The Role of Direct Oral Anticoagulants in Treatment of Cancer-Associated Thrombosis
Abstract
:1. Introduction
2. Thromboembolic and Bleeding Risk in the Cancer Population
3. Vitamin K Antagonists and Low Molecular Weight Heparins for Cancer-Associated VTE
- The CANTHANOX trial compared enoxaparin 1.5 mg/kg once daily to warfarin over a 3-month treatment period in 146 patients with cancer-associated thrombosis [19]. The trial was ended early due to poor accrual. The trial used a composite major outcome of recurrent VTE or major bleeding event. There were fewer major outcome events those receiving LMWH, but this was not statistically significant (10.5% versus 21.1%, p = 0.09). The rate of major bleeding was 16.0% in the warfarin arm and 7.0% in the enoxaparin arm (p = 0.09).
- The LITE trial compared tinzaparin (175 anti-Xa units/kg once daily) with usual care of heparin transitioned to a VKA in 200 patients with cancer-associated thrombosis (PE or proximal DVT) [20]. Following the 3-month treatment period, anticoagulation was discontinued unless oral anticoagulation was indicated (as judged by the patient’s primary physician). At 3 months, 6% of patients treated with tinzaparin had recurrent VTE compared with 10% treated a VKA. At 12 months, the tinzaparin group had a significantly lower rate of recurrent VTE than the VKA group (7% versus 16%, p = 0.044), although not all patients remained on anticoagulation after 3 months. The rate of major bleeding was 7% in both groups.
- The ONCENOX trial randomized 102 cancer patients to receive enoxaparin 1 mg/kg once daily, enoxaparin 1.5 mg/kg once daily, or warfarin for 6 months after a 5-day enoxaparin 1 mg/kg twice daily lead-in [21]. The trial was closed early due to slow accrual. There were no significant differences in rates of recurrent VTE (6.5% of patients treated with enoxaparin and 10.0% in the VKA group) or bleeding (9.0% of patients treated with enoxaparin and 2.9% in the VKA group). p values were not reported for these outcomes, though the authors stated that no trends or significance could be observed due to small numbers of events.
- The CLOT trial, considered to be the most definitive because of the number of patients enrolled and duration of treatment, compared 6 months of dalteparin (200 IU/kg once daily for 1 month followed by 150 IU/kg once daily for 5 months) with 6 months of VKA therapy (following a 5–7 day dalteparin bridge) in 672 cancer patients [6]. At 6 months, the dalteparin group had a significantly lower rate of recurrent VTE than the VKA group (17% versus 9%, p = 0.002). There were no differences in the rates of major bleeding between the two groups (6% in the dalteparin group and 4% in the VKA group, p = 0.27). While the trial did not find a mortality difference in the two groups, a post-hoc analysis did find a benefit for dalteparin in patients with localized cancer (at 12 months from randomization, 20% mortality in the dalteparin group vs. 36% in the VKA group, p = 0.03) [22].
- The CATCH trial, published 12 years after the CLOT trial, compared 6 months of tinzaparin (175 anti-Xa units/kg once daily) with warfarin in 900 cancer patients with a life expectancy of greater than 6 months [23]. The rates of VTE recurrence (7.2% in the tinzaparin group and 10.5% in the warfarin group, p = 0.07) and major bleeding (2.7% in the tinzaparin group and 2.4% in the warfarin group, p = 0.77) were not significantly different.
4. Direct Oral Anticoagulants for Treatment of Cancer-Associated VTE
- The Hokusai VTE Cancer trial enrolled 1050 cancer patients with acute symptomatic or incidental PE or proximal VTE to receive LMWH for 5 days followed by edoxaban 60 mg daily or dalteparin 200 IU/kg daily for one month followed by 150 IU/kg daily [7]. Patients were treated for 6–12 months on study. For the composite primary outcome of recurrent VTE or major bleeding during the 12 months after randomization (regardless of actual duration of anticoagulation), edoxaban was non-inferior to dalteparin (HR 0.97, p = 0.006 for noninferiority). Rates of recurrent VTE were not significantly different in each arm (7.9% in the edoxaban arm versus 11.3% in the dalteparin arm, p = 0.09). Rates of major bleeding were higher in the edoxaban arm (6.9% in the edoxaban arm versus 4.0% in the dalteparin arm, p = 0.04) Rates of clinically relevant non-major bleeding (CRNMB) were higher in the edoxaban arm (14.6% in the edoxaban arm versus 11.1% in the dalteparin arm), but this was not statistically significant. There was no difference in overall survival.
