Optofluidic Technology for Water Quality Monitoring
Abstract
:1. Introduction
2. Optofluidics for Online Water Quality Monitoring
3. Chemical Pollutants Detection
3.1. Inorganic Anions
3.1.1. Optical Absorption Change by Chemical Reaction
3.1.2. Fluorescence Quenching of Gold Nanoparticles in Water
3.2. Heavy Metal
3.2.1. Bioluminescence Inhibition of Specific Bacteria
3.2.2. Color Change by Immunological Reaction
3.2.3. Absorbance Change of Nanoparticles
3.3. Organic Pollutants
3.3.1 Micro-Ring Resonating Status Change by Immunological Reaction
3.3.2. Fluorescence Intensity Change by Immunological Reaction
4. Microbial Pollutants Detection
4.1. Microdroplet Scattering Change by Bio-Reaction
4.2. Bacteria Enrichment and PCR Detection
4.3. Virus PCR Dection
4.4. Automatic Microscopic Identification of Parasites
5. Discussion and Outlook
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Duić, N.; Guzović, Z.; Kafarov, V.; KlemeŠ, J.J.; vad Mathiessen, B.; Yan, J. Sustainable development of energy, water and environment systems. Appl. Energy 2013, 101, 3–5. [Google Scholar] [CrossRef]
- Baker, L.A. The Water Environment of Cities; Springer: New York, NY, USA, 2009; ISBN 9780387848907. [Google Scholar]
- Wang, Q.; Yang, Z. Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut. 2016, 218, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Alherifiere, D. Water and environment. Water Int. 1980, 5, 4–8. [Google Scholar] [CrossRef]
- Smith, C.L.; Motooka, J.M.; Willson, W.R. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration. Anal. Lett. 1984, 17, 1715–1730. [Google Scholar] [CrossRef]
- Sayago, A.; Bcltrân, R.; Gômez-Ariza, J.L. Hydride generation atomic fluorescence spectrometry (HG-AFS) as a sensitive detector for Sb(in) and Sb(v) speciation in water. J. Anal. At. Spectrom. 2000, 15, 423–428. [Google Scholar] [CrossRef]
- Safarova, V.I.; Sapelnikova, S.V.; Djazhenko, E.V.; Teplova, G.I.; Shajdulina, G.F.; Kudasheva, F.K. Gas chromatography-mass spectrometry with headspace for the analysis of volatile organic compounds in waste water. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 800, 325–330. [Google Scholar] [CrossRef]
- Pinto, G.M.; Jardim, I.C. Use of solid-phase extraction and high-performance liquid chromatography for the determination of triazine residues in water: Validation of the method. J. Chromatogr. A 2000, 869, 463–469. [Google Scholar] [CrossRef]
- Toivanen, T.; Koponen, S.; Kotovirta, V.; Molinier, M.; Chengyuan, P. Water quality analysis using an inexpensive device and a mobile phone. Environ. Syst. Res. 2013, 2, 9. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Gao, J.L.; Wu, W.Y.; Yuan, Y.X. Water quality comprehensive evaluation method for large water distribution network based on clustering analysis. J. Hydroinformatics 2011, 13, 390–400. [Google Scholar] [CrossRef]
- Jiang, Y.; Nan, Z.; Yang, S. Risk assessment of water quality using Monte Carlo simulation and artificial neural network method. J. Environ. Manag. 2013, 122, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Wang, G. A novel water quality data analysis framework based on time-series data mining. J. Environ. Manag. 2017, 196, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2009, 81, 4645–4677. [Google Scholar] [CrossRef] [PubMed]
- Fawell, J.; Nieuwenhuijsen, M.J. Contaminants in drinking water. Br. Med. Bull. 2003, 68, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Kimura, S.Y. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2016, 88, 546–582. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Gonzalez, S.; Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends Anal. Chem. 2003, 22, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2011, 83, 4616–4648. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Ternes, T.A. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2014, 86, 2813–2848. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Chang, J.; Zhou, G.; Chen, J. Nanomaterial-enabled rapid detection of water contaminants. Small 2015, 11, 5336–5359. [Google Scholar] [CrossRef] [PubMed]
