Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides
Abstract
:1. Introduction
2. Device Design and Simulation
3. Experiments
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.R.; Tang, W.; Wang, Z.L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Ju, J.J.; Park, S.; Kim, M.S.; Park, S.K.; Lee, M.H. Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt. Express 2008, 16, 13133–13138. [Google Scholar] [CrossRef] [PubMed]
- Prajzler, V.; Neruda, M.; Nekvindova, P. Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides. J. Mater. Sci. Mater. Electron. 2018, 29, 5878–5884. [Google Scholar] [CrossRef]
- Tsuchizawa, T.; Yamada, K.; Watanabe, T.; Park, S.; Nishi, H.; Kou, R.; Shinojima, H.; Itabashi, S.-I. Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 516–525. [Google Scholar] [CrossRef]
- Dong, P. Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 370–378. [Google Scholar] [CrossRef]
- Capmany, J.; Mora, J.; Ortega, B.; Pastor, D. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients. Opt. Express 2005, 13, 1412–1417. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, J.; Yu, Y.; Zhang, X. A tunable microwave photonic filter based on an all-optical differentiator. IEEE Photonics Technol. Lett. 2011, 23, 308–310. [Google Scholar] [CrossRef]
- Marpaung, D.; Roeloffzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave photonics. Laser Photonics Rev. 2013, 7, 506–538. [Google Scholar] [CrossRef]
- Wu, J.Y.; Xu, X.Y.; Nguyen, T.G.; Chu, S.T.; Little, B.E.; Morandotti, R.; Mitchell, A.; Moss, D.J. Rf photonics: An optical microcombs’ perspective. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–20. [Google Scholar] [CrossRef]
- Wang, L.F.; Song, Q.Q.; Wu, J.Y.; Chen, K.X. Low-power variable optical attenuator based on a hybrid sion-polymer s-bend waveguide. Appl. Opt. 2016, 55, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Maese-Novo, A.; Zhang, Z.Y.; Irmscher, G.; Polatynski, A.; Mueller, T.; de Felipe, D.; Kleinert, M.; Brinker, W.; Zawadzki, C.; Keil, N. Thermally optimized variable optical attenuators on a polymer platform. Appl. Opt. 2015, 54, 569–575. [Google Scholar] [CrossRef]
- Chen, S.T.; Shi, Y.C.; He, S.L.; Dai, D.X. Variable optical attenuator based on a reflective mach-zehnder interferometer. Opt. Commun. 2016, 361, 55–58. [Google Scholar] [CrossRef]
- Mohsin, M.; Schall, D.; Otto, M.; Chmielak, B.; Porschatis, C.; Bolten, J.; Neumaier, D. Graphene based on-chip variable optical attenuator operating at 855 nm wavelength. Opt. Express 2017, 25, 31660–31669. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Y.; Sun, X.Q.; Ji, L.T.; He, G.B.; Wang, X.B.; Yi, Y.J.; Chen, C.M.; Wang, F.; Zhang, D.M. The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide. Chin. Phys. B 2016, 25, 054101. [Google Scholar] [CrossRef]
- Sun, X.; Xie, Y.; Liu, T.; Chen, C.; Wang, F.; Zhang, D. Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler. J. Nanomater. 2014, 2014, 1. [Google Scholar] [CrossRef]
- Gu, Y.L.; Chen, C.M.; Zheng, Y.; Shi, Z.S.; Wang, X.B.; Yi, Y.J.; Jiang, T.C.; Sun, X.Q.; Wang, F.; Cui, Z.C.; et al. Heat-induced multimode interference variable optical attenuator based on novel organic-inorganic hybrid materials. J. Opt. 2015, 17, 085802. [Google Scholar] [CrossRef]
- Oh, M.-C.; Chu, W.-S.; Shin, J.-S.; Kim, J.-W.; Kim, K.-J.; Seo, J.-K.; Lee, H.-K.; Noh, Y.-O.; Lee, H.-J. Polymeric optical waveguide devices exploiting special properties of polymer materials. Opt. Commun. 2016, 362, 3–12. [Google Scholar] [CrossRef]
- Noh, Y.O.; Lee, C.H.; Kim, J.M.; Hwang, W.Y.; Won, Y.H.; Lee, H.J.; Han, S.G.; Oh, M.C. Polymer waveguide variable optical attenuator and its reliability. Opt. Commun. 2004, 242, 533–540. [Google Scholar] [CrossRef]
- Sorger, V.J.; Oulton, R.F.; Ma, R.M.; Zhang, X. Toward integrated plasmonic circuits. MRS Bull. 2012, 37, 728–738. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, M. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light Sci. Appl. 2015, 4, e294. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Hu, A.; Wen, J.Z.; Zhang, T.; Xue, X.J.; Zhou, Y.; Duley, W.W. Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides. Opt. Express 2010, 18, 18945–18959. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photonics 2009, 1, 484–588. [Google Scholar] [CrossRef]
