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Abstract: An adaptive multi-scale method based on the combination generalized morphological filter
(CGMF) is presented for de-noising of the output signal from a MEMS gyroscope. A variational mode
decomposition is employed to decompose the original signal into multi-scale modes. After choosing
a length selection for the structure element (SE), the adaptive multi-scale CGMF method reduces the
noise corresponding to the different modes, after which a reconstruction of the de-noised signal is
obtained. From an analysis of the effect of de-noising, the main advantages of the present method are
that it: (i) effectively overcomes deficiencies arising from data deviation compared with conventional
morphological filters (MFs); (ii) effectively targets the different components of noise and provides
efficacy in de-noising, not only primarily eliminating noise but also smoothing the waveform; and
(iii) solves the problem of SE-length selection for a MF and produces feasible formulae of indicators
such as the power spectral entropy and root mean square error for mode evaluations. Compared with
the other current signal processing methods, the method proposed owns a simpler construction with
a reasonable complexity, and it can offer better noise suppression effect. Experiments demonstrate
the applicability and feasibility of the de-noising algorithm.

Keywords: MEMS gyroscope; variational mode decomposition; morphological filter; denoising algorithm

1. Introduction

Because of its unique properties, the gyroscope has been widely used in navigation, aviation,
aerospace and the national economy, which is one of the key development technologies. Fiber optic
gyroscope (FOG) is a rotation sensor with the advantages of long life, dynamic range and short
start-up time. The resonator fiber optic gyroscope (RFOG) has an improved shot noise limited signal
to noise sensitivity for a given size. Qiu et al. [1] proposed a bench-top RFOG using external-cavity
laser stabilization and optical filtering, performing well toward navigation grade. Fsaifes et al. [2]
investigated on a 19-cell hollow-core photonic-bandgap fiber resonator for rotation sensing applications
by using a simple-bulk cavity design. Resonant micro optical gyros (RMOGs) are considered ideal
candidates for optoelectronic gyroscope miniaturization, whose prototypes are complexity modules
including several packaged optoelectronics components connected by optical fibers. Dell’Olio et al. [3]
finished design, fabrication and initial characterization of large-size InGaAsP/InP ring resonators for
gyroscope applications. Their cavity Q-factor (= 74,000 ± 20%) can realize at least six times larger than
the state-of-the-art. Liang et al. [4] studied resonant micro photonic gyroscopes, and demonstrated
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a high-performance gyroscope based on a high-Q whispering gallery mode resonators (WGMRs).
However, the FOG precision control of the instrument presents issues of high cost and bulky size.
MEMS gyroscopes are a kind of angular sensor, which has seen good development in recent decades.
In this paper, we are devoted to researching the dual-mass decoupled MEMS gyroscope.

The MEMS gyroscope appears in many different fields for application, such as automobiles,
consumer electronics, and robotics, as it is relatively smaller in size and lower in weight, power
consumption, and price. High-precision MEMS-based inertial gyroscopes reported in the literature
have bias drift values that are better than the tactical grade performance requirements. Noise contained
in the original signal of these low-cost gyroscopes degrades its accuracy and limits its applications.
Consequently, signal noise reduction is essential to enhance their performance [5–9]. Kalman filter (KF)
is a representative algorithm for gyroscope de-noising for practical inertial navigation and integrated
navigation application [10], however, the filter models and noise characteristics will influence the
performance easily [11].

The morphological filter (MF) is a nonlinear time-frequency analysis method capable of extracting
local features and eliminating instantaneous impulses [12]. Various researchers have introduced
variants of the MF. Lv et al. [13] introduced average a combination difference morphological filter
for feature extraction, where the scale selection of structural elements (SEs) is determined by the
Teager energy kurtosis (TEK). Hu et al. [14] proposed a new improved MF algorithm to overcome
the deficiency of conventional MFs which can be easily interfered with. In [15], a combination of a
MF and translation-invariant wavelet decomposition was employed to augment ensemble empirical
mode decomposition (EEMD) and to improve de-noising reliability. Li et al. [16] used multi-scale MFs
(MSMFs) in gear fault diagnostics and verified the averaged multiscale morphological dilate-erode
gradient (AMMGDE) filter performs the best. In [17], a MF was used for field applications of on-line
monitoring and diagnosis to prevent misjudgments in detection.

Indeed, the MF is capable of directly extracting the geometric structure of an impulsive
feature in comparison with other non-stationary signal processing methods, such as the fast Fourier
Transform (FFT), the wavelet transform, the Hilbert-Huang transform (HHT) and the empirical
mode decomposition (EMD) [18–20], These methods are limited by their respective drawbacks.
The FFT does not conform well to transient and non-stationary signals processing. Short-time FFT
is unable to determine a choice of window size in regard to the frequency requirement constraint of
random signals [21]. The HHT requires an appropriate selection of basic functions to avoid faults
diagnosed using the intrinsic mode functions (IMFs) [22]. In this regard, MF excels in accuracy and
extensive applicability. Nevertheless, conventional MF also has its own limitations. Morphological
operators generally suffer from different output biases and SE selection problems [23]. Selecting a
key scale for the SE requires a prior knowledge from multiple attempts. The multiple frequency
components of high-intensity noise cannot be completely smoothed [24]. To overcome the above
deficiencies, the variational mode decomposition (VMD) is a non-recursive time-frequency method for
non-stationary analyses. Its employment effectively accomplishes a signal-adapted decomposition
to provide signal-noise separation. The decomposed signal component is more compatible with
processing conditions of a MF. For modifying methods combination, an optimized synthetical promote
method is presented [19,25,26].

