On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit
Abstract
:1. Introduction
2. Methods
2.1. Device Design of B-DCFFET
2.2. Mathematical Model
2.3. Numerical Simulation
- (a)
- Firstly, the two Laplace equations, including Equations (1) and (2), are calculated to obtain the electrostatic potential in the buffer medium and polydimethylsiloxane (PDMS) channel sidewalls, respectively. DC voltage signals and are designated on the S terminal at the entrance and the D terminal at the outlet, respectively. Static gate potentials or are applied to the bipolar gate electrode array embedded on both sides of the microdevice. The appearance of induced counterionic charge is reflected by the joint conditions (Equations (3) and (4)) at the solution/membrane interface. Besides, the zero normal current component is given at the membrane/air interface to close the electrostatic boundary-value problem.
- (b)
- Secondly, the full Stokes Equations (14) and (15) are computed to obtain the velocity field of electroconvective streaming in B-DCFFET, with the superimposed slip velocity from linear and nonlinear electroosmosis (Equation (13)) preset at the saline-solution/membrane interface on both sides. The channel inlet and outlet are both set to open boundaries for describing the phenomenon of simultaneous electroconvective pumping and mixing, which are fully originated by electroosmotic flow.
- (c)
- Thirdly, convection-diffusion Equation (16) is calculated to resolve the density distribution of chemical analytes within the saline solution under the impact of both diffusive and electroconvective mass transfer. Normal flux vanishes at the phase interface. Current work employs fluorescein of 40 nm in diameter of diffusivity D = 10−11 m2·s−1 as the fluid samples. Analyte concentration c = 1 mol·m−3 and c = 0 mol·m−3 is fixed at the left and right side of the channel entrance, respectively, and diffusion flux disappears at the channel exit.
2.4. Scaling Analysis
2.5. Mixing Index
3. Results and Discussion
3.1. Effect of the Length of the Gate Electrode on the Device Function
3.2. Effect of Gate Voltage
3.3. Effect of Source Voltage Magnitude
3.4. B-DCFFET with Multiple Pairs of Face-To-Face Bipolar G Terminals
3.4.1. B-DCFFET with Two Neighboring Sets of Bipolar GE Pairs
3.4.2. B-DCFFET with an External Array of Face-To-Face Bipolar GE Pairs
3.5. Influence of Some Important Physicochemical Parameters
3.5.1. On the Effect of Solution Conductivity
3.5.2. On the Effect of Fixed Free Surface Charge Density
3.5.3. On the Effect of Membrane Properties
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977. [Google Scholar] [CrossRef]
- Gimsa, J.; Stubbe, M.; Gimsa, U. A short tutorial contribution to impedance and acelectrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods? J. Electr. Bioimpedance 2014, 5, 74–91. [Google Scholar]
- Salari, A.; Navi, M.; Dalton, C. A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications. Biomicrofluidics 2015, 9, 014113. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Yang, K.; Wu, J. Optimization of planar interdigitated microelectrode array for biofluid transport by ac electrothermal effect. Microfluid. Nanofluid. 2014, 16, 167–178. [Google Scholar] [CrossRef]
- González, A.; Ramos, A.; Morgan, H.; Green, N.G.; Castellanos, A. Electrothermal flows generated by alternating and rotating electric fields in microsystems. J. Fluid Mech. 2006, 564, 415–433. [Google Scholar] [CrossRef]
- Stubbe, M.; Gyurova, A.; Gimsa, J. Experimental verification of an equivalent circuit for the characterization of electrothermal micropumps: High pumping velocities induced by the external inductance at driving voltages below 5 v. Electrophoresis 2013, 34, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Stubbe, M.; Holtappels, M.; Gimsa, J. A new working principle for ac electro-hydrodynamic on-chip micro-pumps. J. Phys. D Appl. Phys. 2007, 40, 6850. [Google Scholar] [CrossRef]
