Status of Agents Targeting the HGF/c-Met Axis in Lung Cancer
Abstract
:1. Biology of c-Met and Its Ligand, HGF 24pt
2. HGF/c-MET Axis in Non-Small Cell Lung Cancer
3. HGT/c-Met Axis in Small Cell Lung Cancer (SCLC)
4. Therapeutics to Inhibit the HGF/c-Met Axis
5. Crizotinib: First Generation c-Met Tyrosine Kinase Inhibitor
6. Tyrosine Kinase Inhibitors with Selectivity for c-Met
7. Multi-Kinase Targeting
8. Biological Antagonists of HGF or c-Met
9. Mechanisms of Resistance to Inhibitors of the HGF/c-Met Axis
10. Role of HGF-c-Met in Resistance to Other Therapies
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bottaro, D.P.; Rubin, J.S.; Faletto, D.L.; Chan, A.M.; Kmiecik, T.E.; Vande Woude, G.F.; Aaronson, S.A. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991, 251, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Basile, J.R.; Afkhami, T.; Gutkind, J.S. Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Mol. Cell Biol. 2005, 25, 6889–6898. [Google Scholar] [CrossRef] [PubMed]
- Tokunou, M.; Niki, T.; Eguchi, K.; Iba, S.; Tsuda, H.; Yamada, T.; Matsuno, Y.; Kondo, H.; Imamura, H.; Hirohashi, S. c-MET expression in myofibroblasts: Role in autocrine activation and prognostic significance in adenocarcinoma. Am. J. Pathol. 2001, 158, 1451–1463. [Google Scholar] [CrossRef]
- Lokker, N.A.; Mark, M.R.; Luis, E.A.; Bennett, G.L.; Robbins, K.A.; Baker, J.B.; Gowdowski, P.J. Structure-function analysis of hepatocyte growth factor: Identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J. 1992, 11, 2503–2510. [Google Scholar] [PubMed]
- Gherardi, E.; Sandin, S.; Petoukhov, M.V.; Finch, J.; Youles, M.E.; Ofverstedt, L.G.; Miguel, R.N.; Blundell, T.L.; Vande Woude, G.F.; Skoglund, U.; et al. Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc. Natl. Acad. Sci. USA 2006, 103, 4046–4051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.W.; Vande Woude, G.F. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J. Cell Biochem. 2003, 88, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Rosario, M.; Birchmeier, W. How to make tubes: Signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 2003, 13, 328–335. [Google Scholar] [CrossRef]
- Corso, S.; Comoglio, P.M.; Giordano, S. Cancer therapy: Can the challenge be MET? Trends Mol. Med. 2005, 11, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Boccaccio, C.; Comoglio, P.M. Invasive growth: A MET-driven genetic programme for cancer and stem cells. Nat. Rev. Cancer 2006, 6, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.C.; Kijima, T.; Maulik, G.; Fox, E.A.; Sattler, M.; Griffin, J.D. C-MET mutational analysis in small cell lung cancer: Novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003, 63, 6272–6281. [Google Scholar] [PubMed]
- Dulak, A.M.; Gubish, C.T.; Stabile, L.P.; Henry, C.; Siegfried, J.M. HGF-independent potentiation of EGFR action of c-Met. Oncogene 2011, 30, 3625–3635. [Google Scholar] [CrossRef] [PubMed]
- Stabile, L.P.; Rothstein, M.E.; Keohavong, P.; Jin, J.; Yin, J.; Land, S.R. Therapeutic targeting of human hepatocyte growth factor with a single neutralizing monoclonal antibody reduces lung tumorigenesis. Mol. Cancer Ther. 2008, 7, 1913–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, N.; Salgia, R. Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J. Carcinog. 2008, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Shattuck, D.L.; Miller, J.K.; Carraway, K.L., 3rd; Sweeny, C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res. 2008, 68, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.W.; Somcio, R.J.; Fan, F.; Liu, W.; Johnson, M.; Lesslie, D.P.; Evans, B.D.; Gallick, G.E.; Ellis, L.M. Regulatory role of c-Met in insulin-like growth factor-I receptor-mediated migration and invasion of human pancreatic carcinoma cells. Mol. Cancer Ther. 2006, 5, 1676–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.; Meng, Q.; Laterra, J.J.; Rosen, E.M. Ras effector pathways modulate scatter factor-stimulated NFkappaB signaling and protection against DNA damage. Oncogene 2007, 26, 4774–4796. [Google Scholar] [CrossRef] [PubMed]
