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Abstract: Over the last decades, primary prostate cancer radiotherapy saw improving developments,
such as more conformal dose administration and hypofractionated treatment regimens. Still, prostate
cancer recurrences after whole-gland radiotherapy remain common, especially in patients with
intermediate- to high-risk disease. The vast majority of these patients are treated palliatively
with androgen deprivation therapy (ADT), which exposes them to harmful side-effects and is
only effective for a limited amount of time. For patients with a localized recurrent tumor and
no signs of metastatic disease, local treatment with curative intent seems more rational. However,
whole-gland salvage treatments such as salvage radiotherapy or salvage prostatectomy are associated
with significant toxicity and are, therefore, uncommonly performed. Treatments that are solely aimed
at the recurrent tumor itself, thereby better sparing the surrounding organs at risk, potentially
provide a safer salvage treatment option in terms of toxicity. To achieve such tumor-targeted
treatment, imaging developments have made it possible to better exclude metastatic disease and
accurately discriminate the tumor. Currently, focal salvage treatment is being performed with different
modalities, including brachytherapy, cryotherapy, high-intensity focused ultrasound (HIFU), and
stereotactic body radiation therapy (SBRT). Oncologic outcomes seem comparable to whole-gland
salvage series, but with much lower toxicity rates. In terms of oncologic control, these results
will improve further with better understanding of patient selection. Other developments, such as
high-field diagnostic MRI and live adaptive MRI-guided radiotherapy, will further improve precision
of the treatment.
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1. Introduction

Prostate cancer is the most diagnosed male cancer in developed countries. Frequently diagnosed
at an early stage, with opportunistic prostate-specific antigen (PSA) screening increasing the incidence,
the search for optimal and patient-tailored treatment is of growing significance. In the setting of
localized recurrent prostate cancer after primary whole-gland radiotherapy, the standard of care now
consists of palliative androgen deprivation therapy (ADT). This only has a temporary suppressive
effect and is associated with harmful side-effects. On the other hand, treatments with curative intent
such as salvage prostatectomy or whole-gland radiotherapy also convey serious toxicity risks and
should only be offered to highly selected patients [1]. This leaves a gap in the treatment arsenal for
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radiorecurrent prostate cancer. Here, focal ablative treatment might meet the need; with lower toxicity
risks, it could postpone palliative hormonal treatment or perhaps even avoid it altogether. Within this
narrative review, an overview is provided of the developments in primary prostate cancer care, current
strategies on how to deal with localized prostate cancer recurrences, and future perspectives with
respect to focal salvage treatment.

2. Whole-Gland Primary Radiotherapy

For whole-gland treatment of intermediate- to high-risk prostate cancer in the primary setting,
radiotherapy has evolved as a suitable modality. It is comparable to prostatectomy in terms of
cancer control, while both are associated with their respective side-effects [2]. Several developments
over the last decades increased the use of radiotherapy for the primary treatment of prostate cancer.
Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are
increasingly adopted as external beam radiation therapy (EBRT) techniques, using fiducial gold
markers for position verification. Both are able to substantially reduce the dose to surrounding
organs at risk (in particular rectum and bladder) due to a more conformal dose distribution [3,4].
Although radiation therapy traditionally entailed a lengthy treatment with smaller daily fractions over
6–7 weeks, hypofractionation seems to provide comparable tumor control, against acceptable toxicity
profiles [5–9]. The rationale behind using higher doses in fewer fractions comes from data describing a
lower α/β-ratio of prostate cancer than previously thought. Despite ambiguous recommendations
from different large trials, hypofractionated radiotherapy is increasingly adopted in guidelines
worldwide [10].

While external beam techniques are generally delivered fractionated, internal radiation
using brachytherapy is increasingly performed in a single procedure. Originally, low-dose-rate
brachytherapy (using iodine-125 seeds) was mainly used for low- to intermediate-risk patients.
Currently, there is an increase in the treatment of higher-risk disease with high-dose-rate brachytherapy,
providing comparable cancer control rates to other primary treatments [11–13]. As compared to
iodine-125 seeds, high-dose-rate brachytherapy offers the advantage of higher dose control via the
approach of adjusting source dwell times and positions. The steep dose decline of brachytherapy
makes it possible to further escalate the dose to the tumor, without compromising the dose constraints
for the organs at risk [13]. This feature can also be used to deliver a concurrent tumor boost next to
whole-gland EBRT techniques, thereby further increasing the therapeutic efficacy for intermediate- to
high-risk disease [14].