- Loire, S.; Kauffmann, P.; Mezić, I.; Meinhart, C. A theoretical and experimental study of ac electrothermal flows. J. Phys. D Appl. Phys. 2012, 45, 185301. [Google Scholar] [CrossRef]
- Pretorius, V.; Hopkins, B.J.; Schieke, J. Electro-osmosis: A new concept for high-speed liquid chromatography. J. Chromatogr. A 1974, 99, 23–30. [Google Scholar] [CrossRef]
- Ramos, A. Electrokinetics and Electrohydrodynamics in Microsystems; Springer: Berlin, Germany, 2011; Volume 530. [Google Scholar]
- García-Sánchez, P.; Ramos, A. Electrorotation of a metal sphere immersed in an electrolyte of finite debye length. Phys. Rev. E 2015, 92, 052313. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, P.; Ren, Y.; Arcenegui, J.J.; Morgan, H.; Ramos, A. Alternating current electrokinetic properties of gold-coated microspheres. Langmuir 2012, 28, 13861–13870. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, P.; Ferney, M.; Ren, Y.; Ramos, A. Actuation of co-flowing electrolytes in a microfluidic system by microelectrode arrays. Microfluid. Nanofluid. 2012, 13, 441–449. [Google Scholar] [CrossRef]
- Gonzalez, A.; Ramos, A.; García-Sánchez, P.; Castellanos, A. Effect of the combined action of faradaic currents and mobility differences in ac electro-osmosis. Phys. Rev. E 2010, 81, 016320. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, P.; Ramos, A.; González, A.; Green, N.G.; Morgan, H. Flow reversal in traveling-wave electrokinetics: An analysis of forces due to ionic concentration gradients. Langmuir 2009, 25, 4988–4997. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Joo, S.W.; Jiang, Y.; Xuan, X.; Qian, S. Transient electrophoretic motion of a charged particle through a converging–diverging microchannel: Effect of direct current-dielectrophoretic force. Electrophoresis 2009, 30, 2499–2506. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Li, D. Multiscale phenomena in microfluidics and nanofluidics. Chem. Eng. Sci. 2007, 62, 3443–3454. [Google Scholar] [CrossRef]
- Yariv, E. “Force-free” electrophoresis? Phys. Fluids 2006, 18, 031702. [Google Scholar] [CrossRef]
- Xuan, X.; Xu, B.; Sinton, D.; Li, D. Electroosmotic flow with joule heating effects. Lab Chip 2004, 4, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-C.; Yossifon, G. Understanding electrokinetics at the nanoscale: A perspective. Biomicrofluidics 2009, 3, 012001. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Bau, H.H. A chaotic electroosmotic stirrer. Anal. Chem. 2002, 74, 3616–3625. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, W.; Gong, L.; Zhu, Y.; Gu, Y.; Han, J. Accurate multi-physics numerical analysis of particle preconcentration based on ion concentration polarization. Int. J. Appl. Mech. 2017, 9, 1750107. [Google Scholar] [CrossRef]
- Pascall, A.J.; Squires, T.M. Induced charge electro-osmosis over controllably contaminated electrodes. Phys. Rev. Lett. 2010, 104, 088301. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.M.; Andersen, M.B.; Mani, A. Chaotic induced-charge electro-osmosis. Phys. Rev. Lett. 2014, 112, 128302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.L.; Yang, C. Ac field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis 2011, 32, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Schasfoort, R.B.; Schlautmann, S.; Hendrikse, J.; van den Berg, A. Field-effect flow control for microfabricated fluidic networks. Science 1999, 286, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.A.; Kheterpal, I.; Ewing, A.G. Effects of buffer ph on electroosmotic flow control by an applied radial voltage for capillary zone electrophoresis. Anal. Chem. 1993, 65, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Poppe, H.; Cifuentes, A.; Kok, W.T. Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis. Anal. Chem. 1996, 68, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Buch, J.S.; Wang, P.C.; Devoe, D.L.; Lee, C.S. Field-effect flow control in a polydimethylsiloxane-based microfluidic system. Electrophoresis 2001, 22, 3902–3907. [Google Scholar] [CrossRef]