- Cooke, V.G.; LeBleu, V.S.; Keskin, D.; Khan, Z.; O’Connell, J.T.; Teng, Y.; Duncan, M.B.; Xie, L.; Maeda, G.; Vong, S.; et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by Met signaling pathway. Cancer Cell 2012, 21, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Smolen, G.A.; Sordella, R.; Muir, B.; Mohapatra, G.; Barmettler, A.; Archibald, H.; Kim, W.J.; Okimoto, R.A.; Bell, D.W.; Sqroi, D.C.; et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc. Natl. Acad. Sci. USA 2006, 103, 2316–2321. [Google Scholar] [PubMed]
- Lengyel, E.; Prechtel, D.; Resau, J.H.; Gauger, K.; Welk, A.; Linderman, K.; Salanti, G.; Richter, T.; Knudsen, B.; Vade Woude, G.F.; Harbeck, N. C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int. J. Cancer 2005, 113, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.G.; Burrows, J.; Salgia, R. C-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005, 225, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Peschard, P.; Park, M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 2007, 26, 1276–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilkovitch-Miagkova, A.; Zbar, B. Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J. Clin. Investig. 2002, 109, 863–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichimura, E.; Maeshima, A.; Nakajima, T.; Nakamura, T. Expression of c-met/HGF receptor in human nonsmall cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn. J. Cancer Res. 1996, 87, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Dalès, J.P.; Charafe-Jauffret, E.; Carpentier-Meunier, S.; Andrac-Meyer, L.; Jacquemier, J.; Andonian, C.; Lavaut, M.N.; Allasia, C.; et al. Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Hum. Pathol. 2007, 38, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Takanami, I.; Tanana, F.; Hashizume, T.; Kikuchi, K.; Yamamoto, Y.; Yamamoto, T.; Kodaira, S. Hepatocyte growth factor and c-Met/hepatocyte growth factor receptor in pulmonary adenocarcinomas: An evaluation of their expression as prognostic markers. Oncology 1996, 53, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.C.; Jagadeeswaran, R.; Jagadeesh, S.; Tretiakova, M.S.; Nallasura, V.; Fox, E.A.; Hansen, M.; Schaefer, E.; Naoki, K.; Lader, A.; et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005, 65, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Ozasa, H.; Oguri, T.; Maeno, K.; Takauwa, O.; Kuni, E.; Yagi, Y.; Ulemera, T.; Kasai, D.; Mizayaki, K.; Niimi, A. Significance of c-MET overexpression in cytotoxic anticancer drug-resistant small-cell lung cancer cells. Cancer 2014, 105, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Inoue, H.; Ohba, S.; Kohda, Y.; Usami, I.; Masuda, T.; Kawada, M.; Nomoto, A. New metastatic model of human small-cell lung cancer by orthotopic transplantation in mice. Cancer Sci. 2015, 106, 367–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, H.; Yamada, T.; Tekeuchi, S.; Arai, S.; Fukuda, K.; Sakamoto, S.; Kawada, M.; Yamaquchi, H.; Mukae, H.; Yano, S. Impact of MET inhibition on small-cell lung cancer cells showing aberrant activation of the hepatocyte growth factor/MET pathway. Cancer Sci. 2017, 108, 1378–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASLAN Pharmaceuticals. Available online: www.aslanpharma.com (accessed on 15 May 2018).
- Gan, H.K.; Lickliter, J.; Millward, M.; Gu, Y.; Weiguo, S.U.; Frigault, M.; Qi, C.; Mu, H. First-in-human phase I study of a selective c-Met inhibitor volitinib (HMP504/AZD6094) in patients with advanced solid tumors. J. Clin. Oncol. 2014, 32, 15. [Google Scholar]
- Leighl, N.B.; Tsao, M.S.; Liu, G.; Tu, D.; Ho, C.; Sheperd, F.A.; Murray, N.; Goffin, J.R.; Nicholar, G.; Sakashita, S.; et al. A phase I study of foretinib plus erlotinib in patients with previously treated advanced non-small cell lung cancer: Canadian cancer trials group IND.196. Oncotarget 2017, 8, 69651–69662. [Google Scholar] [CrossRef] [PubMed]
