Crack-Configuration Analysis of Metal Conductive Track Embedded in Stretchable Elastomer
Abstract
:1. Introduction
2. Material and Methods
2.1. Modeling Analysis
2.2. Fabrication and Experimental Setup
3. Result and Discussion
3.1. Straight-Shaped Track
3.2. Wave-Shaped Track
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hammock, M.L.; Chortos, A.; Tee, B.C.K.; Tok, J.B.H.; Bao, Z. 25th anniversary article: The evolution of electronic skin (E-skin): A Brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Xiao, J.; Song, J.; Huang, Y.; Rogers, J.A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 2010, 22, 2108–2124. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Ohmea, H.; Tomita, Y.; Kashara, M.; Schram, J.; Smits, E.; Brand, J.; Bossuyt, F.; Vanfleteren, J.; Baets, J.D. Stretchable 45 × 80 RGB LED display using meander wiring technology. SID Symp. Dig. Tech. Pap. 2015, 46, 102–105. [Google Scholar] [CrossRef]
- Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lu, N.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Salvatore, G.A.; Araki, H.; Chiarelli, A.M.; Xie, Z.; Banks, A.; Sheng, X.; Liu, Y.; Lee, J.W.; Jang, K.I.; et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2016, 2, e1600418. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, X.; Qi, D.; Xu, C.; Yu, J.; Liu, Y.; Jiang, Y.; Liedberg, B.; Che, X. High-adhesion stretchable electrodes based on nanopile interlocking. Adv. Mater. 2016, 29, 1603382. [Google Scholar] [CrossRef] [PubMed]
- Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461. [Google Scholar] [CrossRef] [PubMed]
- Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J.E.; Song, C.; Kim, S.J.; Lee, D.J.; Jun, S.W.; et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, Y.; Jia, L.; Mathewson, K.E.; Jang, K.I.; Kim, J.; Fu, H.; Huang, X.; Chava, P.; Wang, R.; et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 2014, 344, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Minev, I.J.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E.M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L.; et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015, 347, 159–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graz, I.M.; Cotton, D.P.J.; Lacour, S.P. Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 2009, 94, 071902. [Google Scholar] [CrossRef]
- Graudejus, O.; Jia, Z.; Li, T.; Wagner, S. Size-dependent rupture strain of elastically stretchable metal. Scr. Mater. 2012, 66, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Adrega, T.; Lacour, S.P. Stretchable gold conductors embedded in PDMS and patterned by photolithography: Fabrication and electromechanical characterization. J. Micromech. Microeng. 2010, 20, 055025. [Google Scholar] [CrossRef]
- Akogwua, O.; Kwabia, D.; Midturi, S.; Eleruja, M.; Babatope, B.; Soboyejoa, W.O. Large strain deformation and cracking of nano-scale gold films on PDMS substrate. Mater. Sci. Eng. B 2010, 170, 32–40. [Google Scholar] [CrossRef]
- Jones, J.; Lacour, S.P.; Wagner, S. Stretchable wavy metal interconnects. J. Vac. Sci. Technol. A Vac. Surf. Films 2004, 22, 1723–1725. [Google Scholar] [CrossRef]
- Lacour, S.P.; Jones, J.; Wagner, S.; Li, T.; Suo, Z. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 2005, 93, 1459–1467. [Google Scholar] [CrossRef]
- Gray, D.S.; Tien, J.; Chen, S.C. High-conductivity elastomeric electronics. Adv. Mater. 2004, 16, 393–397. [Google Scholar] [CrossRef]