- Bazant, M.Z.; Squires, T.M. Induced-charge electrokinetic phenomena: Theory and microfluidic applications. Phys. Rev. Lett. 2004, 92, 066101. [Google Scholar] [CrossRef] [PubMed]
- Squires, T.M.; Bazant, M.Z. Induced-charge electro-osmosis. J. Fluid Mech. 2004, 509, 217–252. [Google Scholar] [CrossRef]
- Prabhakaran, R.A.; Zhou, Y.; Zhao, C.; Hu, G.; Song, Y.; Wang, J.; Yang, C.; Xuan, X. Induced charge effects on electrokinetic entry flow. Phys. Fluids 2017, 29, 42–48. [Google Scholar] [CrossRef]
- Xue, S.; Yeh, L.H.; Ma, Y.; Qian, S. Tunable streaming current in a ph-regulated nanochannel by a field effect transistor. J. Phys. Chem. C 2014, 118, 6090–6099. [Google Scholar] [CrossRef]
- Milne, Z.; Yeh, L.H.; Chou, T.H.; Qian, S. Tunable donnan potential and electrokinetic flow in a biomimetic gated nanochannel with ph-regulated polyelectrolyte brushes. J. Phys. Chem. C 2014, 118, 19806–19813. [Google Scholar] [CrossRef]
- Singh, K.P.; Guo, C. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor. Phys. Chem. Chem. Phys. 2017, 19, 15701–15708. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, K.; Dutta, P. Electrokinetic flow control in microfluidic chips using a field-effect transistor. Lab Chip 2006, 6, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Yeh, L.H.; Xue, S.; Sang, W.J.; Qian, S.; Hsu, J.P. Field effect control of surface charge property and electroosmotic flow in nanofluidics. J. Phys. Chem. C 2012, 116, 4209–4216. [Google Scholar] [CrossRef]
- Hughes, C.; Yeh, L.H.; Qian, S. Field effect modulation of surface charge property and electroosmotic flow in a nanochannel: Stern layer effect. J. Phys. Chem. C 2013, 117, 9322–9331. [Google Scholar] [CrossRef]
- Yalcin, S.E.; Sharma, A.; Qian, S.; Joo, S.W.; Baysal, O. Manipulating particles in microfluidics by floating electrodes. Electrophoresis 2010, 31, 3711–3718. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.; Yeh, L.H.; Chou, T.H.; Qian, S. Field effect regulation of donnan potential and electrokinetic flow in a functionalized soft nanochannel. Soft Matter 2013, 9, 9767–9773. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, S.; Hsu, S.C.; Yeh, L.H.; Qian, S.; Tan, H. Programmable ionic conductance in a ph-regulated gated nanochannel. Phys. Chem. Chem. Phys. 2014, 16, 20138–20146. [Google Scholar] [CrossRef] [PubMed]
- Yeh, L.H.; Ma, Y.; Xue, S.; Qian, S. Gate manipulation of ionic conductance in a nanochannel with overlapped electric double layers. Sens. Actuators B Chem. 2015, 215, 266–271. [Google Scholar] [CrossRef]
- Singh, K.P. Ion current rectification influenced by length and location of surface charge in fluidic unipolar conical nanopores. Sens. Actuators B Chem. 2016, 230, 493–500. [Google Scholar] [CrossRef]
- Zhou, C.; Mei, L.; Su, Y.S.; Yeh, L.H.; Zhang, X.; Qian, S. Gated ion transport in a soft nanochannel with biomimetic polyelectrolyte brush layers. Sens. Actuators B Chem. 2016, 229, 305–314. [Google Scholar] [CrossRef]