To overcome the limitation of the MF in handling measurement noise, particularly in the
application to signal de-noising of a gyroscope, we propose an adaptive multi-scale combination
generalized morphological filter (CGMF) based on the VMD method. The assisting algorithm has
a strong capability to extract and eliminate noise. Using a preliminary waveform and a frequency
spectrogram analysis of the raw signal, a SE with specific properties is selected to suppress noise
related to the specific attribute. The elimination of the dominant noise obtained demonstrates that
the proposed multi-scale CGMF algorithm is quite suitable. Nevertheless, choosing an optimal length
for the SE is a current focus of attention and researchers have developed various guidelines for this
choice. Through multitudinous data analyses, feasible regulatory formulae providing indicator values
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to summarize data is given for assessments. The formulae adopt the power spectral entropy (PSE) and
root mean square error (RMSE) to evaluate the efficacy of the sampling SEs chosen. Hence, SE selection
and the critical choice of scale for SE are reasonably settled within this CGMF-VMD scheme. Moreover,
the application of VMD can decompose a raw signal into band-limited intrinsic mode functions
(BLIMFs) [27]. Through hierarchical processing, the high and low frequency domains are respectively
denoised by the optimized CGMF. The proposed method overcomes a statistical bias problem of the
MF, sets selection criteria for the length choice, and remedies the deficiencies in MF high-intensity
noise elimination and the excessive mode eliminations that lead to distortions in VMD analysis.

2. Adaptive Multi-Scale CGMF Combined with the VMD

2.1. Theories of the CGMF

Georges Matheron and Jean Serra proposed the notion of mathematical morphology based on
integral geometry [28]. Developed to be applied for signal proceeding, the mathematical MF is a robust
one-dimensional nonlinear signal processing based on set theory. The key concept of MF is to modify
the local characteristics of the signal through its interaction by a predefined SE, which slides through
points in the signal and modifies the geometric shape of the signal. The MF performs better than linear
filters in noise reduction and in identifying chief morphological characteristics.

In MF analysis, four basic operators arise: dilation, erosion, opening, and closing denoted ⊕,
Θ, •, and ◦ respectively. The opening and closing operators are constructed based on the dilation
and erosion operators. The basic operators form the basis of a morphological method and defined
as follows:

Dilation:
( f ⊕ b)(x) = max

m−0,1...,m−1

x−0,1...,x−m

{ f (x−m) + b(m)}, (1)

Erosion:
( f Θb)(x) = min

m−0,1...,m−1

x−0,1...,x+m−2

{ f (x + m)− b(m)}, (2)

Closing:
( f •b)(x) = [( f ⊕ b)Θb](x), (3)

Opening:
( f ◦ b)(x) = [( f Θb)⊕ b](x). (4)

where f (x) is the original one-dimensional discrete signal, a function over a definition domain
F = {0, 1, . . . N − 1}; B(x) the SE, defined on set B = {0,1, . . . M − 1} (M > N); X a sample in the
signal; and M a point in SE.

The morphological close-opening gradient filter (Foc) and the open-closing gradient filter (Fco) are
defined by combinations of the above operations,

Foc( f (x)) = ( f ◦ b•b)(x), (5)

Fco( f (x)) = ( f •b ◦ b)(x) (6)

Dilation smooths positive peaks and erosion fills up negative ones. The opening operation
suppresses the positive impulses; the closing operation is applied to suppress the negative
impulses [29]. In view of the attributes of the opening operator’s expansibility and the closing
operator’s contractibility, the output magnitude of Foc and Fco becomes small and large, respectively.
Thus, to overcome the statistical bias and boost the de-noising capability, an average weighted
combination of the close-opening and open-closing operations is adopted,



Micromachines 2018, 9, 246 4 of 20

h(x) = ψoc(co)(b) =
Fco( f (x)) + Foc( f (x))

2
. (7)

where h(x) corresponds to the processed signal, and ψoc(co)(b) denotes the basic operations unit of
the MF.

Whereas the SEs significantly affect the effectiveness of the MF, the raw signal always incorporates
heavy irregular noise. The singular nature of the SE generally favors a single type of noise. To produce
faster performances in denoising and preserving, a combination of diverse SEs combined with the
open-closing and close-opening operators is adopted to establish the CGMF.

Based on Equations (5) and (6), the combined SEs of the morphological close-opening gradient
filter (Gco) and the open-closing gradient filter (Goc) are defined as

Goc( f (x)) = ( f ◦ b1•b2)(x), (8)

Gco( f (x)) = ( f •b2 ◦ b1)(x). (9)

Using Equation (7), the average weighted combination of the close-opening and open-closing
operations of the CGMF is defined as

y(x) = ψGoc(Gco)(b1, b2) =
[Goc( f (x)) + Gco( f (x))]

2
(10)

The CGMF is capable of eliminating large-scale disturbances from heavy noise and is effective
in restoring the original signal features. Also, the statistical bias is suppressed appropriately. Indeed,
de-noising using CGMF is discernibly superior in comparison with a single SE MF. A table for CGMF
algorithm (Algorithm 1) is introduced in detail.