3. Recurrence Risk and Location

Although dose escalation is increasingly adopted, recurrent prostate cancer after primary
radiotherapy remains common. A recent series of 2694 patients treated with doses above 78 Gy revealed
10-year biochemical recurrence risks of approximately 10%, 23%, and 44% in low-, intermediate-, and
high-risk patients, respectively [15]. Biochemical recurrences according to the Phoenix definition
(i.e., PSA nadir + 2.0 ng/mL) preceded the development of distant metastases and death due to
prostate cancer by 5.4 years and 10.5 years, respectively. In patients with a reasonable life expectancy,
management of these recurrences is, therefore, often necessary to prevent cancer-related complications
and mortality.

Primary prostate cancer is often a multifocal process [16,17], with a hypothesized “index lesion”
driving metastatic potential [18,19]. Within this hypothesis, it is thought that synchronous lesions
outside the index lesion are secondary insignificant cancers which lie dormant [20]. After primary
whole-gland radiotherapy, several series showed that recurrences nearly all (89–100%) regrow at
the site of the primarily largest and/or highest-grade index lesion [21–25]. This indicates that the
malignant remnant causes biochemical failure, while secondary indolent tumor foci are successfully
treated by the primary radiation course. Building on this, the rationale behind focal treatment in
the localized radiorecurrent setting becomes clear. Although the index lesion hypothesis remains
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controversial due to a lack of robust evidence, long-term oncological efficacy data of focal salvage
treatments in the future might help to either support or undermine this view.

4. Traditional Approach to Radiorecurrent Prostate Cancer

The treatment of prostate-confined recurrences after primary radiotherapy is called salvage and
will be denoted as such in the subsequent part of this review. Within the literature, there are reasonably
large series available describing the results of salvage treatments directed at the entire prostatic volume.
These series include salvage radical prostatectomy (SRP) [26], whole-gland salvage cryotherapy [27,28],
whole-gland salvage high-intensity focused ultrasound (HIFU) [29,30], and, in increasingly larger
series, whole-gland salvage brachytherapy [31–33]. These studies show an approximate five-year
biochemical failure-free survival (bFFS) of 50–60%, thereby postponing the use of palliative ADT with
its associated toxicity [34]. However, due to previous radiation damage to organs at risk, toxicity of
secondary surgery or radiation can be deleterious. Severe genitourinary (GU) and gastrointestinal (GI)
toxicity, requiring operative intervention to resolve, are observed in about 30% of patients, with erectile
dysfunction (ED) often presents in 100% of cases post-salvage [35]. For this reason, whole-gland
techniques remain unpopular amongst treating physicians, with only 2% of patients receiving any
form of salvage curative treatment. The other 98% receive ADT, either immediately or deferred [36].
These patterns are also observed in large national databases, such as the Cancer of the Prostate Strategic
Urological Research Endeavor (CaPSURE) database from the United States (US) [37].

5. Focal Treatment of Radiorecurrent Prostate Cancer

With recurrences often being localized and unifocal (mainly at the “index lesion” site), a salvage
treatment directed solely at the recurrent tumor lesion seems rational. Especially considering the
narrow therapeutic ratio (treatment efficacy versus treatment-related toxicity) in the recurrent setting,
focal treatment provides a promising alternative: a second chance at achieving local control, with
minimal burden to the patient in terms of side-effects.