- Lian, C.; Gallegos, A.; Liu, H.; Wu, J. Non-scaling behavior of electroosmotic flow in voltage-gated nanopores. Phys. Chem. Chem. Phys. 2017, 19, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Van Der Wouden, E.; Hermes, D.; Gardeniers, J.; Van Den Berg, A. Directional flow induced by synchronized longitudinal and zeta-potential controlling ac-electrical fields. Lab Chip 2006, 6, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Van Der Wouden, E.; Heuser, T.; Hermes, D.; Oosterbroek, R.; Gardeniers, J.; Van Den Berg, A. Field-effect control of electro-osmotic flow in microfluidic networks. Coll. Surf. A Physicochem. Eng. Asp. 2005, 267, 110–116. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Tao, Y.; Li, Y.; Chen, X. Controllable rotating behavior of individual dielectric microrod in a rotating electric field. Electrophoresis 2017, 38, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Liu, W.; Jia, Y.; Tao, Y.; Shao, J.; Ding, Y.; Jiang, H. Induced-charge electroosmotic trapping of particles. Lab Chip 2015, 15, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Schnitzer, O.; Frankel, I.; Yariv, E. Electrokinetic flows about conducting drops. J. Fluid Mech. 2013, 722, 394–423. [Google Scholar] [CrossRef]
- Schnitzer, O.; Yariv, E. Induced-charge electro-osmosis beyond weak fields. Phys. Rev. E 2012, 86, 061506. [Google Scholar] [CrossRef] [PubMed]
- Yossifon, G.; Frankel, I.; Miloh, T. On electro-osmotic flows through microchannel junctions. Phys. Fluids 2006, 18, 117108. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Tao, Y.; Yao, B.; Liu, N.; Wu, Q. A universal design of field-effect-tunable microfluidic ion diode based on a gating cation-exchange nanoporous membrane. Phys. Fluids 2017, 29, 112001. [Google Scholar] [CrossRef]
- Mei, L.; Yeh, L.H.; Qian, S. Gate modulation of proton transport in a nanopore. Phys. Chem. Chem. Phys. 2016, 18, 7449–7458. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ren, Y.; Tao, Y.; Chen, X.; Yao, B.; Hui, M.; Bai, L. Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming. Phys. Fluids 2017, 29, 112002. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Tao, Y.; Chen, X.; Wu, Q. Electrode cooling effect on out-of-phase electrothermal streaming in rotating electric fields. Micromachines 2017, 8, 327. [Google Scholar] [CrossRef]
- Hu, Q.; Ren, Y.; Liu, W.; Chen, X.; Tao, Y.; Jiang, H. Fluid flow and mixing induced by ac continuous electrowetting of liquid metal droplet. Micromachines 2017, 8, 119. [Google Scholar] [CrossRef]
- Hu, Q.; Ren, Y.; Liu, W.; Tao, Y.; Jiang, H. Simulation analysis of improving microfluidic heterogeneous immunoassay using induced charge electroosmosis on a floating gate. Micromachines 2017, 8, 212. [Google Scholar] [CrossRef]
- Kale, A.; Song, L.; Lu, X.; Yu, L.; Hu, G.; Xuan, X. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice. Electrophoresis 2017. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Liu, X.; Liu, W.; Tao, Y.; Jia, Y.; Hou, L.; Li, W.; Jiang, H. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis. Electrophoresis 2017. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Shao, J.; Ren, Y.; Wu, Y.; Wang, C.; Ding, H.; Jiang, H.; Ding, Y. Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping. J. Micromech. Microeng. 2016, 26, 095003. [Google Scholar] [CrossRef]
- González, A.; Ramos, A.; Castellanos, A. Pumping of electrolytes using travelling-wave electro-osmosis: A weakly nonlinear analysis. Microfluid. Nanofluid. 2008, 5, 507–515. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wu, Q.; Ren, Y.; Cui, P.; Yao, B.; Li, Y.; Hui, M.; Jiang, T.; Bai, L. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit. Micromachines 2018, 9, 82. https://doi.org/10.3390/mi9020082
Liu W, Wu Q, Ren Y, Cui P, Yao B, Li Y, Hui M, Jiang T, Bai L. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit. Micromachines. 2018; 9(2):82. https://doi.org/10.3390/mi9020082
Chicago/Turabian StyleLiu, Weiyu, Qisheng Wu, Yukun Ren, Peng Cui, Bobin Yao, Yanbo Li, Meng Hui, Tianyi Jiang, and Lin Bai. 2018. "On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit" Micromachines 9, no. 2: 82. https://doi.org/10.3390/mi9020082
APA StyleLiu, W., Wu, Q., Ren, Y., Cui, P., Yao, B., Li, Y., Hui, M., Jiang, T., & Bai, L. (2018). On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit. Micromachines, 9(2), 82. https://doi.org/10.3390/mi9020082