- The SELECT-D trial enrolled 406 cancer patients with acute symptomatic or incidental PE or symptomatic proximal DVT to receive rivaroxaban (15 mg twice daily for 3 weeks, then 20 mg once daily for a total of 6 months) or dalteparin (200 IU/kg daily for 1 month followed by 150 IU/kg daily for 5 months) [8]. The primary efficacy outcome of rate of recurrent VTE was lower in the rivaroxaban arm (4% versus 11%, HR 0.43, 95% CI, 0.19–0.99), while the major safety outcomes found that major bleeding was similar (6% in the rivaroxaban arm, 4% in the dalteparin arm, HR 1.83, 95% CI, 0.68–4.96), and CRNMB was significantly higher in the rivaroxaban arm (13% vs. 4%, HR 3.76, 95% CI, 1.63 to 8.69). There was no difference in overall survival.
5. Personalization of Therapy and Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest and Disclosures
References
- Blom, J.W.; Doggen, C.J.; Osanto, S.; Rosendaal, F.R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005, 293, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorensen, H.T.; Mellemkjaer, L.; Olsen, J.H.; Baron, J.A. Prognosis of cancers associated with venous thromboembolism. N. Engl. J. Med. 2000, 343, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 2006, 166, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Fisher, R.I.; Kuderer, N.M.; Lyman, G.H. Thromboembolism in hospitalized neutropenic cancer patients. J. Clin. Oncol. 2006, 24, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Levine, M.N.; Baker, R.I.; Bowden, C.; Kakkar, A.K.; Prins, M.; Rickles, F.R.; Julian, J.A.; Haley, S.; Kovacs, M.J.; et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N. Engl. J. Med. 2003, 349, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an oral factor xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: Results of a randomized trial (select-d). J. Clin. Oncol. 2018, JCO2018788034. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007, 110, 2339–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyman, G.H.; Khorana, A.A.; Falanga, A.; Clarke-Pearson, D.; Flowers, C.; Jahanzeb, M.; Kakkar, A.; Kuderer, N.M.; Levine, M.N.; Liebman, H.; et al. American society of clinical oncology guideline: Recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J. Clin. Oncol. 2007, 25, 5490–5505. [Google Scholar] [CrossRef] [PubMed]
- Levitan, N.; Dowlati, A.; Remick, S.C.; Tahsildar, H.I.; Sivinski, L.D.; Beyth, R.; Rimm, A.A. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using medicare claims data. Medicine 1999, 78, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Lensing, A.W.; Piccioli, A.; Bernardi, E.; Simioni, P.; Girolami, B.; Marchiori, A.; Sabbion, P.; Prins, M.H.; Noventa, F.; et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002, 100, 3484–3488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monreal, M.; Falga, C.; Valdes, M.; Suarez, C.; Gabriel, F.; Tolosa, C.; Montes, J.; Riete, I. Fatal pulmonary embolism and fatal bleeding in cancer patients with venous thromboembolism: Findings from the riete registry. J. Thromb. Haemost. 2006, 4, 1950–1956. [Google Scholar] [CrossRef] [PubMed]
- Kearon, C.; Akl, E.A.; Comerota, A.J.; Prandoni, P.; Bounameaux, H.; Goldhaber, S.Z.; Nelson, M.E.; Wells, P.S.; Gould, M.K.; Dentali, F.; et al. Antithrombotic therapy for vte disease: Antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 2012, 141, e419S–e496S. [Google Scholar] [CrossRef] [PubMed]
- Engman, C.A.; Zacharski, L.R. Low molecular weight heparins as extended prophylaxis against recurrent thrombosis in cancer patients. J. Natl. Compr. Canc. Netw. 2008, 6, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Khorana, A.A.; Kuderer, N.M.; Lee, A.Y.; Arcelus, J.I.; Balaban, E.P.; Clarke, J.M.; Flowers, C.R.; Francis, C.W.; Gates, L.E.; et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: American society of clinical oncology clinical practice guideline update. J. Clin. Oncol. 2013, 31, 2189–2204. [Google Scholar] [CrossRef] [PubMed]