5.1. Diagnostic Assessment

5.1.1. Excluding Metastatic Disease

The success of focal salvage treatment starts with adequate exclusion of metastatic disease.
More dated series of whole-gland salvage treatments often show substantial failure rates due to
inadequate pre-treatment diagnosis of metastases. For example, technetium-99m bone scintigraphy
was often used to exclude bone metastases, which only achieves acceptable diagnostic accuracy in
patients with higher-risk disease characteristics (PSA >20, Gleason ≥8) [38]. Furthermore, studies
regarding computed tomography (CT) and/or magnetic resonance imaging (MRI) for nodal disease
staging demonstrated poor diagnostic accuracy [39], since lymph node diameter and morphology
are inadequate predictors for nodal invasion. Positron-emission computed tomography (PET/CT),
however, is recommended as the standard diagnostic modality to assess metastatic disease in the
recurrent setting. It offers the advantage of concurrently evaluating bony and nodal metastatic disease.
Different PET tracers are used, with choline and fluoride as the most abundant originally [40–42].
Negative predictive values of up to 100% were reported, although the range observed in the reported
literature is substantial. Thus far, the most promising PET technique seems to be 68Ga prostate-specific
membrane antigen (PSMA)-PET/CT, with a radiotracer binding more specifically to a cellular protein
overexpressed on 95% of prostate cancer cell membranes. High diagnostic accuracy is attained
for both intra-prostatic lesions, as well as lymph node and bone metastases, even at low PSA
values (<2 ng/mL) [43,44]. Available since 2013 [45], PSMA-PET/CT quickly became a routine
form of targeted molecular imaging in countries across Asia, Australia, and Europe [46]. Currently,
diffusion-weighted whole-body MRI is also being investigated for assessment of bone metastases in
the recurrent setting, although PET/CT seems superior [47,48].
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5.1.2. Assessing and Targeting Intra-Prostatic Disease

After exclusion of metastatic disease, assessment of intra-prostatic disease is necessary to
adequately target the recurrent lesion. In the past, salvage treatments had to be aimed at the
whole prostate gland since localization of the recurrent nodule was inadequate. Currently, this is
possible with the use of multi-parametric MRI (mp-MRI), offering both morphological and functional
information with T2-weighted, dynamic contrast-enhanced (DCE), and diffusion-weighted imaging
(DWI). In the primary setting, the diagnostic accuracy of mp-MRI for the detection of clinically
significant intra-prostatic disease seems adequate with a sensitivity of 93% [49,50]. Although smaller
(secondary) tumor foci are still occasionally missed (even when harboring higher-grade cancers),
mp-MRI is often able to detect the larger index tumor [51]. Because of the relatively high contrast
of fibrotic prostatic tissue with viable tumor tissue in a previously irradiated prostate, DCE- and
DWI-MRI are especially capable of adequately detecting radiorecurrent lesions [52–54].

However, in the setting of treatment failure evaluation, the interpretation of mp-MRI is often
complicated by treatment-related anatomic and functional changes. Radiologists should be familiar
with the findings that are associated with the type of treatment the patient previously received.
For instance, T2 hypo-intense intraprostatic lesions can be difficult to distinguish within a diffusely
hypo-intense prostate caused by previous irradiation. Although there are no established guidelines
for characterizing possible local tumor relapses on mp-MRI, there is an increasing amount of
literature discussing the differences between normal post-treatment patterns and suspicious recurrence
findings [55–59].

The combination of 68Ga-PSMA-PET/CT with mp-MRI could provide an even higher accuracy
in detecting and delineating intra-prostatic disease [60] (see Figure 1 for example). A retrospective
analysis on the diagnostic value of 68Ga-PSMA-PET/CT in the recurrent setting revealed a negative
predictive value (NPV) and positive predictive value (PPV) of 91.4% and 100%, detecting recurrent
prostate cancer in a high number of patients [61]. In line with these promising results, the impact of
using 68Ga-PSMA-PET/CT in patients with recurrent prostate cancer is large, altering the therapeutic
management in approximately half of all patients. Specifically, the use of dose escalation to boost
the target volume and the proportion of focal salvage treatments seems to increase, while systemic
treatment decreases [62].
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Figure 1. Recurrent prostate cancer lesion on diagnostic 3-T multiparametric magnetic resonance
imaging (mp-MRI) (a–c) and prostate-specific membrane antigen positron-emission computed
tomography (PSMA-PET/CT) (d). The suspect lesion is visible in the right peripheral zone of the
apex. Delineations of the prostate (green), gross tumor volume (GTV, red), and clinical target volume
(CTV, blue) are displayed. (a) T2-weighted MRI; (b) apparent diffusion coefficient (ADC) map of
diffusion-weighted imaging (DWI)-MRI; (c) K-trans map of dynamic contrast-enhanced (DCE)-MRI;
(d) 68Ga-PSMA-PET/CT.