- Angevin, E.; Spitaleri, G.; Rodon, J.; Dotti, K.; Isambert, N.; Salvagni, S.; Moreno, V.; Assadourin, S.; Gomez, C.; Hamois, M.; et al. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumors with MET amplification. Eur. J. Cancer 2017, 87, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Glisson, B.; Besse, B.; Dols, M.C.; Dubey, S.; Schupp, M.; Jain, R.; Jiang, Y.; Menon, H.; Nackaerts, K.; Orlov, S.; et al. A randomized, Placebo-controlled, Phase 1b/2 study of Rilotumumab or Ganitumab in combination with platinum-based chemotherapy as first line treatment for extensive stage small cell lung cancer. Clin. Lung Cancer 2017, 18, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.H.; Lim, W.T.; Ahn, M.J.; Ng, Q.S.; Ahn, J.S.; Shao-Weng Tan, D.; Sun, J.M.; Payumo, F.C.; McKee, K.; Yin, W.; et al. Phase 1b trial of Ficlatuzumab, a humanized hepatocyte growth factor inhibitory monoclonal antibody, in combination with gefitinib in Asian patients with NSCLC. Clin. Pharmacol. Drug Dev. 2018, 7, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.F.; Cohen, R.B.; Bendell, J.C.; Denlinger, C.S.; Harvey, R.D.; Parasuraman, S.; Chi, X.; Scholtz, C.; Wyant, T.; Kauh, J. Safety, tolerability, and pharmacokinetics of TAK-701, a humanized anti-hepatocyte growth factor (HGF) monoclonal antibody, in patients with advanced nonhematological malignancies: First-in-human phase I dose-escalation study. J. Clin. Oncol. 2010, 28. [Google Scholar] [CrossRef]
- Aftimos, P.G.; Barthlemy, P.; Rolfo, C.D.; Hanssens, V.; Jonge, D.; Silence, K.; Dreier, T.; Haard, H.; Peeters, M.; Thibault, A.; et al. A Phase I, in human study of ARGX-111, a monoclonal antibody targeting c-Met in patients with Solid tumors. J. Clin. Oncol. 2015, 33, 2580. [Google Scholar] [CrossRef]
- Kwak, E.L.; Bang, Y.J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S.H.; Dezube, B.J.; Janne, P.A.; Costa, D.B.; et al. Anaplastic lymphoma kinase inhibition in non-small cell lung cancer. N. Engl. J. Med. 2010, 363, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Gavine, P.R.; Ren, Y.; Han, L.; Lv, J.; Fan, S.; Zhang, W.; Xu, W.; Liu, Y.J.; Zhang, T.; Fu, H.; et al. Volitinib, a potent and highly selective c-Met inhibitor, effectively blocks c-Met signaling and growth in c-MET amplified gastric cancer patient-derived tumor xenograft models. Mol. Oncol. 2015, 9, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Schuller, A.G.; Barry, E.R.; Jones, R.D.; Henry, R.E.; Frigault, M.M.; Beran, G.; Linsenmayer, D.; Hattersley, M.; Smith, A.; Wilson, J.; et al. The MET Inhibitor AZD6094 (Savolitinib, HMPL-504) Induces Regression in Papillary Renal Cell Carcinoma Patient-Derived Xenograft Models. Clin. Cancer Res. 2015, 21, 2811–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, R.E.; Barry, E.R.; Castriotta, L.; Ladd, B.; Markovets, A.; Beran, G.; Ren, Y.; Zhou, F.; Adam, A.; Zinda, M.; et al. Acquired savolitinib resistance in non-small cell lung cancer arises via multiple mechanisms that converge on MET-independent mTOR and MYC activation. Oncotarget 2016, 7, 57651–57670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egile, C.; Kenigsberg, M.; Delaisi, C.; Begassat, F.; Do-Vale, V.; Messtadier, J.; Bonche, F.; Benard, T.; Nicolas, J.P.; Valense, S.; et al. The selective intravenous inhibitor of the MET tyrosine kinase SAR125844 inhibits tumor growth in MET-amplified cancer. Mol. Cancer Ther. 2015, 14, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, A.; Kenigsberg, M.; Rak, A.; Vallee, F.; Houtmann, J.; Lowinski, M.; Capdevila, C.; Khider, J.; Albert, E.; Martinet, N.; et al. Discovery and pharmacokinetic and pharmacological properties of the potent and selective MET kinase inhibitor 1-{6-[6-(4-fluorophenyl)-[1,2,4]triazolo[4,3-b]pyridazin-3-ylsulfanyl]benzothiazole-2-yl}-3-(2-morpholin-4-ylethyl)urea (SAR125844). J. Med. Chem. 2016, 59, 7066–7074. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Kim, M.; Yokota, T.; Goto, M.; Satoh, T.; Ahn, J.H.; Kim, S.H.; Assadourin, S.; Gomez, C.; Harmois, M.; et al. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer. Oncotarget 2017, 8, 79546–79555. [Google Scholar] [CrossRef] [PubMed]