2.2. Influence Parameters about MF

SE has a drawback affecting the effectiveness and accuracy of the MF. The types of SE are
various and include the triangular SE (TSE), the sinusoidal SE, and the semicircular SE (SSE) [30].
The corresponding geometrical characteristic of the SE effectively determines the de-noising capability
when targeting a specific type of noise. As confirmed by the numerous valid data, the TSE appears to
be quite appropriate for detecting impulsive noise; SSE effectively eliminates Gaussian white noise.
Hence, with this article focused on an analysis of nonlinear signal suppression, the TSE and SSE are
adopted in constructing the CGMF.

For example, a sinusoidal signal mixed with an impulse η and Gaussian noise ϕ has the form

h(t) = 3 sin(2πt) + 5 cos(6πt) + ϕ + η (11)

A conventional MF method was applied to reduce the signal noise using a single SSE and
TSE. A comparison of results is shown in Figure 1. The experiment demonstrates that the resultant
waveforms are different. The waveforms reflect the specific noise eliminated. That is, SE selection
must be done cautiously.

In general, shape, height (amplitude), and length (domain) are three significant elements
determining the attributes of the SEs. With validated statistical analysis, the SE shape should match
well the signal. The height should be appropriate, not extra-small or extra-large. In some instances,
the height may be irregular and play a lesser role relative to the SE length. Thus, length is also
paramount in filter design and depends on specialized de-noising features of the SEs and characteristics
of the input signal.
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The results obtained indicate that noise suppression critically depends on SE choice and length.
In addition, there exists a problem with a strong deviation in the MF processing. Simultaneously,
from the waveform analysis, noise suppression is impracticable. To achieve a more practical noise
reduction in the final processed result, VMD appears impressive.

As a recent non-recursive signal processing technique, VMD adaptively decomposes the
real-valued signal into a series of modes from high to low frequencies. It also performs better
in preserving amplitude and reducing random noise compared with, for example, EMD and
wavelet analysis.

The unprocessed signal is often heavily mixed with multi-variable spectral-domain signals
immersed in noise of different intensities and frequencies. Hence VMD decomposes the
multi-component signal into several intrinsic mode functions (IMFs), which represent the fundamental
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oscillatory modes of the signal, each being compact around a center pulsation. Initially the
decomposition does a preliminary de-noising treatment of the composite signal. The decomposed
modes are specific to a single spectral component with stabilized features and lower disturbances,
and designed to lower the complexity of the spectral analysis. Thus, the VMD application primarily
ensures accuracy with the allusion of heavy noise elimination.

Algorithm 1: CGMF algorithm.

SE construction:
Generate a pixel pitch P of SEs
Input row data df
Estimate a priori-knowledge SE length N
for i = 1, . . . , N do
assign amplitude variable NHOD (i), OSE (i) and NH (i)
end for
Construct triangular SE: b1=strel (‘arbitrary’, NHOD (i), OSE (i))
Construct semicircular SE: b2=strel (‘arbitrary’, NHOD (i), NH (i))
Operators combination:
Construct closing and opening operators using Equations (3) and (4)
Construct gradient filter Gco and gradient filter Goc using Equations (8) and (9)
Compute average weighted combination ψGoc(Gco) using Equation (10)

2.3. Implementing the VMD Theory

While a recently developed technique by Dragomiretskiy and Zosso (2014) for adaptive signal
decomposition, VMD has been effectively applied to extract instantaneous time-frequency features
from non-stationary signals. It can non-recursively decompose a nonlinear multi-component signal
f (t) into a discrete number of quasi-orthogonal BLIMFs, uk(k ∈ 1, 2, 3 . . . k), with specific sparsity
properties of its bandwidth in the spectral domain. Also, each mode is compact around a center
frequency wk(k ∈ 1, 2, 3 . . . k). The fundamental problem for the VMD is to solve the constrained
variational problem; i.e., H1 the Gaussian smoothness is used to estimate the bandwidth of wk [31].
The variational problem is mathematically expressed in the form

min
{uk ,wk}

{
k

∑
k=1
‖∂t

[(
∂(t) +

j
πt

)
× uk(t)

]
e−jwkt‖

2

2

}
, (12)

k

∑
k=1

uk = f (t), (13)

where f (t) is the original valid signal, k denotes the number of modes, and t represents elapsed time.
With the objective of converting the constrained variational problem to an unconstrained one,

a quadratic penalty term and Lagrangian multiplier are used. The quadratic penalty term ensures high
precision of the signal reconstruction even under instances of strong noise. The Lagrangian multiplier
make the constraint condition retains stringency. The equation for the augmented Lagrangian L is

L(uk, wk, λ) = α
k
∑

k=1
‖∂t

[(
∂(t) + j

πt

)
uk(t)

]
e−jwkt‖

2

2
+ ‖ f (t)−

k
∑

k=1
uk(t)‖

2

2
+ 〈λ(t) , f (t)−

k
∑

k=1
uk(t) 〉 (14)

where ∂ is the balancing parameter of the data-fidelity constraint, and λ denotes the Lagrange factor.
Next, the alternate direction method of multipliers enables the saddle point of the augmented

Lagrangian to be found in a sequence of iterative sub-optimizations. The modes in the Fourier domain
are updated essentially by Wiener filtering using a filter tuned to the current center frequency on the
positive part of the spectrum with an integral form. The mode uk

n+1 in the time domain is
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ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûi(ω) +
(

λ̂ω
2

)
1 + 2α(ω−ωκ)

2 . (15)

Wiener filtering is embedded in the VMD, and the center frequency ωk is accordingly updated by
ûn+1

k . Equation (15) for ω̂n+1
k , the optimization of which also takes place in the Fourier domain,

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω

(16)

where ûi(w), ûn+1
k (w), λ̂(ω), and f̂ (ω) denote the Fourier transforms of ui(ω), un+1

k (ω), λ(ω),
and f (ω), respectively, and n indexes the number of iterations.