5.1.3. Biopsies

In the primary setting, it was shown that MRI-targeted biopsies, as opposed to transrectal
ultrasonography (TRUS)-guided biopsies, decrease the detection of insignificant disease, while the
yield of clinically relevant cancers increases [63]. A study in which patients subsequently underwent
mp-MRI, TRUS-biopsies, and transperineal template prostate mapping (TPM) biopsies (sampling
the whole gland every 5 mm) calculated that up to 18% more cases of clinically significant cancer
might be detected if TRUS-biopsies were guided by MRI findings [50]. Adding mp-MRI information
to subsequent TPM biopsies seems to achieve the highest diagnostic accuracy, with a sensitivity
and specificity of 97% and 61%, respectively, a positive predictive value of 83%, and a negative
predictive value of 91% [64]. Different approaches to achieve biopsy under MRI-guidance (i.e., in-bore,
MRI/TRUS fusion, or cognitive registration) yield similar detection rates of clinically significant
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prostate cancer [65]. Interestingly, the definition of clinically significant cancer differs between studies,
ranging from Gleason score 6 and cancer core length >3 mm to Gleason score ≥ 4 + 3.

In the radiorecurrent setting, prostate biopsy evaluation is hampered by radiation effects, which
sometimes mimic higher-grade disease. Approximately 30% of indeterminate biopsies seem to resolve
into negative disease status. On the other hand, local failure can also be interpreted as radiation effect,
and indeterminate biopsies should, therefore, not be considered negative. Furthermore, delayed tumor
regression may cause false positives. Biopsies should, therefore, not be taken before 24 months of
follow-up [66]. Even after two years, routine post-radiotherapy biopsies are of limited added value to
regular PSA testing, and should only be considered in case of biochemical failure [67]. According to
the European Association of Urology (EAU) guidelines, biopsy after radiotherapy is only indicated if
local recurrence affects treatment decisions [1].

In case of localized recurrence, one could argue that biopsies might aid in the selection of patients
for focal salvage treatment. A study comparing cognitive targeted biopsies with TPM biopsies showed
that targeted biopsies had similar or at most 10% less detection rate, depending on the definition of
clinically significant cancer. Targeted biopsies were efficient, requiring fewer biopsies compared to
TPM biopsies for detection of clinically significant disease [68]. However, clinical significance was
determined based on either maximum cancer core length or Gleason score. Since the effect of altered
architecture from previous radiotherapy on the Gleason score is poorly understood, it does not seem
appropriate for grading radiorecurrent lesions [69–71]. Validation studies on the use of the Gleason
scoring system in the radiorecurrent setting are lacking in the current available literature. Furthermore,
there seems to be no consensus on the Gleason score definition for clinically significant disease.
Histological confirmation of recurrence is, therefore, limited (i.e., adenocarcinoma yes/no) and does
not provide any information on the clinical significance (tumor aggressiveness) of the recurrent lesion.

With advancements in imaging modalities as outlined above, and the burden of invasive biopsy
procedures on patients, it is questionable whether these biopsies are mandatory for adequate disease
assessment. There is no literature describing the accuracy of combined mp-MRI and PET-CT with
pathology verification in the radiorecurrent setting. Currently, we are investigating a cohort of patients
with a positive recurrent lesion on 68Ga-PSMA-PET/CT and at least one mp-MRI sequence, who
underwent subsequent MRI-targeted biopsies, to determine the added value of histologic verification
for adequate disease assessment.