- Bladt, F.; Faden, B.; Friese-Hamim, M.; Knuehl, C.; Wilm, C.; Fittschen, C.; Gradler, U.; Meyring, M.; Dorsch, D.; Jaehrling, F.; et al. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin. Cancer Res. 2013, 19, 2941–2951. [Google Scholar] [CrossRef] [PubMed]
- Friese-Hamim, M.; Bladt, F.; Locatelli, G.; Stammberger, U.; Blaukat, A. The selective c-Met inhibitor tepotinib can overcome epidermal growth factor receptor inhibitor resistance mediated by aberrant c-Met activation in NSCLC models. Am. J. Cancer Res. 2017, 7, 962–972. [Google Scholar] [PubMed]
- Liu, X.; Wang, Q.; Yang, G.; Marando, C.; Koblish, H.K.; Hall, L.M.; Fridman, J.S.; Behshad, E.; Wynn, R.; Li, Y.; et al. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin. Cancer Res. 2011, 17, 7127–7138. [Google Scholar] [CrossRef] [PubMed]
- Lara, M.S.; Holland, W.S.; Chinn, D.; Bursih, R.A.; Lara, P.N.; Gandara, D.R.; Kelly, K.; Mack, P.C. Preclinical evaluation of MET inhibitor INC-280 with and without the epidermal growth factor receptor inhibitor erlotinib in non-small cell lung cancer. Clin. Lung Cancer 2017, 18, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Neal, J.W.; Dahlberg, S.E.; Wakalee, H.A.; Aisner, S.C.; Bowden, M.; Huang, Y.; Carbone, D.P.; Gerster, G.J.; Lerner, E.L.; et al. Erlotinib, cabozantinib or erlotinib plus cabozantinib as second line or third line treatment of patients with EGFR wild-type advanced non-small cell lung cancer 9ECOG-ACRIN 1512): A randomized, controlled, open-label, multicenter, phase 2 trial. Lancet Oncol. 2016, 17, 1661–1671. [Google Scholar] [CrossRef]
- Engstrom, L.D.; Aranda, R.; Lee, M.; Tovar, E.A.; Essenburg, C.J.; Madaj, Z.; Chiang, H.; Briere, D.; Hallin, J.; Lopez-Cass, P.P.; et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET exon 14 mutations and overcomes mutation-mediated resistance to Type I MET inhibitors in nonclinical models. Clin. Cancer Res. 2017, 23, 6661–6672. [Google Scholar] [CrossRef] [PubMed]
- Michieli, P.; Mazzone, M.; Basilico, C.; Cavassa, S.; Sottile, A.; Naldini, L.; Comoglio, P.M. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 2004, 6, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Merchant, M.; Ma, X.; Maun, H.R.; Zheng, Z.; Peng, J.; Romero, M.; Huang, A.; Yang, N.Y.; Nishimura, M.; Greve, J.; et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc. Natl. Acad. Sci. USA 2013, 110, E2987–E2996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgia, R.; Patel, P.; Bothos, J.; Yu, W.; Eppler, S.; Hegde, P.; Bai, S.; Kaur, S.; Nijem, I.; Catenacci, D.V.; et al. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin. Cancer Res. 2014, 20, 1666–1675. [Google Scholar] [CrossRef] [PubMed]
- Spigel, D.R.; Ervin, T.J.; Ramlau, R.A.; Daniel, D.B.; Goldschmidt, J.H.; Blumenschein, G.R.; Krzakowski, M.J.; Robinet, G.; Godbert, B.; Barlesi, F.; et al. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 2013, 31, 4105–4114. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, H.; Yu, W.; Zha, J.; Pandita, A.; Penuel, E.; Rangell, L.; Raja, R.; Mohan, S.; Patel, R.; Desai, R.; et al. Biomarker analyses from a placebo-controlled phase II study evaluating Erlotinib ± Onartuzumab in advanced non–small cell lung cancer: MET expression levels are predictive of patient benefit. Clin. Cancer Res. 2014, 20, 4488–4498. [Google Scholar] [CrossRef] [PubMed]
- Brower, V. Onartuzumab ineffective in non-small cell lung cancer. Lancet Oncol. 2016, 18, e66. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, W.; Wortinger, M.A.; Yan, S.B.; Cornwell, P.; Peek, V.L.; Stephen, J.R.; Tetreault, J.W.; Xia, J.; Manro, J.R.; et al. LY2875358, a neutralizing and internalizing anti-MET bivalent antibody, inhibits HGF-dependent and HGF-independent MET activation and tumor growth. Clin. Cancer Res. 2014, 20, 6059–6070. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L.S.; Goldman, J.W.; Algazi, A.P.; Turner, P.K.; Moser, B.; Hu, T.; Wang, S.A.; Tuttle, J.; Wacheck, V.; Woolridge, J.E.; et al. A first-in-human phase I study of a bivalent MET antibody, Emibetuzumab (LY2875358), as monotherapy and in combination with erlotinib in advanced cancer. Clin. Cancer Res. 2017, 23, 1910–1919. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, A.; Gordon, M.; Tsai, F.; Papadopoulous, K.; Rasco, D.; Beeram, S.M.; Fu, S.; Janku, F.; Hynes, S.M.; Gundala, S.R.; et al. A phase 1 study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother. Pharmacol. 2018. [Google Scholar] [CrossRef]