- Schriks, M.; Heringa, M.B.; van der Kooi, M.M.E.; de Voogt, P.; van Wezel, A.P. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 2010, 44, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Nahavandi, S.; Baratchi, S.; Soffe, R.; Tang, S.-Y.; Nahavandi, S.; Mitchell, A.; Khoshmanesh, K. Microfluidic platforms for biomarker analysis. Lab Chip 2014, 14, 1496–1514. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, T.; Maerkl, S.J.; Quake, S.R. Microfluidic large-scale integration. Science 2002, 298, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Persichetti, G.; Bernini, R. Optofluidic approaches for enhanced microsensor performances. Sensors 2015, 15, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Persichetti, G.; Testa, G.; Bernini, R. High sensitivity UV fluorescence spectroscopy based on an optofluidic jet waveguide. Opt. Express 2013, 21, 24219. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Testa, G.; Persichetti, G.; Sarro, P.M.; Bernini, R. A hybrid silicon-PDMS optofluidic platform for sensing applications. Biomed. Opt. Express 2014, 5, 417. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Deamer, D.W.; Schmidt, H.; Barber, J.P.; Hawkins, A.R. Integrated optical waveguides with liquid cores. Appl. Phys. Lett. 2004, 85, 3477–3479. [Google Scholar] [CrossRef]
- Almeida, V.R.; Xu, Q.; Barrios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fan, X. Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 2011, 399, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, D.B.; Conroy, R.S.; Garstecki, P.; Mayers, B.T.; Fischbach, M.; Paul, K.E.; Prentiss, M.; Whitesides, G.M. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl. Acad. Sci. USA 2004, 101, 12434–12438. [Google Scholar] [CrossRef] [PubMed]
- Persichetti, G.; Testa, G.; Bernini, R. Optofluidic jet waveguide enhanced Raman spectroscopy. Sens. Actuators B Chem. 2015, 207, 732–739. [Google Scholar] [CrossRef]
- Bartram, J.; Ballance, R. Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Gorchev, H.G.; Ozolins, G. WHO guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar] [CrossRef]
- Zhu, J.M.; Shi, Y.; Zhu, X.Q.; Yang, Y.; Jiang, F.H.; Sun, C.J.; Zhao, W.H.; Han, X.T. Optofluidic marine phosphate detection with enhanced absorption using a Fabry–Pérot resonator. Lab Chip 2017, 17, 4025–4030. [Google Scholar] [CrossRef] [PubMed]
- Cleary, J.; Maher, D.; Diamond, D. Development and deployment of a microfluidic platform for water quality monitoring. In Smart Sensors Real-Time Water Quality Monitoring; Springer: Berlin/Heidelberg, Germany, 2013; Volume 4, pp. 125–148. [Google Scholar]
- Slater, C.; Cleary, J.; McGraw, C.M.; Yerazunis, W.S.; Lau, K.T.; Diamond, D. Autonomous field-deployable device for the measurement of phosphate in natural water. Proc. SPIE 2007, 6755, 67550L. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, H.Y.; Wu, C.S.; Meena, J.S.; Simon, T.; Ko, F.H. A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence-colorimetric sensor with a wide concentration range. Sens. Actuators B Chem. 2016, 227, 283–290. [Google Scholar] [CrossRef]
- Zhao, X.; Dong, T. A microfluidic device for continuous sensing of systemic acute toxicants in drinking water. Int. J. Environ. Res. Public Health 2013, 10, 6748–6763. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.S.; Meng, X.Y.; Zhang, Y.Y.; Yang, L.; Zhang, J.H.; Wang, X.R.; Lu, S.Y.; Ren, H.L.; Liu, Z.S. Development of an immunochromatographic strip and its application in the simultaneous determination of Hg(II), Cd(II) and Pb(II). Sens. Actuators B Chem. 2013, 183, 303–309. [Google Scholar] [CrossRef]