2.4. The Proposed Multi-Scale Adaptive CGMF Combined with the VMD

Different SE characteristics match with real-time signal features differently; this hold for every
given SE length also [32]. Adopting a self-adaptive CGMF with a corresponding SE combination and
integrating with specific noise characteristics, the processed result demonstrates that this filter is more
effective and accurate. In general, an excessively long length easily leads to over-treated distortions
whereas an excessively small length is incapable of ensuring better noise extraction. Furthermore,
the length choice of every SE should be normalized.

To evaluate the treatment performance, PSE and RMSE are adopted, which correlate well with
the instantaneous disposal performance. Also, PSE is related to information entropy, which is able
to quantify the spectral complexity of the unprocessed signal [33]. Here a brief introduction of PSE
is given:

• Power spectral entropy (PSE)

PSE is an extension of Shannon entropy in the frequency domain and is linked to the distribution
of frequency components [34]. The steps to obtain PSE are:

(1) Derive the power spectral calculation formula from Equation (16):

S(ω) =
1

2πN
|X(ω)|2 (17)

where N is the length of f (t), and X(ω) is the processed result obtained using FFT.
(2) According to the energy conservation law, the spectrum density function can be obtained using

the normalization of the frequency components:

∑ x2(t)∆t = ∑|X(ω)|2∆ω, (18)

(3) The power spectral entropy is defined as

PSE = −
N

∑
i=1

PilgPi, (19)

where Pi =
si

N
∑

i=1
si

denotes the specific gravity of the i-th sub-band spectral value over the whole

power spectrum. The RMSE is defined as

RMSE =

√√√√(
1
N

N

∑
t−1

x(t)− x(t))
2

. (20)
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As comprehensive indicators, the PSE and RMSE values represent the degree of irregularity
associated with the composite signal. Smaller values of these indices signify smoother shapes, implying
that the signal is in a more ordered condition.

Frequently, overly long or short SE lengths lead easily to distortions and an under-curing problem
of the composite signal results. Nevertheless, a given regulatory formula can overcome blindness from
the empirical selection. The data formulae alluded to regarding the SEs are:

• Conclusively formulae for length determination

(1) TSE dimension selection:

length(ui+1) = length(ui) ·
(

RMSE(ui+1)

RMSE(ui)

)2
, (21)

(2) SSE dimension selection:

length(ui+1) = length(ui) ·
(

PSE(ui+1)

PSE(ui)

)2
. (22)

Given the determined length, from non-recursive signal processing, a series of modes are obtained.
The high-order modes represent fast oscillations, which mainly are high-frequency contamination noise.
With their extraction using VMD, the remaining low frequency modes are regarded as constituting the
valid signal and need preserving. Among the high-order modes, to identify valid signal components
mixed in with the noise, the adaptive multi-scale CGMF is used with corresponding calculated lengths
to perform mode purification. Finally, the reconstructed signal contains the original low-frequency
mode and treated high-frequency modes. A table for improved CGMF algorithm combined with VMD
(Algorithm 2) is introduced in detail. Figure 4 shows the actual flowchart of the algorithm for the
entire proposed method.

As the number of decomposed modes increase, the low-order modes may undergo waveform
distortion. The proposed method can restore the whole valid signal to a large degree.

Algorithm 2: improved CGMF algorithm combined with VMD.

VMD decomposition:
Input row data df
Select a decomposition mode value k
Generate decomposed k modes uk
SE construction:
Run Algorithm 1 to generate pixel pitch P
for i = 1, . . . , N do
assign amplitude variable NHOD (i), OSE (i) and NH (i)
end for
Construct TSE: b1=strel (‘arbitrary’, NHOD (i), OSE (i))
Construct SSE: b2=strel (‘arbitrary’, NHOD (i), NH (i))
SE length determination:Compute PSE and RMSE values of uk using Equations (17)–(19)
Assign index PSE→ Gaussian white noise ϕ→ SSE
Assign index RMSE→ impulse noise η→ TSE
Compute corresponding SE length N using Equations (21) and (22)
Operators combination:
Construct closing and opening operators using Equations (3) and (4)
Construct gradient filter Gco and gradient filter Goc using Equations (8) and (9)
Compute average weighted combination ψGoc(Gco) using Equation (10)
Estimate reconstruction signal Y=∑ uk

′
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3. Simulation Signal Analysis

3.1. Simulated Sinusoidal Signal

The original signal incorporates impulsive components and random Gaussian white noise
commonly corrupting the whole signal. To verify the noise reduction and demodulation capability of
the proposed method, a simulated signal contaminated by additive noise is generated for analysis,

f (t) = e3t · sin(3t) + η(t) + ϕ(t), (23)

where ϕ(t) is the random Gaussian noise of intensity 1, and η(t) denotes the impulsive noise. The data
length is 1000 for each sample. The sampling frequency is 1024 Hz.