- Moores, S.L.; Chiu, M.L.; Bushey, B.S.; Chevalier, K.; Luistro, L.; Dorn, K.; Brezski, R.J.; Haytko, P.; Kelly, T.; Wu, S.J.; et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor–resistant lung tumors. Cancer Res. 2016, 76, 3942–3953. [Google Scholar] [CrossRef] [PubMed]
- Emdal, K.B.; Dittmann, A.; Reddy, R.J.; Lescarbeau, R.S.; Moores, S.L.; Laquerre, S.; White, F.M. Characterization of in vivo resistance to osimertinib and JNJ-61186372, an EGFR/Met bispecific antibody, reveals unique and consensus mechanisms of resistance. Mol. Cancer Ther. 2017, 16, 2572–2585. [Google Scholar] [CrossRef] [PubMed]
- Jarantow, S.W.; Bushey, B.S.; Pardinas, J.R.; Boakye, K.; Lacy, E.R.; Sanders, R.; Sepulveda, M.A.; Moores, S.L.; Chiu, M.L. Impact of cell-surface antigen expression on target engagement and function of an epidermal growth factor receptor × c-MET bispecific antibody. J. Biol. Chem. 2015, 290, 24689–24704. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-S.; Kang, S.; Kim, K.-A.; Song, Y.-J.; Cheong, K.H.; Cha, H.-Y.; Kim, C.H. Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGR-1 expression. Cell Death Dis. 2014, 5, e1159. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Goetsch, L.; Tucker, L.; Zhang, Q.; Gonzalez, A.; Vaidya, K.S.; Oleksijew, A.; Boghaert, E.; Minghao, S.; Sokolova, I.; et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer 2016, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Burgess, T.L.; Sun, J.; Meyer, S.; Tsuruda, T.S.; Sun, J.; Elliott, G.; Chen, Q.; Haniu, M.; Barron, W.F.; Juan, T.; et al. Biochemical characterization of AMG 102: A neutralizing, fully human monoclonal antibody to human and nonhuman primate hepatocyte growth factor. Mol. Cancer Ther. 2010, 9, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Iveson, T.; Donehower, R.C.; Davidenko, I.; Tjulandin, S.; Deptala, A.; Harrison, M.; Nimi, S.; Lakshmaiah, K.; Thomas, A.; Jiang, Y.; et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: An open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol. 2014, 15, 1007–1018. [Google Scholar] [CrossRef]
- Cunningham, D.; Tebbutt, N.C.; Davidenko, I.; Murad, A.M.; Al-Batran, S.-E.; Ilson, D.H.; Tjulandin, S.; Gotovkin, E.; Karaszewska, B.; Abdulaziz, M.; et al. Phase III, randomized, double-blind, multicenter, placebo (P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced MET-positive (pos) gastric or gastroesophageal junction (G/GEJ) cancer: RILOMET-1 study. J. Clin. Oncol. 2015, 33. [Google Scholar] [CrossRef]
- Tarhini, A.A.; Rafique, I.; Floros, T.; Tran, P.; Gooding, W.E.; Villaruz, L.C.; Burns, T.E.; Friedland, D.M.; Pertro, D.P.; Farooqui, M.; et al. Phase 1/2 study of rilotumumab (AMG 102), a hepatocyte growth factor inhibitor, and erlotinib in patients with advanced non-small cell lung cancer. Cancer 2017, 123, 2936–2944. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, A.; Weiss, G.J.; Papadopoulos, K.P.; Hofmeister, C.C.; Tibes, R.; Tolcher, A.; Issacs, R.; Jac, J.; Han, M.; Payumo, F.C.; et al. Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br. J. Cancer 2014, 111, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elez, M.E.; Herranz, M.; Rico, I.; Prudkin, L.; Andreu, J.; Mateos, J.; Carreras, M.; Han, M.; Gifford, J.; Credi, M.; et al. A pharmacodynamic/pharmacokinetic study of ficlatuzumab in patients with advanced solid tumors who have liver metastases. Clin. Cancer Res. 2014, 20, 2793–2804. [Google Scholar]