- Jarujamrus, P.; Amatatongchai, M.; Thima, A.; Khongrangdee, T.; Mongkontong, C. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 142, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhang, G.; Chin, L.K.; Liu, A.Q.; Liedberg, B. Highly sensitive, label-free detection of 2,4-dichlorophenoxyacetic acid using an optofluidic chip. ACS Sens. 2017, 2, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.C.; Song, B.D.; Long, F.; Zhou, X.H.; He, M.; Lv, Q.; Yang, H.Y. Automated online optical biosensing system for continuous real-time determination of microcystin-LR with high sensitivity and specificity: Early warning for cyanotoxin risk in drinking water sources. Environ. Sci. Technol. 2013, 47, 4434–4441. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-H.; Liu, L.-H.; Xu, W.-Q.; Song, B.-D.; Sheng, J.-W.; He, M.; Shi, H.-C. A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol A in water samples. Sci. Rep. 2014, 4, 17–20. [Google Scholar] [CrossRef]
- Yu, J.Q.; Huang, W.; Chin, L.K.; Lei, L.; Lin, Z.P.; Ser, W.; Chen, H.; Ayi, T.C.; Yap, P.H.; Chen, C.H.; et al. Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli. Lab Chip 2014, 14, 3519–3524. [Google Scholar] [CrossRef] [PubMed]
- Dharmasiri, U.; Witek, M.A.; Adams, A.A.; Osiri, J.K.; Hupert, M.L.; Bianchi, T.S.; Roelke, D.L.; Soper, S.A. Enrichment and detection of Escherichia coli O157:H7 from water samples using an antibody modified microfluidic chip. Anal. Chem. 2010, 82, 2844–2849. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Kitamura, G.; Segawa, T.; Kobayashi, A.; Miura, T.; Sano, D.; Okabe, S. Microfluidic quantitative PCR for simultaneous quantification of multiple viruses in environmental water samples. Appl. Environ. Microbiol. 2014, 80, 7505–7511. [Google Scholar] [CrossRef] [PubMed]
- Heng, X.; Erickson, D.; Baugh, L.R.; Yaqoob, Z.; Sternberg, P.W.; Psaltis, D.; Yang, C. Optofluidic microscopy—A method for implementing a high resolution optical microscope on a chip. Lab Chip 2006, 6, 1274–1276. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.M.; Cui, X.; Yang, C. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts. Biomed. Microdevices 2009, 11, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Microfluidic Sensors for In-Line Water Monitoring Applications. Available online: https://www.sbir.gov/sbirsearch/detail/10875 (accessed on 29 March 2018).
- Microfabricated, Low-Cost, High-Sensitivity Chlorine and pH Sensor Systems for Water Quality Monitoring. Available online: https://ic-impacts.com/portfolio-posts/microfabricated-low-cost-high-sensitivity-chlorine-and-ph-sensor-systems-for-water-quality-monitoring/ (accessed on 29 March 2018).
- Real Time Monitoring of SEA Contaminants by an Autonomous Lab-on-a-Chip Biosensor. Available online: https://cordis.europa.eu/project/rcn/111294_en.html (accessed on 29 March 2018).
- Final Report: Development of Mobile Self-Powered Sensors for Potable Water Distribution. Available online: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.highlight/abstract/9458/report/F (accessed on 29 March 2018).
- Platform Realising the Cloud-to-Things Continuum Concept. Available online: http://www.proteus sensor.eu/ (accessed on 1 December 2017).
- Nolan, B.T.; Hitt, K.J.; Ruddy, B.C. Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. Environ. Sci. Technol. 2002, 36, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeke, J. The Benefits of Using Refractive Index for Water Quality Monitoring in Distribution Networks; Optiqua Technologies: Richmond, VIC, Australia, 2014. [Google Scholar]
- Van Wijlen, M.A.B.; Koerkamp, M.K.; Xie, R.J.; Puah, A.N.; van Delft, W.; Bajema, B.; Verhoef, J.W. Innovative sensor technology for effective online water quality monitoring. In Proceedings of the 4th Singapore International Water Week, Singapore, 4–8 July 2011. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Dai, T.; Lei, L. Optofluidic Technology for Water Quality Monitoring. Micromachines 2018, 9, 158. https://doi.org/10.3390/mi9040158
Wang N, Dai T, Lei L. Optofluidic Technology for Water Quality Monitoring. Micromachines. 2018; 9(4):158. https://doi.org/10.3390/mi9040158
Chicago/Turabian StyleWang, Ning, Ting Dai, and Lei Lei. 2018. "Optofluidic Technology for Water Quality Monitoring" Micromachines 9, no. 4: 158. https://doi.org/10.3390/mi9040158
APA StyleWang, N., Dai, T., & Lei, L. (2018). Optofluidic Technology for Water Quality Monitoring. Micromachines, 9(4), 158. https://doi.org/10.3390/mi9040158