids in irradiated metals. Acta Metall. 1971, 19, 753–758. [Google Scholar] [CrossRef]
- Greenwood, G.W.; Boltax, A. The role of fission gas re-solution during post-irradiation heat treatment. J. Nucl. Mater. 1962, 5, 234–240. [Google Scholar] [CrossRef]
- Markworth, A. On the coarsening of gas-filled pores in solids. Metall. Trans. 1973, 4, 2651–2656. [Google Scholar] [CrossRef]
- Ostwald, W. Zur Energetik. Ann. Phys. 1896, 294, 154–167. [Google Scholar] [CrossRef]
- Roldán, M.; Fernández, P.; Rams, J.; Jiménez-Rey, D.; Materna-Morris, E.; Klimenkov, M. Comparative study of helium effects on EU-ODS EUROFER and EUROFER97 by nanoindentation and TEM. J. Nucl. Mater. 2015, 460, 226–234. [Google Scholar] [CrossRef]
- Reduced Activation Ferritic/Martensitic Steel Eurofer’97 as Possible Structural Material for Fusion Device. Metallurgical Characterization on As-Received Condition and after Simulated Service Conditions. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/026/36026402.pdf (accessed on 29 November 2018).
- Sandim, H.R.Z.; Renzetti, R.A.; Padilha, A.F.; Raabe, D.; Klimenkov, M.; Lindau, R.; Möslang, A. Annealing behavior of ferritic–martensitic 9%Cr–ODS–Eurofer steel. Mater. Sci. Eng. A 2010, 527, 3602–3608. [Google Scholar] [CrossRef]
- Robinson, M.T. Slowing-down time of energetic atoms in solids. Phys. Rev. B 1989, 40, 10717–10726. [Google Scholar] [CrossRef]
- Robinson, M.T. Computer simulation studies of high-energy collision cascades. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1992, 67, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 29. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Fischer-Cripps, A.C.; SpringerLink. Nanoindentation; Springer: New York, NY, USA, 2011. [Google Scholar]
- Krier, J.; Breuils, J.; Jacomine, L.; Pelletier, H. Introduction of the real tip defect of Berkovich indenter to reproduce with FEM nanoindentation test at shallow penetration depth. J. Mater. Res. 2012, 27, 28–38. [Google Scholar] [CrossRef]
- Tan, L.; Byun, T.S.; Katoh, Y.; Snead, L.L. Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation. Acta Mater. 2014, 71, 11–19. [Google Scholar] [CrossRef]
- Jiang, C.; Swaminathan, N.; Deng, J.; Morgan, D.; Szlufarska, I. Effect of Grain Boundary Stresses on Sink Strength. Mater. Res. Lett. 2013, 2, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.M. Foil thickness measurements from convergent-beam diffraction patterns. Philos. Mag. A 1981, 43, 325–335. [Google Scholar] [CrossRef]
- Allen, S.M.; Hall, E.L. Foil thickness measurements from convergent-beam diffraction patterns An experimental assessment of errors. Philos. Mag. A 1982, 46, 243–253. [Google Scholar] [CrossRef]
- Glazer, J.; Ramesh, R.; Hilton, M.R.; Sarikaya, M. Comparison of convergent-beam electron diffraction methods for determination of foil thickness. Philos. Mag. A 1985, 52, L59–L63. [Google Scholar] [CrossRef] [Green Version]
- Kirk, M.; Yi, X.; Jenkins, M. Characterization of irradiation defect structures and densities by transmission electron microscopy. J. Mater. Res. 2015, 30, 1195–1201. [Google Scholar] [CrossRef]
- Yao, B.; Edwards, D.J.; Kurtz, R.J.; Odette, G.R.; Yamamoto, T. Multislice simulation of transmission electron microscopy imaging of helium bubbles in Fe. J. Electron Microsc. 2012, 61, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.L.; Kirk, M.A. Characterization of radiation damage by TEM; Institute of Physics: London, UK, 2001. [Google Scholar]
- Xia, L.D.; Liu, W.B.; Liu, H.P.; Zhang, J.H.; Chen, H.; Yang, Z.G.; Zhang, C. Radiation damage in helium ion–irradiated reduced activation ferritic/martensitic steel. Nucl. Eng. Technol. 2018, 50, 132–139. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Z.-J.; Wan, F.-R. Limited Effect of Twin Boundaries on Radiation Damage. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 72–78. [Google Scholar] [CrossRef]
- Singh, B.N. Effect of grain size on void formation during high-energy electron irradiation of austenitic stainless steel. Philos. Mag. A J. Theor. Exp. Appl. Phys. 1974, 29, 25–42. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science (Metals and Alloys); Springer: Berlin, Germany, 2007. [Google Scholar]
- Nagasaka, T.; Shibayama, T.; Kayano, H.; Hasegawa, A.; Satou, M.; Abe, K. Effect of purity on helium bubble formation in 9Cr martensitic steel during post-implantation annealing at 1105 K. J. Nucl. Mater. 1998, 258–263 Pt 2, 1193–1198. [Google Scholar] [CrossRef]