- Mok, T.S.K.; Geater, S.L.; Su, W.C.; Tan, E.H.; Yang, J.C.; Chang, G.C.; Han, M.; Komarnitsky, P.; Payumo, F.; Garrus, J.E.; et al. A randomized phase 2 study comparing the combination of ficlatuzumab and gefitinib with gefitinib alone in Asian patients with stage pulmonaryadenocarcinoma. J. Thorac. Oncol. 2016, 11, 1736–1744. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, W.; Okamoto, I.; Tanaka, K.; Hatashita, E.; Yamada, Y.; Kuwata, K.; Yamaguchi, H.; Arao, T.; Nishio, K.; Fukoka, M.; et al. TAK-701, a humanized monoclonal antibody to hepatocyte growth factor, reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer with an EGFR mutation. Mol. Cancer Ther. 2010, 9, 2785–2792. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Hur, Y.; Ryu, E.-K.; Rhim, J.-H.; Choi, C.Y.; Baek, C.-M.; Lee, J.H.; Chung, J. A neutralizable epitope is induced on HGF upon its interaction with its receptor cMet. Biochem. Biophys. Res. Commun. 2007, 354, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.K.; Kang, J.-H.; Kim, B.; Park, B.H.; Shin, K.-J.; Song, S.-W.; Kim, J.J.; Kim, H.M.; Lee, S.J.; Oh, S.H. Humanized anti-hepatocyte growth factor (HGF) antibody suppresses innate irinotecan (CPT-11) resistance induced by fibroblast-derived HGF. Oncotarget 2015, 6, 24047–24060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedler, U.; Ekawardhani, S.; Cornelius, A.; Gilboy, P.; Bakker, T.R.; Dolado, I.; Stumpp, M.T.; Dawson, K.M. MP0250, a VEGF and HGF neutralizing DARPin® molecule shows high anti-tumor efficacy in mouse xenograft and patient-derived tumor models. Oncotarget 2017, 8, 98371–98383. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, A.; Circosta, P.; Granziero, L.; Mazzone, M.; Pisacane, A.; Fenoglio, S.; Comoglio, P.M.; Giordana, S.; et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc. Natl. Acad. Sci. USA 2006, 103, 5090–5095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacchiana, G.; Chiriaco, C.; Stella, M.C.; Petronzelli, F.; De Santis, R.; Galluzzo, M.; Carminati, P.; Comoglio, P.M.; Michieli, P.; Vigna, E. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J. Biol. Chem. 2010, 285, 36149–36157. [Google Scholar] [CrossRef] [PubMed]
- Vigna, E.; Pacchiana, G.; Chiriaco, C.; Cignetto, S.; Fontani, L.; Michieli, P.; Comoglio, P.M. Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. J. Mol. Med. 2014, 92, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Cignetto, S.; Modica, C.; Chiriaco, C.; Fontani, L.; Milla, P.; Michieli, P.; Comoglio, P.M.; Vigna, E. Dual constant domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody. Mol. Oncol. 2016, 10, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Gimenez-Xavier, P.; Pros, E.; Bonastre, E.; Moran, S.; Aza, A.; Grana, O.; Gomez-Lopez, G.; Derdak, S.; Dabad, M.; Esteve-Codina, A. Genomic and molecular screenings identify different mechanisms for acquired resistance to MET inhibitors in lung cancer cells. Mol. Cancer Ther. 2017, 16, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; McTigue, M.A.; Rogers, A.; Lifshits, E.; Christensen, J.G.; Janne, P.A.; Engelman, J.A. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Res. 2011, 71, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Botting, G.M.; Rastogi, I.; Chhabra, G.; Niend, M.; Puri, N. Mechanism of resistance and novel targets mediating resistance to EGFR and c-Met tyrosine kinase inhibitors in non-small cell lung cancer. PLoS ONE 2015, 10, e0136155. [Google Scholar] [CrossRef] [PubMed]
- Pennacchietti, S.; Cazzanti, M.; Bertotti, A.; Rideout, W.M.; Han, M.; Gyuris, J.; Perara, T.; Comoglio, P.M.; Trusolino, L.; Michieli, P. Microenvironment-derived HGF overcomes genetically determined sensitivity to anti-MET drugs. Cancer Res. 2014, 74, 6598–6609. [Google Scholar] [CrossRef] [PubMed]
- Straussman, R.; Morikawa, T.; Shee, K.; Barzily-Rokni, M.; Qian, Z.R.; Du, J.; Davis, A.; Mogare, M.M.; Gould, J.; Fredrick, D.T.; et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012, 487, 500–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Janne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2005, 352, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007, 316, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Wang, W.; Li, Q.; Matsumoto, K.; Sakurama, H.; Nakamura, T.; Ogino, H.; Kakiuchi, S.; Hanibuchi, M.; Nishioka, Y.; et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor activating mutations. Cancer Res. 2008, 68, 9479–9487. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, H.; Tsukaguchi, T.; Hiroshima, S.; Kodama, T.; Kobayashi, T.; Fukami, T.A.; Oikawa, N.; Tsukada, T.; Ishii, N.; Aoki, Y. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 2011, 19, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Isozaki, H.; Ichihara, E.; Takigawa, N.; Ohashi, K.; Ochi, N.; Yasugi, M.; Nonomiya, T.; Yamane, H.; Sakai, K.; Matsumota, K.; et al. Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res. 2016, 76, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