In accordance with the compounded noise type, a combination SE (CSE) of triangle and semicircle
is constructed. The waveform of the contaminated signal and the sampling points Figure 5a appear as
a rough harmonic waveform. The original signal is completely immersed unable to be distinguished.
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3.2. Signal Decomposition of the VMD

Through multiple adjustments, the sinusoidal signal produces excellent spectral characteristics
from decomposition result by preestablishing the value k = 6. Various decomposition modes can
be extracted Figure 5b, among which mode 1 is the apparent valid signal whereas modes 2 to 6 are
high-frequency components identified as noise and need to be eliminated.

In general, valid signals have a distribution of high-frequency modes mixed in with the dominant
mode. The objective of the present procedure is to remove directly the higher modes and retain
the low-frequency mode as the main valid signal. However, this may lead to a loss of valid signal
components. The retained signal may pose a distortion problem in lacking the finer details of the
original signal. A final reconstruction can overcome this problem.

In determining SE lengths, RMSE values of the six modes are calculated to measure the degree of
ambiguity. From Table 1, which lists actual calculated values, the PSE value of mode 1 is far below
the other modes meaning a lower degree of ambiguity. From this indicator analysis, we obtain the
corresponding SE lengths using the proposed numerical formulae Equations (21) and (22). In Table 1,
a length of 1 from both TSE and SSE preserves mode 1 as having maximal degree in the CGMF
processing. Applying the formulae, the TSE and SSE lengths for modes 2 to 6 are around 18 and
17 ± 2, respectively.

Table 1. Numerical results for the different modes: RMSE and PSE values and calculated lengths
corresponding to each mode and SE.

Mode
Parameter Values Corresponding Scale

RMSE PSE TSE SSE

Mode1 1.13 0.45 1 1
Mode2 4.83 1.73 18 15
Mode3 4.82 1.69 18 14
Mode4 4.83 1.79 18 16
Mode5 4.82 1.84 17 17
Mode6 4.83 1.92 18 19

3.3. Application of the Multi-Scale CGMF

From the length formulae for each of the modes, the CGMF successively eliminates
the contaminated noise. After de-noising the five modes and retaining mode 1 (Figure 6),
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the high-frequency noise is successfully suppressed, demonstrating that the indicators are of very
practical use, and the remaining component is a valid component of the original signal.
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Finally, from the reconstruction of mode 1 and processed modes (Figure 7), we compared the
reconstructed signal with the valid signal and the noisy signal. We find the processed result attains
the expected noise elimination. Indeed, from the partial enlarged segment of the signal (Figure 7,
inset), the reconstructed signal has a high degree of overlap with the valid signal. Moreover, the whole
reconstructed signal suitably reflects the instantaneous peaks in the noisy signal.
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In Table 2, we added the corresponding noise of the different signal-to-noise power ratios (SNRs) to
verify the noise reduction capability. Except for the above-mentioned filters, several currently effective
de-noising methods are compared with our improved MF. Liu et al. [35] proposed the detrended
fluctuation analysis (DFA)-VMD algorithm: a denoising method that combines VMD and a detrended
fluctuation analysis (DFA). Cui et al. [31] developed the EMD-G-FLP algorithm: a hybrid filter.
Both methods are designed for noise suppression in non-stationary vibration signals. Kang et al. [36]
proposed an adaptive robust Kalman filter (ARKF)-based hybrid-correction grid strapdown inertial
navigation system (SINS)/doppler velocity log (DVL) integrated navigation algorithm to improve the
navigation accuracy. Thus, ARKF method is also applied for effect comparison.
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Table 2. Comparison of the adaptive multi-scale CGMF with other conventional filters denoising.

SNR (dB) −10 −8 −5 −2 0 2 5 8 10 12 15 18

TSE −2.20 2.84 6.78 5.03 7.94 12.19 13.76 14.93 18.45 20.13 23.89 25.14
SSE −1.64 3.14 4.99 5.94 8.03 10.21 14.35 15.16 17.31 21.70 24.13 25.64
CSE 2.12 4.21 5.26 8.03 11.17 9.03 22.01 22.79 22.01 25.84 26.71 30.81

DFA-VMD 4.01 5.23 7.06 12.36 14.56 17.23 18.92 23.22 27.90 30.14 30.89 36.23
EMD-G-FLP 3.49 6.78 8.21 11.99 14.12 16.48 23.04 24.76 28.34 29.45 31.97 35.14

ARKF 2.31 7.97 9.01 11.17 15.34 19.65 20.34 21.08 27.31 30.31 32.10 35.28
VMD-CGMF 7.46 10.99 13.91 16.34 19.77 23.13 27.94 31.53 33.95 37.23 38.51 42.83