5.2. Current Focal Salvage Series

Today, focal salvage treatment of radiorecurrent prostate cancer is performed with a variety of
techniques: focal cryotherapy [72–74], focal HIFU [75], focal brachytherapy (both low-dose-rate [76,77]
and high-dose-rate [78–80]), and, in smaller series, stereotactic body radiation therapy (SBRT) [81,82].
The extend of ablation differs per ablation method and between series, ranging from ultrafocal to
hemi-ablation and subtotal ablation. Focal cryotherapy usually entails hemi-ablation by achieving
a lethal freezing temperature of −40 ◦C in the prostate lobe containing the cancer. Focal HIFU
can be hemi-ablation or quadrant ablation (one half of a lobe), using focused ultrasonic waves for
tissue destruction by means of thermal, mechanical, and cavitation effects. With brachytherapy,
ultrafocal ablation can be achieved by administering radiation to a small target volume, using the
steep dose fall-off with distance from the radiation source. Iodine-125 seeds are used for low-dose-rate
brachytherapy, delivering a prescribed dose of 144–145 Gy. High-dose-rate brachytherapy delivers
radiation from an iridium-192 source through temporarily implanted catheters, which allow for dose
painting by varying the dwell positions and times of the radiation source. High-dose-rate schedules
vary from 18–19 Gy in a single dose to 27 Gy divided over two implants. CyberKnife-based SBRT
is performed with dose schedules between 30–35 Gy in five fractions. While this technique offers a
high degree of conformity, it is also likely to increase the integral dose to the surrounding healthy
tissues. Furthermore, without real-time MRI guidance, planning target volume (PTV) margins for
correction of intrafraction motion remain necessary to avoid geographical miss. Different focal ablation
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methods have varying limitations with respect to tumor recurrence location; HIFU is less suited
for treating anterior-located lesions due to insufficient length of most devices, while cryotherapy
can be less effective in the apical and peri-urethral region due to organ-protective warming tools.
With brachytherapy, it is usually possible to cover all sides of the prostate [83,84].

Studies that report five-year bFFS seem to reach an approximate 50% rate [85], which is comparable
to whole-gland salvage series. Only one study presented a direct comparison between focal and
whole-gland using cryotherapy: five-year bFFS rates were 54 and 86%, respectively [72]. However,
differences in patient characteristics and primary radiation schedules make it hard to interpret these
results. Though most literature comes from relatively recent studies, patient selection methods
are often already outdated. Exclusion of metastatic disease was often performed with either CT
or MRI for nodal assessment, bone scintigraphy for bony disease, and, in some series, PET/CT
in a small number of patients. A modern multimodal radiologic approach with mp-MRI and
68Ga-PSMA-PET/CT outperforms the other modalities in selecting patients with true localized,
non-metastatic recurrence [44,86]. In the future, better patient selection could, therefore, improve
oncologic outcomes of focal salvage series even further. Follow-up times are still too short to assess
the impact of focal salvage treatment in terms of overall survival. However, the main impact lies
in delaying the need for palliative hormonal treatment, while providing a chance of cure through
local control.

With this in mind, it is important to consider treatment-related side-effects of focal salvage
treatments. Although toxicity might be underreported in many current series due to the retrospective
nature of data collection, the general trend seems favorable. Severe GU and GI toxicity seem limited to
a maximum of 5–10%. Potency preservation (measured with the international index of erectile function
(IIEF) or common terminology criteria for adverse events (CTCAE)) is observed in the majority of
patients in many of the series. Treatment effects on patient-reported quality of life was only reported
in focal salvage brachytherapy series, revealing no significant changes in most domains, except an
increase in urinary symptoms after focal low-dose-rate brachytherapy [77].

Table 1 provides an overview of functional and oncologic outcomes of the different focal salvage
treatment modalities.
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Table 1. Summary of studies on functional and oncologic outcomes of different focal salvage treatment modalities for localized radiorecurrent prostate cancer.

Focal Salvage
Treatment Study Ablation Extent Patients Median Follow-up bFFS GU/GI Toxicity QoL

Brachytherapy

LDR Kunogi et al. [76] Ultrafocal (145 Gy) 12 56 months 78% at 4 years No grade 3 NA

Peters et al. [77] Ultrafocal (144 Gy) 20 36 months 60% at 3 years 5% grade 3 GU Increase in urinary
symptoms

HDR Zamboglou et al. [78] Ultrafocal (18 Gy) 2 6 months 100% at 6
months No grade 3 NA

Maenhout et al. [79] Ultrafocal (19 Gy) 17 10 months 92% at 1 year 6% grade 3 GU NA