Agent(s) and Mechanism | Trial Phase | Endpoints | Patient Population/Indication | Study Design | Clinical Trial Identifier and Status Source: www.Clinicaltrials.gov |
---|---|---|---|---|---|
Capmatinib (INCB28060)c-Met ATP-competitive inhibitor | 1 | Safety, tolerability, PK | c-MET-dysregulated advanced solid tumors | Open Label, Dose Escalation Study of Tablet Formulation | NCT02925104 Status: Recruiting |
Capmatinib | 1 | Safety | Malignant NSCLC with MET exon 14 skipping alteration | Capmatinib oral daily (50–740 mg/m2) 21-day cycles | NCT02750215 Status: Active, not recruiting |
Cabozantinib (XL184) c-Met, VEGFR2, and RET ATP-competitive inhibitor | 2 | Efficacy | Advanced or metastatic solid tumors | All subjects start cabozantinib at 40 mg. Those who tolerate 40 mg for 2 cycles will escalate to 60 mg | NCT02101736 Status: Active, not recruiting |
Cabozantinib (XL184) | 2 | Safety/efficacy | Advanced NSCLC, RET, ROS1, or NTRK fusion-positive | Initial dose of 60 mg orally daily for 28-day cycles | NCT01639508 Status: Recruiting |
BMS-777607 (ASLAN002) RON and c-Met ATP-competitive inhibitor | 1 | Safety | Advanced or metastatic solid tumors | Oral daily doses of 100 mg, 200 mg, 300 mg, 450 mg, or 600 mg | NCT01721148 Status: Completed Safety profile acceptable Down-modulation of a RON biomarker (CTX) found [30] |
Volitinib (HMPL-504) c-Met ATP-competitive inhibitor | 1 | Safety/efficacy | Advanced solid tumors | Oral tablet of 25 mg, 100 mg and 200 mg, once daily or 2 times a day | NCT01985555 Status: Active Patients with c-Met dysregulation showed responses [31] |
Volitinib | 1 | Safety, PK, Efficacy | EGFR mutation-positive NSCLC patients who progressed on EGFR tyrosine kinase inhibitor | Volitinib at 600 or 800 mg orally once daily Gefitinib at 250 mg orally once daily | NCT02374645 Status: Active, not recruiting |
Tepotinib (EMD1214063) c-Met ATP-competitive inhibitor plus Gefitinib (EGFR TKI) | 2 | Efficacy | Advanced NSCLC | Tepotinib at 300 or 500 mg orally once daily over a 21-day cycle Gefitinib at 250 mg orally once daily over a 21-day cycle | NCT01982955 Status: Active, not recruiting |
Tepotinib | 2 | Efficacy/Safety | Advanced NSCLC with MET Exon 14 Skipping Alterations | 500 mg once orally daily in 21-day cycles | NCT02864992 Status: Recruiting |
Foretinib (GSK1363089) multi-kinase ATP-competitive inhibitor of c-Met and VEGFRs plus Erlotinib (EGFR TKI) | 1 | Safety | Previously treated advanced NSCLC unselected for EGFR genotype | 150 mg erlotinib once daily and 30–45 mg foretinib added on day 15 of cycle 1 | NCT01068587 Status: Completed Responses seen in 17.8% of evaluable patients. Baseline c-Met expression associated with response. Incremental toxicity seen [32] |
Glesatinib (MGCD265) c-Met and multiple kinase ATP-competitive inhibitor plus Nivolumab (PD-1 blocker) | 2 | Safety/Efficacy | Advanced NSCLC, previously treated with platinum doublet chemotherapy and a checkpoint inhibitor | Twice daily oral glesatinib (two doses tested) Nivolumab 240 mg IV every 2 weeks | NCT02954991 Status: Recruiting |
SAR125844 c-Met selective ATP-competitive inhibitor | 1 | Safety, PK, Preliminary Efficacy | Advanced solid tumors with MET amplification or phospho-c-Met expression | Escalating doses (50–740 mg/m2) given IV weekly for 6 weeks or until progression | NCT02435121 Status: Completed Drug was well tolerated and anti-tumor activity was observed only in MET amplified patients [33] |