In comparing SSE, TSE, CSE, DFA-VMD, EMD-G-FLP, ARKF and CGMF-VMD methods, the SNRs
of the denoising signal from CGMF-VMD are distinctively higher. The bars magnitude Figure 8a
are larger than other methods. In order to facilitate comparison, different algorithms’ superiority
analysis is based on CSE filter method. The incremental percentages Figure 8b of CGMF-VMD are
superior to DFA-VMD and EMD-G-FLP to a large extend. Especially in heavy noise suppression
with low SNRs, the proposed algorithm obtains better denoising performance than the other two.
In global analysis, we comprehensively conclude that the CGMF-VMD method improved 57.31% in
denoising, whereas DFA-VMD, EMD-G-FLP and ARKF improved 18.01%, 21.13% and 22.04% than
CSE method respectively. Consequently, the parameter variations of the proposed indices enable an
effective accuracy in extraction and efficacy in noise reduction. Digital simulations also demonstrate
the SE length equation is feasible and the superior de-noising of the proposed method.
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3.4. Computation Complexity of CGMF-Based on VMD Denoising Algorithm

To provide a comprehensive assessment of CGMF based on VMD algorithm, the algorithm is
subjected to an analysis of computation time and space complexity. To simplify the analysis, we
assume the time spent for all operators is the same and the computation complexity concerns only
performance and running hardware. In regard to the complexity calculation, the operators involved
all require estimating. Hence, we set up addition (ADD), subtraction (SUB), multiplication (MUL),
definition (DEF), comparison (CMP) and division (DIV) [37].

We introduce S for the length of the input signal, i.e., the data scale, and N the maximum of
loops and iterations. In the CGMF algorithm, the latter relates specifically to the open-close and
close-open operator definitions of the actual SE construction. From the detailed computation, the time
and space complexity corresponding to every procedure are listed in Table 3. The CGMF’s time and
space complexity are both of linear order O (N).

Liu et al. [35] analyzed the VMD algorithm. Based on their work, the time and space complexity
of the VMD algorithm is also shown in Table 4. The simulated signal is decomposed into k modes
and the variate N in Table 4 denotes the maximum number of iterations. In our VMD algorithm,
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the initialization parameters are preset as follows: alpha = 2000, tau = 0, tol = 1×10−7, and N = 1000.
From Table 4, the time and space complexity of VMD are of logarithmic order O (2Nlog2N

2 ) and linear
order O (N), respectively.

Table 3. Evaluating time and space complexity for adaptive multi-scale CGMF.

Function T M

Initialize 5DEF·S [4 + S] float
B1 SE Construction (4DEF + 1CMP)·S·N + 1DEF [5N] float
B2 SE Construction (3DEF + 1ADD + 3SUB + 1DIV + 2DEF)·S·N [12N + 6]·S float

Operator Run (4DEF + 4ADD + 4DIV + 4CMP)·S [4N·S] float
CGMF Basic Arithmetic Unit (1ADD + 1DIV)·S [2S] float

Complexity O (N) O (N)

Table 4. Evaluating time and space complexity for the VMD algorithm.

Function T M

Initialize O ( 2Nlog2N
2 ) [(3 + K·N + N)·2S + K·N] float

Update uk (6ADD + 2MUL + 2DIV)·K·N·2S [2S] float
Update wk (2CMP + 3MUL + 2ADD)·K·N·S 0

Dual Ascent (4ADD + 1MUL)·N·2S 0
Convergence (4ADD + 2MUL)·N·2S 0
Complexity O (2Nlog2N

2 ) O (N)

The time and space complexities for the CGMF based on the VMD algorithm are listed in Table 5.
CGMF-VMD’s time complexity is of O

(
2Nlog2N

2
)

and the space complexity is of linear order O (N).
According to the order of magnitude relation O

(
N3) > O

(
N2) > O

(
2Nlog2N

2
)
> O (N) >

O
(
log2N

2
)
> O (1), the results of the analysis demonstrate an improved MF based on the VMD

method is a valid algorithm solvable in polynomial time. To compare the execution time of this
algorithm with other algorithms, a simulation with signals of lengths ranging from 28 to 216 with SNR
= 8 dB was performed on a personal computer (Intel® Core™ 5@2.80 GHz and 8.00 GB RAM memory)
running Windows 10.

Table 5. Time and space complexity for the improved MF based on the VMD algorithm.

Function T M

CGMF O (N) [(16N + 9)·S + 5N + 4] float
VMD O ( 2Nlog2N

2 ) [(4 + K·N + N)·2S + K·N] float
CGMF based on VMD O ( 2Nlog2N

2 ) + (K + 1)·O (N) + k′·1ADD·S [(4 + K·N + N) ·2S + K·N] + (K + 1)·[(16N + 9)·S + 5N + 4] + S float
Complexity O (2Nlog2N

2 ) O (N)

In comparing EMD-G-FLP, DFA-VMD and ARKF algorithms, the same experimental conditions
were applied in the tests. In the analysis of Yang et al., the time complexity for the EMD is 2Nlog22N .
The EMD-G-FLP and DFA-VMD algorithms’ time complexity are O (2Nlog22N), which are the same
as CGMF-VMD. The ARKF algorithm has the largest magnitude of O

(
N3). The actual execution

times are listed in Table 6. The ARKF execution time is maximum. The CSE complexity is least of
O (N), execution times are the smallest, and CGMF-VMD is the second smallest through the factor
influence of VMD. The execution times indicate that CGMF-VMD is still less than other two current
methods, EMD-G-FLP and DFA-VMD. It can be explained that the influences of algorithm factors are
different. The actual CGMF-VMD algorithm is with a smaller factor than G-FLP and DFA. From the
previous analysis, CGMF-VMD execution times are slightly 9.87% more than CSE in Table 6, but 57.31%
improvement in noise suppression effect. In addition, CGMF-VMD is 36% faster than ARKF, 14% faster
than EMD-G-FLP and 6.0% faster than DFA-VMD. Thus, the proposed algorithm has a simple and
rational construction as a whole.
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Table 6. Execution times for a simulated signal applying different noise suppression methods.