Murgic et al. [80] Quadrant (27 Gy
in 2 fractions) 15 36 months 61% at 3 years 7% grade 3 GU No

significant change

Cryotherapy de Castro Abreu et al. [72] Hemi 25 31 months 54% at 5 years No incontinence, no
fistula NA

Kongnyuy et al. [73] Hemi 65 27 months 48% at 3 years 6% incontinence NA

Li et al. [74] NA 91 15 months 47% at 5 years 6% incontinence, 7%
retention, 3% fistula NA

HIFU Kanthabalan et al. [75]
Ultrafocal (11%),
quadrant (55%),

hemi (34%)
150 35 months 48% at 3 years 8% bladder neck

stricture, 2% fistula NA

SBRT Jereczek-Fossa et al. [81] Ultrafocal (30 Gy
in 5 fractions) 15 10 months 22% at 2.5 years 7% grade 3 GU NA

Mbeutcha et al. [82] Ultrafocal (35 Gy
in 5 fractions) 18 15 months 56% at 1 year No grade 3 NA

Abbreviations: bFFS: biochemical failure-free survival, GU: genitourinary, GI: gastrointestinal, QoL: quality of life, LDR: low-dose-rate, HDR: high-dose-rate, HIFU: high intensity focused
ultrasound, NA: not available, SBRT: stereotactic body radiation therapy.
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To determine which patients benefit the most from focal salvage treatment, it is also important to
consider other patient and tumor characteristics. In the abovementioned studies, patients with stage
T1–T3b recurrent tumors, total Gleason score ≤6–10, and PSA levels between 0.01 and ≥20 ng/mL
were treated. This indicates that a wide range of patients, classified from (very) low-risk to high-risk
disease, were included. Most studies did not report on the pre-treatment PSA doubling time
(PSADT). In a Delphi consensus study among 18 experts in the field of salvage brachytherapy for
radiorecurrent prostate cancer, 88% of participants indicated that stage T3b should be the maximum
tumor classification to be eligible for salvage treatment. A total of 94% agreed that the Gleason score
should not be used as a criterion (with over half of participants stating that the Gleason score cannot
be determined in case of relapse after primary radiotherapy). In terms of PSA kinetics, a maximum
PSA level of 10 ng/mL and minimum PSADT of six months was preferred by most participants [87].
A prediction study on factors associated with failure after focal salvage HIFU revealed that the length
of the interval between primary treatment and radiologic recurrence, prostatic volume, T-stage, PSA
level, PSADT, and primary tumor Gleason score are potential predictors of failure [88]. More research
is warranted to better understand which combination of patient and tumor characteristics is best
served by (which) focal salvage treatment. The decision-making process before and after focal salvage
treatment is displayed in a flow chart in Figure 2.
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Figure 2. Flow chart for decision-making before and after focal salvage treatment of localized
radiorecurrent prostate cancer. Abbreviations: PSMA: prostate-specific membrane antigen, mp-MRI:
multiparametric magnetic resonance imaging, PSADT: PSA doubling time, HIFU: high-intensity
focused ultrasound, LDR: low-dose-rate, HDR: high-dose-rate, SBRT: stereotactic body radiation
therapy. * As proposed by Delphi consensus study among 18 experts in the field of salvage
brachytherapy for radiorecurrent prostate cancer (conducted by UroGEC group of Groupe Européen
de Curiethérapie/European Society for Radiotherapy and Oncology (GEC-ESTRO)) [87].
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5.3. Future Prospects Regarding MRI-Guided Radiotherapy

It is clear that accurate targeted ablation requires precise localization of the recurrent prostatic
lesion. Over the years, the use of (mp-)MRI for treatment planning substantially increased. The superior
resolution of soft tissue enables more accurate delineation of the tumor volume and organs at risk [89].
New developments such as ultra-high-field MRI with 7-T systems have the potential to enhance the
spatial resolution even further [90]. Although it seems that 7-T T2- and diffusion-weighted imaging
deliver clinically adequate anatomical images within acceptable acquisition times, there are still several
technical challenges to overcome before a 7-T mp-MRI protocol for the prostate can be achieved [91].