- Pouchon, M.A.; Chen, J.; Döbeli, M.; Hoffelner, W. Oxide dispersion strengthened steel irradiation with helium ions. J. Nucl. Mater. 2006, 352, 57–61. [Google Scholar] [CrossRef]
- Gai, X.; Lazauskas, T.; Smith, R.; Kenny, S.D. Helium bubbles in bcc Fe and their interactions with irradiation. J. Nucl. Mater. 2015, 462, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Guo, L.; Chen, J.; Li, T.; Zheng, Z.; Yao, Z.; Suo, J. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures. J. Nucl. Mater. 2014, 455, 339–342. [Google Scholar] [CrossRef]
- Trinkaus, H. The effect of cascade induced gas resolution on bubble formation in metals. J. Nucl. Mater. 2003, 318, 234–240. [Google Scholar] [CrossRef]
- Foreman, A.J.E.; Singh, B.N. The role of collision cascades and helium atoms in cavity nucleation. Radiat. Eff. Defects Solids 1990, 113, 175–194. [Google Scholar] [CrossRef]
- Dethloff, C. Modeling of Helium Bubble Nucleation and Growth in Neutron Irradiated RAFM Steels; KIT Scientific Publishing: Karlsruhe, Germany, 2012. [Google Scholar]
- Trinkaus, H. The effect of internal pressure on the coarsening of inert gas bubbles in metals. Scr. Metall. 1989, 23, 1773–1778. [Google Scholar] [CrossRef]
- Ono, K.; Arakawa, K.; Hojou, K. Formation and migration of helium bubbles in Fe and Fe–9Cr ferritic alloy. J. Nucl. Mater. 2002, 307–311 Pt 2, 1507–1512. [Google Scholar] [CrossRef]
- Borodin, V.A.; Vladimirov, P.V. Kinetic properties of small He–vacancy clusters in iron. J. Nucl. Mater. 2009, 386–388, 106–108. [Google Scholar] [CrossRef]
- Nagasaka, T.; Shibayama, T.; Kayano, H.; Hasegawa, A.; Abe, K. Microstructures of high-purity ferritic steels after helium implantation. Sci. Rep. Rerearch Inst. Tohoku Univ. Ser. A-Phys. 1997, 45, 121–126. [Google Scholar]
- Nagasaka, T.; Shibayama, T.; Kayano, H.; Hasegawa, A.; Abe, K. Effects of several impurity additions on microstructural evolution in high-purity Fe-9Cr ferritic alloys after helium implantation. Phys. Status Solidi A Appl. Res. 1998, 167, 335–346. [Google Scholar] [CrossRef]
- Ishiyama, Y.; Kodama, M.; Yokota, N.; Asano, K.; Kato, T.; Fukuya, K. Post-irradiation annealing effects on microstructure and helium bubbles in neutron irradiated type 304 stainless steel. J. Nucl. Mater. 1996, 239, 90–94. [Google Scholar] [CrossRef]
- Stoller, R.E.; Odette, G.R. The effects of helium implantation on microstructural evolution in an austenitic alloy. J. Nucl. Mater. 1988, 154, 286–304. [Google Scholar] [CrossRef]
- Maziasz, P.J. Effects of Helium Content on Microstructural Development in Type 316 Stainless Steel Under Neutron Irradiation. Ph. D. Thesis, University of Tennessee, Knoxville, TN, USA, 1984. [Google Scholar]
- Golubov, S.I.; Stoller, R.E.; Zinkle, S.J.; Ovcharenko, A.M. Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing. J. Nucl. Mater. 2007, 361, 149–159. [Google Scholar] [CrossRef]
- Fu, C.-C.; Torre, J.D.; Willaime, F.; Bocquet, J.-L.; Barbu, A. Multiscale modelling of defect kinetics in irradiated iron. Nat. Mater. 2005, 4, 68–74. [Google Scholar] [CrossRef]
- Brodrick, J.; Hepburn, D.J.; Ackland, G.J. Mechanism for radiation damage resistance in yttrium oxide dispersion strengthened steels. J. Nucl. Mater. 2014, 445, 291–297. [Google Scholar] [CrossRef]
- Lazauskas, T.; Kenny, S.D.; Smith, R.; Nagra, G.; Dholakia, M.; Valsakumar, M.C. Simulating radiation damage in a bcc Fe system with embedded yttria nanoparticles. J. Nucl. Mater. 2013, 437, 317–325. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roldán, M.; Fernández, P.; Rams, J.; Sánchez, F.J.; Gómez-Herrero, A. Nanoindentation and TEM to Study the Cavity Fate after Post-Irradiation Annealing of He Implanted EUROFER97 and EU-ODS EUROFER. Micromachines 2018, 9, 633. https://doi.org/10.3390/mi9120633
Roldán M, Fernández P, Rams J, Sánchez FJ, Gómez-Herrero A. Nanoindentation and TEM to Study the Cavity Fate after Post-Irradiation Annealing of He Implanted EUROFER97 and EU-ODS EUROFER. Micromachines. 2018; 9(12):633. https://doi.org/10.3390/mi9120633
Chicago/Turabian StyleRoldán, Marcelo, Pilar Fernández, Joaquín Rams, Fernando José Sánchez, and Adrián Gómez-Herrero. 2018. "Nanoindentation and TEM to Study the Cavity Fate after Post-Irradiation Annealing of He Implanted EUROFER97 and EU-ODS EUROFER" Micromachines 9, no. 12: 633. https://doi.org/10.3390/mi9120633
APA StyleRoldán, M., Fernández, P., Rams, J., Sánchez, F. J., & Gómez-Herrero, A. (2018). Nanoindentation and TEM to Study the Cavity Fate after Post-Irradiation Annealing of He Implanted EUROFER97 and EU-ODS EUROFER. Micromachines, 9(12), 633. https://doi.org/10.3390/mi9120633