n EMD-G-FLP DFA-VMD CSE ARKF CGMF-VMD

28 0.1918 0.1934 0.1783 0.2098 0.1813
29 0.3784 0.3516 0.2716 0.6832 0.3125
210 0.6347 0.5927 0.4917 0.9246 0.5482
211 1.9672 1.3638 1.2588 2.2351 1.3094
212 1.8981 1.4824 1.2763 2.8735 1.3803
213 3.4597 3.1249 2.8081 8.8931 3.0341
214 7.0560 6.8691 6.2113 14.3721 6.4283
215 28.4978 25.2678 20.2587 31.8724 22.4589
216 47.3541 46.1564 39.5411 63.1963 44.5622

4. Experimental Results and Analysis

4.1. Rotation Experimental Data Acquisition

The dual-mass decoupled gyroscope in the article is ceramic vacuum packaged. An AGC loop will
stabilize the drive mode vibrating amplitude based on self-oscillation theory. In addition, the method
ensures the drive mode works at its own resonant frequency. Gyroscope mechanical sensitivity
achieves the maximum values with the same Ax. The sense loop utilizes open-loop method and phase
sensitive demodulation technology, and a schematic of the gyroscope structure and peripheral circuits
is shown in Figure 9 [38].Micromachines 2018, 9, x FOR PEER REVIEW  15 of 21 
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Figure 9. Schematic of the dual-mass decoupled MEMS gyroscope structure and periphery circuit.

In single mass MEMS gyroscope structures, sense axial accelerations often cause the invalidation
of the sense signal. Nevertheless, A dual-mass structure method can suppress this phenomenon.
To verify the effectiveness of our CGMF-VMD method, output signals collected from a dual-mass
MEMS gyroscope is used in this experiment. The gyroscope was placed in a temperature-controlled
oven (Figure 10). A digital multimeter (Agilent 34401A, Agilent technologies, Inc., Santa Clara, CA,
USA) collected the output data from the gyroscope. Over an hour, one thousand sample points were
recorded. A DC power supply (Agilent E3631A, Agilent Technologies, Santa Clara, CA, USA) provided



Micromachines 2018, 9, 246 15 of 20

an adjustable input power to a rotary table to preset rotation rates from −1◦/s to +1◦/s in incremental
steps of 0.2◦/s, each rotation rate corresponding to a sampling time of 200 s. The experimental signal
obtained from the gyroscope (Figure 11) is mixed with heavy disturbances of impulse noises and
Gaussian white noise. To eliminate the noise disturbance and generate stable characteristics of the
gyroscope, noise suppression is necessary.
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4.2. De-Noising Results and Comparisons

Based on the experimental noise characteristics, both TSE and SSE remain parallel-functional SEs.
In the actual experimental noise reduction procedure, conventional filters using CSE MF, single TSE
MF, and single SSE MF were applied for noise suppression test. After calculating related values
evaluating the effect of noise reduction. We find the CSE MF method surely produces higher accuracy
and effectivity than the conventional single filters. For CSE, both impulse noise and Gaussian white
noise are simultaneously eliminated. However, the single filters SSE and TSE are only inclined to
suppress noise of a single mode. The processed curve of SSE contains remains of an impulsive noise
whereas for TSE Gaussian white noise has not been reduced significantly.

Applying the VMD method to the experimental signal and setting k = 6, the signals of six
modes were extracted (Figure 12). We find mode 1 is primary in the gyroscope interference signal.
Nevertheless, the preserved mode 1 poses a slight distortion and is displaced from the actual signal.
Hence, applying de-noising to the other modes for reconstruction is essential. The experiment
proceeded using the adaptive multi-scale CGMF combined with the VMD method to abate the problem
and preserve a maximal valid signal.
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Before determining the SE lengths, the PSE and RMSE values were calculated for all modes
(Table 7). From the statistical multiple relationship between adjacent modes, TSE and SSE lengths were
obtained using the length formulae, Equations (21) and (22). As dependent variables, the PSE parameter
is highly relevant to the instantaneous state of SSE, and similarly RMSE to TSE. Finally, the scales of
both SEs for each of the six modes are calculated (Table 7). To give further support to preserving mode
1, both length values of mode 1 return the best performances in the filtering. In comparison, the TSE
and SSE length values for the other modes are around 33 ± 2 and 6 ± 1, respectively.

Table 7. Experimental calculated data for each decomposed mode: values from indicators RMSE and
PSE, and calculated lengths of TSE and SSE.

Mode
Parameter Values Corresponding Scale

RMSE PSE TSE SSE

Mode 1 0.12 0.92 1 1
Mode 2 0.67 2.00 31 5
Mode 3 0.66 2.20 30 6
Mode 4 0.69 2.17 33 6
Mode 5 0.70 2.30 34 7
Mode 6 0.71 2.24 35 7

With these calculated SE lengths, noise suppression results for modes 2 to 6 using the adaptive
multi-scale CGMF (Figure 13) show the high-frequency noise are eliminated. The valid low-frequency
signal includes modes 2 and 3 and is accurately extracted, the waveform being relatively smooth.
Finally, the reconstructed signal from the gyroscope with the six modes (Figure 14) enables a detailed
comparison of the effect of noise suppression for the different types of filters.