- Gonzalez, M.; Axisa, F.; Bulcke, M.V.; Brosteaux, D.; Vandevelde, B.; Vanfleteren, J. Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 2008, 48, 825–832. [Google Scholar] [CrossRef]
- Hsu, Y.Y.; Gonzalez, M.; Bossuyt, F.; Axisa, F.; Vanfleteren, J.; DeWolf, I. The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J. Micromech. Microeng. 2010, 20, 075036. [Google Scholar] [CrossRef]
- Löher, T.; Seckel, M.; Vieroth, R.; Dils, C.; Kallmayer, C.; Ostmann, A.; Aschenbrenner, R.; Reichl, H. Stretchable electronic systems: Realization and applications. In Proceedings of the 11th Electronic Packaging Technology Conference (EPTC2009), Singapore, 9–11 December 2009; pp. 893–898. [Google Scholar]
- Koshi, T.; Iwase, E. Self-Healing metal wire using electric field trapping of metal nanoparticles. Jpn. J. Appl. Phys. 2015, 54, 06FP03. [Google Scholar] [CrossRef]
- Koshi, T.; Iwase, E. Stretchable electronic device with repeat self-Healing ability of metal wire. In Proceedings of the 30th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2017), Las Vegas, NV, USA, 22–26 January 2017; pp. 262–265. [Google Scholar]
- Emry, R.D.; Povirk, G.L. Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater. 2003, 51, 2067–2078. [Google Scholar] [CrossRef]
- Zhang, S.; Sakane, M.; Nagasawa, T.; Kobayashi, K. Mechanical properties of copper thin films used in electronic devices. Procedia Eng. 2011, 10, 1497–1502. [Google Scholar] [CrossRef]
- Jhonston, I.D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017. [Google Scholar] [CrossRef]
Ref. | Structure | Crack Configuration | |
---|---|---|---|
[13] (straight-shaped track) | ttrack = 0.05 µm (gold) telast = 1 mm (PDMS) | 0.01 | Multiple-crack growth type |
[16] (straight-shaped track) | ttrack = 0.05–0.1 µm (gold) telast = 1 mm (PDMS) | 0.01–0.02 | |
[14] (straight-shaped track) | ttrack = 0.075 µm (gold) telast = 0.3 mm (PDMS) | 0.06 | |
[12] (straight-shaped track) | ttrack = 0.035 µm (gold) telast = 0.12 mm (PDMS) | 0.07 | |
[15] (straight-shaped track) | ttrack = 0.04 µm (gold) telast = 0.076 mm (PDMS) | 0.12 | |
[19] (straight-shaped/wave-shaped track) | ttrack = 2.5–5 µm (gold) telast = 0.4 mm (PDMS) | 1.44–2.88 | Single-crack growth type |
[21] (wave-shaped track) | ttrack = 18 µm (copper) telast = 1 mm (PDMS) | 2.76 | |
[20] (wave-shaped track) | ttrack = 17 µm (copper) telast = 0.1 mm (PDMS) | 26.15 | |
This study (straight-shaped track) | ttrack = 0.04–1.17 µm (copper) telast = 0.1 mm (PU) | 0.03–0.78 | Multiple-crack growth/Single-crack growth type |
This study (wave-shaped track) | ttrack = 2–10 µm (copper) telast = 0.1 mm (PU) | 0.89–4.45 | Single-crack growth type |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koshi, T.; Iwase, E. Crack-Configuration Analysis of Metal Conductive Track Embedded in Stretchable Elastomer. Micromachines 2018, 9, 130. https://doi.org/10.3390/mi9030130
Koshi T, Iwase E. Crack-Configuration Analysis of Metal Conductive Track Embedded in Stretchable Elastomer. Micromachines. 2018; 9(3):130. https://doi.org/10.3390/mi9030130
Chicago/Turabian StyleKoshi, Tomoya, and Eiji Iwase. 2018. "Crack-Configuration Analysis of Metal Conductive Track Embedded in Stretchable Elastomer" Micromachines 9, no. 3: 130. https://doi.org/10.3390/mi9030130
APA StyleKoshi, T., & Iwase, E. (2018). Crack-Configuration Analysis of Metal Conductive Track Embedded in Stretchable Elastomer. Micromachines, 9(3), 130. https://doi.org/10.3390/mi9030130