Imaging developments are not only used for the treatment planning phase, but are also
increasingly incorporated into the treatment itself. Currently, MRI guidance during treatment can
be achieved using image registration of pre-operative MR images (1.5 T or 3 T) with intra-operative
TRUS images (MRI/TRUS fusion). With this technique, software is used to register the pre-operatively
delineated tumor location to real-time prostate images. Image registration may be either rigid (overlay
of images without adjustment for possible prostate deformation during treatment) or non-rigid (using
algorithms that compensate for deformation). Some factors that contribute to prostate deformation
are unavoidable, such as swelling of the prostate due to catheter insertion during a brachytherapy
implant procedure. Prostate motion can also be caused by surrounding organ movement, such as rectal
distension due to flatulence or introduction of an ultrasound probe. Evidently, non-rigid registration is
challenging; a variety of registration methods using different algorithms were presented in the search
for the most optimal solution [92].

The next step in the development of MRI-guided intervention is the incorporation of live MR
images into the treatment workflow, thereby achieving direct treatment guidance and avoiding any
registration errors. Although early experiences with real-time MRI-guided brachytherapy date back
to 1997, this approach is not yet widely adopted due to logistical issues such as resource demand
and procedural time prolongation [93]. One of the obvious challenges of in-bore intervention is the
limited workspace. Open MRI units that provide access to the patient while imaging are available,
but these deliver low image quality and need increased scanning time due to the inherently lower
signal-to-noise ratio.

To overcome these shortcomings, a robotic MRI-compatible implantation device for prostate
brachytherapy was developed at our institution (see Figure 3). The robot system fits in a 1.5-T MRI
scanner and can be placed between the patient’s legs. In 2010, the first clinical proof of principal study
was performed with the University Medical Center Utrecht (UMCU) robot, successfully implanting
gold fiducial markers into the prostate for external beam radiation [94]. It was shown that the in vivo
use of the robot was feasible. After this first clinical test, the UMCU robot was further developed and
optimized for the application of brachytherapy implant procedures. We are currently working on a
study investigating the in vivo technical feasibility of robotic insertion of a brachytherapy needle into
the prostate. It is expected that this study will be a step forward in the development of MRI-guided
focal salvage brachytherapy with a robotic device. In the future, a full MRI-guided robotic implantation
procedure may allow for a reduction of needles needed for the implant [95], with expected lower
toxicity rates and a reduction of time necessary for the procedure.
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Figure 3. Magnetic resonance imaging (MRI)-compatible robotic implantation device for prostate
brachytherapy. A cylindrical weight that is pneumatically driven hits the needle holder to tap a
brachytherapy needle into the prostate. When placed between the patient’s legs inside an MRI scanner,
the needle can be tracked using live images.

Regarding external beam radiotherapy, MRI-guided radiotherapy systems such as the MR-Linac
will provide another way of accomplishing live MRI-guided intervention. Using online fast
MR-sequences for auto-contouring and auto-planning, a full MRI-based online adaptive workflow
can be achieved [96]. Changes in anatomy can be accounted for with inter-beam replanning. This will
further reduce the target volume margins needed, reducing normal tissue radiation exposure and
thereby decreasing the risk of toxicity. This enables safe dose escalation, potentially in the form of
delivering a single ablative dose, which would be of benefit to both patient comfort and hospital
logistics. It should, however, be noted that external beam radiotherapy is inherently less conformal
than brachytherapy, and it remains to be seen whether this treatment modality will be suitable for
focal treatment in the recurrent prostate cancer setting.

6. Conclusions

Localized radiorecurrent prostate cancer seems susceptible to focal salvage treatment. Treating the
tumor while sparing the surrounding healthy tissue leads to a reduction of treatment-related
side-effects, where whole-gland salvage treatments or palliative ADT are often less well tolerated.
Focal salvage therapy thereby provides an intermediate step between primary curative treatment and
(if necessary) palliative hormonal treatment. Diagnostic innovations led to more adequate patient
selection in terms of exclusion of metastatic disease and accurate tumor targeting. This is a constantly
developing field, as new diagnostic techniques are warranted to provide greater insight into prostate
tumor profiling. With MRI guidance, focal treatment becomes more and more precise, especially with
emerging technologies enabling live and online adaptive MRI-guided radiotherapy.
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