Under evaluation values analysis In Table 8, we find the CSE, single TSE, and single SSE
(Figure 14) method had poor performance. Specifically, the denoised waveforms obtained from
the DFA-VMD, EMD-G-FLP and ARKF methods (Figure 14) are compared with the reconstructed
signal from CGMF-VMD method. In Table 8, the RMSE, PSE, and standard deviation (STD) values
of the three current algorithms and our method are listed. From the noise reduction waveforms and
the indicator analysis, the result proves that the improved MF combined with the VMD algorithm is
more effective. The reconstructed result is compared with the original experimental signal. Clear noise
suppression is evident proving that the length formulae Equations (21) and (22) are viable. Compared
with all other waveforms, the reconstructed waveform of the gyroscope signal is smooth and the heavy
noise is eliminated. Moreover, there is less interference. Hence, the improved CGMF-VMD method
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in gyroscope de-noising yields a better valid signal than conventional filter methods and preserves
mode content. The de-noising result of ARKF has a fine de-noising performance but is not as smooth
as CGMF-VMD method, that is because the ARKF is de-noising the signal in time-domain directly,
while the proposed method denoise different BLIMFs independently which makes the de-noising
process more specific.
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Table 8. Results from an experimental evaluation comparing indicator values of RMSE, PSE and STD
of the original signal with those from different noise reduction methods.

Nosie Reduction Methods RMSE PSE STD

Original Signal 0.0931 0.959 0.865
CSE 0.0590 0.633 0.614

Single SSE 0.0709 0.737 0.785
Single TSE 0.0757 0.694 0.681
DFA-VMD 0.0430 0.431 0.439

EMD-G-FLP 0.0413 0.393 0.456
ARKF 0.0274 0.348 0.267

Experimental Reconstruction Signal 0.0208 0.192 0.201

To provide quantitative comparison about angle random walk (ARW) and bias instability values,
Allan variance analysis can reflect the de-noising results of different methods. Q (quantification
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noise), N (ARW), B (bias instability), K (rate random walk) and R (angular rate ramp) are five random
noise coefficients respectively in Allan variance analysis for a dull-mass MEMS gyroscope. From the
coefficients values analysis in Table 9, the proposed algorithm has a better performance in ARW and
bias instability, which shows better advantage in gyroscope de-noising.

Table 9. Allan variance analysis results before and after de-noising of MEMS gyroscope.

Noise Reduction Methods Q (µ rad) N (◦/h1/2) B (◦/h) K (◦/h3/2) R (◦/h2)

Original Signal 5.764 0.408 11.329 6.76 4.64
CSE 3.766 0.304 10.330 6.36 4.62

Single SSE 4.239 0.388 11.021 6.28 4.63
Single TSE 2.654 0.291 10.829 6.37 4.61
DFA-VMD 2.071 0.279 9.331 6.58 4.61

EMD-G-FLP 1.768 0.263 9.535 6.29 4.62
ARKF 1.973 0.227 9.336 6.28 4.63

Experimental Reconstruction Signal 1.672 0.203 9.017 6.27 4.61

4.3. Results Analysis and Consideration

After applying the adaptive multi-scale CGMF-VMD method, the final gyroscope reconstructed
waveform yields a satisfactory de-noising. The indicator values for RMSE, PSE and STD (Table 8) show
that this method eliminates the various types of noise more thoroughly than other conventional
filters. The Allan variance results (Table 9) also demonstrate the superiority of this method in
gyroscope application.

Nevertheless, there are some significant issues to consider regarding the analysis of actual
experiment results. High-intensity mixed noise is significantly different. Choosing an appropriate
SE combination, each of which suppresses specific noise types, is a skilled procedure. The critical
step is to properly pick a real-time indicator in assessing inhibiting effects of SE. As for length
selection, the author proposes preferred formulae for PSE and RMSE, which experimental results have
demonstrated are practical over numerous platform data analysis.

In the VMD, the selection of the value for k is a priori knowledge to be determined. For achieving
more thorough stratified noise suppression, the decomposed modes should possess manageable
features for de-noising processing. In resolving the SE combination, indicator selection, and length
determining problem, the proposed method appears highly practical and reliable.

5. Conclusions

An innovative approach is proposed for noise elimination in gyroscope signals. The proposed
adaptive multi-scale CGMF based on the VMD method is distinctly better than previous de-noising
approaches. CGMF is applied to the gyroscope’s output signal for noise reduction. The VMD is called
within the CGMF to improve its performance.

For determining SE length, PSE and RMSE are indicators that reliably assess TSE and SSE
performance, respectively. Also, extensive experiments were conducted to prove the feasibility of the
proposed selection formulae based on the indicators. With the analyses of different types of noise to be
reduced, a gyroscope experiment provided evidence for the effectiveness of the proposed algorithm in
an application to an output signal with both heavy impulsive noise and random white noise.

In the comparison to current algorithms, the actual time complexity of proposed method is 6–14%
less, and the denoising effect can improve about 35% more. Thus, we can conclude that our proposed
method is feasible and superior in noise suppression filed.
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