- Farge, D.; Debourdeau, P.; Beckers, M.; Baglin, C.; Bauersachs, R.M.; Brenner, B.; Brilhante, D.; Falanga, A.; Gerotzafias, G.T.; Haim, N.; et al. International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. J. Thromb. Haemost. 2013, 11, 56–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, G.; Marjanovic, Z.; Valcke, J.; Lorcerie, B.; Gruel, Y.; Solal-Celigny, P.; Le Maignan, C.; Extra, J.M.; Cottu, P.; Farge, D. Comparison of low-molecular-weight heparin and warfarin for the secondary prevention of venous thromboembolism in patients with cancer: A randomized controlled study. Arch. Intern. Med. 2002, 162, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Hull, R.D.; Pineo, G.F.; Brant, R.F.; Mah, A.F.; Burke, N.; Dear, R.; Wong, T.; Cook, R.; Solymoss, S.; Poon, M.C.; et al. Long-term low-molecular-weight heparin versus usual care in proximal-vein thrombosis patients with cancer. Am. J. Med. 2006, 119, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Deitcher, S.R.; Kessler, C.M.; Merli, G.; Rigas, J.R.; Lyons, R.M.; Fareed, J.; Investigators, O. Secondary prevention of venous thromboembolic events in patients with active cancer: Enoxaparin alone versus initial enoxaparin followed by warfarin for a 180-day period. Clin. Appl. Thromb. Hemost. 2006, 12, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Rickles, F.R.; Julian, J.A.; Gent, M.; Baker, R.I.; Bowden, C.; Kakkar, A.K.; Prins, M.; Levine, M.N. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J. Clin. Oncol. 2005, 23, 2123–2129. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.Y.; Kamphuisen, P.W.; Meyer, G.; Bauersachs, R.; Janas, M.S.; Jarner, M.F.; Khorana, A.A.; Investigators, C. Tinzaparin vs warfarin for treatment of acute venous thromboembolism in patients with active cancer: A randomized clinical trial. JAMA 2015, 314, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Bona, R.D.; Sivjee, K.Y.; Hickey, A.D.; Wallace, D.M.; Wajcs, S.B. The efficacy and safety of oral anticoagulation in patients with cancer. J.Thromb. Haemost. 1995, 74, 1055–1058. [Google Scholar] [CrossRef]
- Deitcher, S.R. Cancer-related deep venous thrombosis: Clinical importance, treatment challenges, and management strategies. Semin. Thromb. Hemost. 2003, 29, 247–258. [Google Scholar] [PubMed]
- Marshall, A.L.; Campigotto, F.; Neuberg, D.; Rowe, B.; Connors, J.M. Recurrence of venous thromboembolism in patients with cancer treated with warfarin. Clin. Appl. Thromb. Hemost. 2015, 21, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; McCrae, K.R.; Milentijevic, D.; Fortier, J.; Nelson, W.W.; Laliberte, F.; Crivera, C.; Lefebvre, P.; Yannicelli, D.; Schein, J. Current practice patterns and patient persistence with anticoagulant treatments for cancer-associated thrombosis. Res. Pract. Thromb. Haemost. 2017, 1, 14–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streiff, M.B.; Milentijevic, D.; McCrae, K.; Yannicelli, D.; Fortier, J.; Nelson, W.W.; Laliberte, F.; Crivera, C.; Lefebvre, P.; Schein, J.; et al. Effectiveness and safety of anticoagulants for the treatment of venous thromboembolism in patients with cancer. Am. J. Hematol. 2018, 93, 664–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai-Adisaksopha, C.; Iorio, A.; Crowther, M.A.; de Miguel, J.; Salgado, E.; Zdraveska, M.; Fernandez-Capitan, C.; Nieto, J.A.; Barillari, G.; Bertoletti, L.; et al. Vitamin k antagonists after 6 months of low-molecular-weight heparin in cancer patients with venous thromboembolism. Am. J. Med. 2018, 131, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Campigotto, F.; Neuberg, D.; Zwicker, J.I. Biased estimation of thrombosis rates in cancer studies using the method of kaplan and meier. J. Thromb. Haemost. 2012, 10, 1449–1451. [Google Scholar] [CrossRef] [PubMed]