- Dabos, G.; Manolis, A.; Papaioannou, S.; Tsiokos, D.; Markey, L.; Weeber, J.C.; Dereux, A.; Giesecke, A.L.; Porschatis, C.; Chmielak, B.; et al. Cmos plasmonics in wdm data transmission: 200 Gb/s (8 × 25 Gb/s) transmission over aluminum plasmonic waveguides. Opt. Express 2018, 26, 12469–12478. [Google Scholar] [CrossRef] [PubMed]
- Dabos, G.; Ketzaki, D.; Manolis, A.; Markey, L.; Weeber, J.C.; Dereux, A.; Giesecke, A.L.; Porschatis, C.; Chmielak, B.; Tsiokos, D.; et al. Plasmonic stripes in aqueous environment co-integrated with si3n4 photonics. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Gagnon, G.; Lahoud, N.; Mattiussi, G.A.; Berini, P. Thermally activated variable attenuation of long-range surface plasmon-polariton waves. J. Lightwave Technol. 2006, 24, 4391–4402. [Google Scholar] [CrossRef]
- Lee, J.; Lu, F.; Belkin, M.A. Broadly wavelength tunable bandpass filters based on long-range surface plasmon polaritons. Opt. Lett. 2011, 36, 3744–3746. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, S.; Kalavrouziotis, D.; Vyrsokinos, K.; Weeber, J.-C.; Hassan, K.; Markey, L.; Dereux, A.; Kumar, A.; Bozhevolnyi, S.I.; Baus, M.; et al. Active plasmonics in wdm traffic switching applications. Sci. Rep. 2012, 2, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.T.; Chung, K.H.; Choi, C.-G. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide. Opt. Express 2013, 21, 15280–15286. [Google Scholar] [CrossRef] [PubMed]
- Haffner, C.; Heni, W.; Fedoryshyn, Y.; Niegemann, J.; Melikyan, A.; Elder, D.L.; Baeuerle, B.; Salamin, Y.; Josten, A.; Koch, U.; et al. All-plasmonic mach-zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 2015, 9, 525–529. [Google Scholar] [CrossRef]
- Fan, H.; Berini, P. Thermo-optic characterization of long-range surface-plasmon devices in cytop. Appl. Opt. 2013, 52, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Zografopoulos, D.C.; Beccherelli, R. Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides. Plasmonics 2013, 8, 599–604. [Google Scholar] [CrossRef]
- Leosson, K.; Rosenzveig, T.; Hermannsson, P.G.; Boltasseva, A. Compact plasmonic variable optical attenuator. Opt. Express 2008, 16, 15546–15552. [Google Scholar] [CrossRef] [PubMed]
- Nikolajsen, T.; Leosson, K.; Bozhevolnyi, S.I. In-line extinction modulator based on long-range surface plasmon polaritons. Opt. Commun. 2005, 244, 455–459. [Google Scholar] [CrossRef]
- Vernoux, C.; Chen, Y.T.; Markey, L.; Sparchez, C.; Arocas, J.; Felder, T.; Neitz, M.; Brusberg, L.; Weeber, J.C.; Bozhevolnyi, S.I.; et al. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects. Opt. Mater. Express 2018, 8, 469–484. [Google Scholar] [CrossRef]
- Nikolajsen, T.; Leosson, K.; Salakhutdinov, I.; Bozhevolnyi, S.I. Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths. Appl. Phys. Lett. 2003, 82, 668–670. [Google Scholar] [CrossRef]
- Wu, X.P.; Liu, W.; Yuan, Z.L.; Liang, X.R.; Chen, H.; Xu, X.H.; Tang, F.F. Low power consumption voa array with air trenches and curved waveguide. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Sun, S.Q.; Niu, D.H.; Sun, Y.; Wang, X.B.; Yang, M.; Yi, Y.J.; Sun, X.Q.; Wang, F.; Zhang, D.M. Design and fabrication of all-polymer thermo-optic variable optical attenuator with low power consumption. Appl. Phys. Mater. Sci. Process. 2017, 123, 646. [Google Scholar] [CrossRef]
- Ren, M.Z.; Zhang, J.S.; An, J.M.; Wang, Y.; Wang, L.L.; Li, J.G.; Wu, Y.D.; Yin, X.J.; Hu, X.W. Low power consumption 4-channel variable optical attenuator array based on planar lightwave circuit technique. Chin. Phys. B 2017, 26, 074221. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Liu, Y.-R.; Zhang, L.-J.; Fu, X.-C.; Xue, X.-M.; Qian, G.; Zhao, N.; Zhang, T. Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides. Micromachines 2018, 9, 369. https://doi.org/10.3390/mi9080369
Tang J, Liu Y-R, Zhang L-J, Fu X-C, Xue X-M, Qian G, Zhao N, Zhang T. Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides. Micromachines. 2018; 9(8):369. https://doi.org/10.3390/mi9080369
Chicago/Turabian StyleTang, Jie, Yi-Ran Liu, Li-Jiang Zhang, Xing-Chang Fu, Xiao-Mei Xue, Guang Qian, Ning Zhao, and Tong Zhang. 2018. "Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides" Micromachines 9, no. 8: 369. https://doi.org/10.3390/mi9080369
APA StyleTang, J., Liu, Y. -R., Zhang, L. -J., Fu, X. -C., Xue, X. -M., Qian, G., Zhao, N., & Zhang, T. (2018). Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides. Micromachines, 9(8), 369. https://doi.org/10.3390/mi9080369