Emibetuzumab (LY2875358) anti-c-Met bivalent antibody plus Ramucirumab (anti-VEGFR2 antibody) | 1 | Safety | Advanced or metastatic solid tumors | Dose escalation of IV emibetuzumab, in combination with a fixed dose of IV ramucirumab on days 1 and 15 of every 28 day cycle | NCT02082210 Status: Active, not recruiting |
Emibetuzumab Plus Erlotinib | 22 | Efficacy | NSCLC with activating EGFR mutations | Lead In: 8 weeks of oral daily Erlotinib, 150 mg Randomization: Emibetuzumab (20 mg) given IV on Days 1 and 15 of 28-day cycles, with and without Erlotinib. | NCT01897480 Status: Active, not recruiting |
Rilotumumab (AMG 102) Human IgG2 monoclonal neutralizing antibody to HGF | 22 | Efficacy | Stage IV SCLC | Rilotumumab 15 mg/kg given with etoposide and carboplatin or cisplatin | NCT00791154 Status: Completed Outcomes not improved although low HGF levels associated with improved survival [34] |
YYB-101 Neutralizing humanized monoclonal Ab against HGF | 11 | Safety/Efficacy | Solid tumors | Increasing dose (0.3 mg/kg to 5 mg/kg), IV on Day 1 and Day 29, followed by every 2 weeks. Dose-expansion cohort: MTD (or RP2D), IV infusion every 2 weeks | NCT02499224 Status: Recruiting |
Ficlatuzumab (AV-299) humanized IgG1 monoclonal antibody against HGFplus Gefitinib | 1b | Safety/Efficacy | Asian NSCLC patients, unselected for EGFR mutation | Ficlatuzumab 10 mg/kg or 20 mg/kg IV on days 1 and 15 of a 28 day cycle. Gefitinb 250 mg orally daily | NCT Status: Completed Dose-related activity seen in patients with no prior EGFR TKI treatment, some in EGFR WT patients [35] |
TAK-701 humanized monoclonal antibody to HGF | 11 | Safety/Efficacy | Advanced solid tumors | 2, 5, 10, or 20 mg/kg IV. Cycle 1: single dose at 2x the dose assignment; Cycle 2 and beyond: dose once every two weeks | NCT00831896 Status: Completed TAK-701 was well tolerated [36] |
SAIT301 Monoclonal Ab against c-Met that induces c-Met degradation | 11 | Safety/Efficacy | Solid tumors | 8 cohorts comprised of 3 to 6 subjects each. SAIT301 will be administered according to a 3 + 3 design | NCT02296879 Status: Completed, No results posted |
LY3164530 c-Met/EGFR bispecific antibody | 11 | Safety/Efficacy | Solid tumors | LY3164530 in escalating dose cohorts given IV once on Days 1, 8, 15, and 22 of a 28-day cycle | NCT02221882 Status: Completed, No results posted |
JNJ-61186372 c-Met/EGFR bispecific antibody | 11 | Safety/Efficacy | NSCLC | Increasing dose levels for 28 day cycles. The dose will be escalated until the MDT | NCT02609776 Status: Recruiting |
ARGX-111 c-Met-targeting human monoclonal Ab that activates antibody-dependent cellular cytotoxicity | 11 | Safety/Efficacy | c-MET-overexpressing cancer | Doses given were-0.3 mg/kg, 1.0 mg/kg, 3.0 mg/kg and 10 mg/kg | NCT02055066 Status: Completed Good safety profile, some activity in patients with c-Met abnormalities [37] |
MP0250 Dual anti-HGF/anti-VEGF antibody mimetic | 22 | Safety/Efficacy | Advanced solid tumors | IV infusion at up to six dose levels, every other week for up to 24 infusions | NCT02194426 Status: Active, Not recruiting |
ABT-700 c-Met monoclonal antibody | 11 | Safety/efficacy | Advanced solid tumors with MET amplification or overexpression | IV infusion at escalating doses in 21-day cycles ABT-700 will also be given in combination with other therapies in 3 cohorts | NCT01472016 Status: Completed No results posted |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, O.; Farooqui, M.; Siegfried, J.M. Status of Agents Targeting the HGF/c-Met Axis in Lung Cancer. Cancers 2018, 10, 280. https://doi.org/10.3390/cancers10090280
Miranda O, Farooqui M, Siegfried JM. Status of Agents Targeting the HGF/c-Met Axis in Lung Cancer. Cancers. 2018; 10(9):280. https://doi.org/10.3390/cancers10090280
Chicago/Turabian StyleMiranda, Oshin, Mariya Farooqui, and Jill M. Siegfried. 2018. "Status of Agents Targeting the HGF/c-Met Axis in Lung Cancer" Cancers 10, no. 9: 280. https://doi.org/10.3390/cancers10090280
APA StyleMiranda, O., Farooqui, M., & Siegfried, J. M. (2018). Status of Agents Targeting the HGF/c-Met Axis in Lung Cancer. Cancers, 10(9), 280. https://doi.org/10.3390/cancers10090280