- Parpia, S.; Julian, J.A.; Thabane, L.; Lee, A.Y.; Rickles, F.R.; Levine, M.N. Competing events in patients with malignant disease who are at risk for recurrent venous thromboembolism. Contemp. Clin. Trials 2011, 32, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Kearon, C.; Kakkar, A.K.; Mismetti, P.; Schellong, S.; Eriksson, H.; Baanstra, D.; Schnee, J.; Goldhaber, S.Z.; Group, R.-C.S. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 2009, 361, 2342–2352. [Google Scholar] [CrossRef] [PubMed]
- Hokusai, V.T.E.I.; Buller, H.R.; Decousus, H.; Grosso, M.A.; Mercuri, M.; Middeldorp, S.; Prins, M.H.; Raskob, G.E.; Schellong, S.M.; Schwocho, L.; et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N. Engl. J. Med. 2013, 369, 1406–1415. [Google Scholar]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Curto, M.; Gallus, A.S.; Johnson, M.; Masiukiewicz, U.; Pak, R.; Thompson, J.; Raskob, G.E.; et al. Oral apixaban for the treatment of acute venous thromboembolism. N. Engl. J. Med. 2013, 369, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Investigators, E.; Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; et al. Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med. 2010, 363, 2499–2510. [Google Scholar]
- Investigators, E.-P.; Buller, H.R.; Prins, M.H.; Lensin, A.W.; Decousus, H.; Jacobson, B.F.; Minar, E.; Chlumsky, J.; Verhamme, P.; Wells, P.; et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N. Engl. J. Med. 2012, 366, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- van Es, N.; Coppens, M.; Schulman, S.; Middeldorp, S.; Buller, H.R. Direct oral anticoagulants compared with vitamin k antagonists for acute venous thromboembolism: Evidence from phase 3 trials. Blood 2014, 124, 1968–1975. [Google Scholar] [CrossRef] [PubMed]
- Vedovati, M.C.; Germini, F.; Agnelli, G.; Becattini, C. Direct oral anticoagulants in patients with vte and cancer: A systematic review and meta-analysis. Chest 2015, 147, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Laube, E.; Miao, Y.; Sarasohn, D.M.; Parameswaran, R.; Stefanik, S.; Brar, G.; Samedy, P.; Wills, J.; Harnicar, S.; et al. Safe and effective use of rivaroxaban for treatment of cancer-associated venous thromboembolic disease: A prospective cohort study. J. Thromb. Thrombolysis 2017, 43, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Kahale, L.A.; Hakoum, M.B.; Tsolakian, I.G.; Matar, C.F.; Terrenato, I.; Sperati, F.; Barba, M.; Yosuico, V.E.; Schunemann, H.; Akl, E.A. Anticoagulation for the long-term treatment of venous thromboembolism in people with cancer. Cochrane Database Syst. Rev. 2018, 6, CD006650. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Garcia, D.A.; Lyman, G.H.; Carrier, M. Direct oral anticoagulant (doac) versus low-molecular-weight heparin (lmwh) for treatment of cancer associated thrombosis (cat): A systematic review and meta-analysis. Thromb. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Desai, J.; Kolb, J.M.; Weitz, J.I.; Aisenberg, J. Gastrointestinal bleeding with the new oral anticoagulants-defining the issues and the management strategies. J. Thromb. Haemost. 2013, 110, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Streiff, M.B.; Holmstrom, B.; Ashrani, A.; Bockenstedt, P.L.; Chesney, C.; Eby, C.; Fanikos, J.; Fenninger, R.B.; Fogerty, A.E.; Gao, S.; et al. Cancer-associated venous thromboembolic disease, version 1.2015. J. Natl. Compr. Cancer Netw. 2015, 13, 1079–1095. [Google Scholar] [CrossRef]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Curto, M.; Gallus, A.S.; Johnson, M.; Porcari, A.; Raskob, G.E.; Weitz, J.I.; Investigators, A.E. Apixaban for extended treatment of venous thromboembolism. N. Engl. J. Med. 2013, 368, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Lensing, A.W.A.; Prins, M.H.; Bauersachs, R.; Beyer-Westendorf, J.; Bounameaux, H.; Brighton, T.A.; Cohen, A.T.; Davidson, B.L.; Decousus, H.; et al. Rivaroxaban or aspirin for extended treatment of venous thromboembolism. N. Engl. J. Med. 2017, 376, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Hakeam, H.A.; Al-Sanea, N. Effect of major gastrointestinal tract surgery on the absorption and efficacy of direct acting oral anticoagulants (doacs). J. Thromb. Thrombolysis 2017, 43, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Le Gal, G.; Cho, R.; Tierney, S.; Rodger, M.; Lee, A.Y. Dose escalation of low molecular weight heparin to manage recurrent venous thromboembolic events despite systemic anticoagulation in cancer patients. J. Thromb. Haemost. 2009, 7, 760–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihaddadene, R.; Le Gal, G.; Delluc, A.; Carrier, M. Dose escalation of low molecular weight heparin in patients with recurrent cancer-associated thrombosis. Thromb. Res. 2014, 134, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Zondag, M.; Linkins, L.; Pasca, S.; Cheung, Y.W.; de Sancho, M.; Gallus, A.; Lecumberri, R.; Molnar, S.; Ageno, W.; et al. Recurrent venous thromboembolism in anticoagulated patients with cancer: Management and short-term prognosis. J. Thromb. Haemost. 2015, 13, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Tittl, L.; Endig, S.; Marten, S.; Reitter, A.; Beyer-Westendorf, I.; Beyer-Westendorf, J. Impact of bmi on clinical outcomes of noac therapy in daily care-results of the prospective dresden noac registry (nct01588119). Int. J. Cardiol. 2018, 262, 85–91. [Google Scholar] [CrossRef] [PubMed]
Study (Time Period) | CANTHANOX (3 Months) | LITE (12 Months) | ONCENOX (7 Months) | CLOT (6 Months) | CATCH (6 Months) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment arm | VKA | LMWH | VKA | LMWH | VKA | LMWH | VKA | LMWH | VKA | LMWH |
Recurrent VTE (%) | 4.0 | 2.8 | 16.0 | 7.0 | 6.5 | 10.0 | 17 | 9 | 10.5 | 7.2 |
Major bleeding (%) | 16.0 | 7.0 | 7.0 | 7.0 | 2.9 | 9.0 | 4 | 6 | 2.4 | 2.7 |
Mortality (%) | 22.7 | 11.3 | 47.0 | 47.0 | 32.4 | 32.8 | 39 | 41 | 32.2 | 34.7 |
Cancer therapy a (%) | 69.3 | 76.0 | NR | NR | 32.3 b 32.3 c | 56.7 b 35.8 c | 76.6 | 78.7 | 55.0 | 50.8 |
Metastatic disease (%) | 52.0 | 53.5 | 36.0 | 47.0 | 52.9 | 61.2 | 68.6 | 65.9 | 54.3 | 55.0 |
VKA TTR (%) | 41 | NR | NR | 46 | 47 |
Study a | Hokusai VTE Cancer | SELECT-D | ||
---|---|---|---|---|
Treatment arm | Edoxaban | Dalteparin | Rivaroxaban | Dalteparin |
Recurrent VTE (%) | 6.5 | 8.8 | 4 | 11 |
Major bleeding (%) | 5.6 | 3.2 | 6 | 4 |
CRNMB (%) | 12.3 | 8.2 | 13 | 4 |
Mortality (%) | 26.8 | 24.2 | 25 | 30 |
Cancer therapy (%) | 71.6 | 73.1 | 69 | 70 |
Metastatic disease (%) | 52.5 | 53.4 | 58 | 58 |
DOAC | Optimal |
|
Avoid |
| |
LMWH | Optimal |
|
Avoid |
| |
VKA | Optimal |
|
Avoid |
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Samkari, H.; Connors, J.M. The Role of Direct Oral Anticoagulants in Treatment of Cancer-Associated Thrombosis. Cancers 2018, 10, 271. https://doi.org/10.3390/cancers10080271
Al-Samkari H, Connors JM. The Role of Direct Oral Anticoagulants in Treatment of Cancer-Associated Thrombosis. Cancers. 2018; 10(8):271. https://doi.org/10.3390/cancers10080271
Chicago/Turabian StyleAl-Samkari, Hanny, and Jean M. Connors. 2018. "The Role of Direct Oral Anticoagulants in Treatment of Cancer-Associated Thrombosis" Cancers 10, no. 8: 271. https://doi.org/10.3390/cancers10080271
APA StyleAl-Samkari, H., & Connors, J. M. (2018). The Role of Direct Oral Anticoagulants in Treatment of Cancer-Associated Thrombosis. Cancers, 10(8), 271. https://doi.org/10.3390/cancers10080271