Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma
Abstract
:1. Introduction
2. Results
2.1. Location-Dependent IDH1 Mutation Status and Treatment-Inherent Differences
2.2. Location-Dependent Growth and Recurrence
2.3. Location-Dependent Patient Outcome
3. Discussion
4. Materials and Methods
4.1. Patient Cohort
4.2. Radiographic Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GBM | glioblastoma |
WHO | World Health Organization |
TMZ | temozolomide |
LTS | long-term survivor |
NSC | neural stem cell |
NPC | neural progenitor cell |
SVZ | subventricular zone |
PFS | progression-free survival |
OS | overall survival |
IDH1 | isocitrate dehydrogenase 1 |
CEL | contrast-enhancing lesion |
KPS | Karnofsky performance score |
GTR | gross total resection |
EOR | extent of resection |
STS | short-term survivor |
MGMT | O6-methylguanin-DNA-methyltransferase |
CE | contrast-enhancing |
T1-w | T1-weighted |
FLAIR | fluid-attenuated inversion recovery |
RT | radiotherapy |
HR | hazard ratio |
CI | confidence intervall |
PACS | Picture Archiving and Communication System |
RANO | Response Assessment in Neuro-Oncology |
MPRAGE | magnetization-prepared rapid gradient-echo |
References
- Stupp, R.; Mason, W.P.; Van Den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Krex, D.; Klink, B.; Hartmann, C.; von Deimling, A.; Pietsch, T.; Simon, M.; Sabel, M.; Steinbach, J.P.; Heese, O.; Reifenberger, G.; et al. Long-term survival with glioblastoma multiforme. Brain J. Neurol. 2007, 130, 2596–2606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanai, N.; Tramontin, A.D.; Quinones-Hinojosa, A.; Barbaro, N.M.; Gupta, N.; Kunwar, S.; Lawton, M.T.; McDermott, M.W.; Parsa, A.T.; Verdugo, J.M.; et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004, 427, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Alvarez-Buylla, A.; Berger, M.S. Neural stem cells and the origin of gliomas. N. Engl. J. Med. 2005, 353, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Llaguno, S.A.; Chen, J.; Kwon, C.H.; Jackson, E.L.; Li, Y.; Burns, D.K.; Alvarez-Buylla, A.; Parada, L.F. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 2009, 15, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.H.; Zhao, D.; Chen, J.; Alcantara, S.; Li, Y.; Burns, D.K.; Mason, R.P.; Eva, Y.H.; Wu, H.; Parada, L.F. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res. 2008, 68, 3286–3294. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guignard, F.; Zhao, D.; Liu, L.; Burns, D.K.; Mason, R.P.; Messing, A.; Parada, L.F. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 2005, 8, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Holland, E.C.; Celestino, J.; Dai, C.; Schaefer, L.; Sawaya, R.E.; Fuller, G.N. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 2000, 25, 55–57. [Google Scholar] [CrossRef]
- Piccirillo, S.G.; Dietz, S.; Madhu, B.; Griffiths, J.; Price, S.J.; Collins, V.P.; Watts, C. Fluorescence-guided surgical sampling of glioblastoma identifies phenotypically distinct tumour-initiating cell populations in the tumour mass and margin. Br. J. Cancer 2012, 107, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Gupta, T.; Nair, V.; Jalali, R. Stem cell niche irradiation in glioblastoma: Providing a ray of hope? CNS Oncol. 2014, 3, 367–376. [Google Scholar] [CrossRef]
- Chaichana, K.L.; McGirt, M.J.; Frazier, J.; Attenello, F.; Guerrero-Cazares, H.; Quinones-Hinojosa, A. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J. Neurooncol. 2008, 89, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Kappadakunnel, M.; Eskin, A.; Dong, J.; Nelson, S.F.; Mischel, P.S.; Liau, L.M.; Ngheimphu, P.; Lai, A.; Cloughesy, T.F.; Goldin, J.; et al. Stem cell associated gene expression in glioblastoma multiforme: Relationship to survival and the subventricular zone. J. Neurooncol. 2010, 96, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Jafri, N.F.; Clarke, J.L.; Weinberg, V.; Barani, I.J.; Cha, S. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro-Oncol. 2013, 15, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Young, G.S.; Macklin, E.A.; Setayesh, K.; Lawson, J.D.; Wen, P.Y.; Norden, A.D.; Drappatz, J.; Kesari, S. Longitudinal MRI evidence for decreased survival among periventricular glioblastoma. J. Neurooncol. 2011, 104, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Adeberg, S.; Bostel, T.; König, L.; Welzel, T.; Debus, J.; Combs, S.E. A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: A predictive factor for survival? Radiat. Oncol. Lond. Engl. 2014, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Mistry, A.M.; Hale, A.T.; Chambless, L.B.; Weaver, K.D.; Thompson, R.C.; Ihrie, R.A. Influence of glioblastoma contact with the lateral ventricle on survival: A meta-analysis. J. Neurooncol. 2017, 131, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Noushmehr, H.; Weisenberger, D.J.; Diefes, K.; Phillips, H.S.; Pujara, K.; Berman, B.P.; Pan, F.; Pelloski, C.E.; Sulman, E.P.; Bhat, K.P.; et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010, 17, 510–522. [Google Scholar] [CrossRef]
- Turcan, S.; Rohle, D.; Goenka, A.; Walsh, L.A.; Fang, F.; Yilmaz, E.; Campos, C.; Fabius, A.W.; Lu, C.; Ward, P.S.; et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012, 483, 479–483. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Lim, D.A.; Cha, S.; Mayo, M.C.; Chen, M.H.; Keles, E.; VandenBerg, S.; Berger, M.S. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro-Oncol. 2007, 9, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Adeberg, S.; König, L.; Bostel, T.; Harrabi, S.; Welzel, T.; Debus, J.; Combs, S.E. Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Lee, Y.; Miller, R.; Castillo, M. Glioblastoma multiforme: Relationship to subventricular zone and recurrence. Neuroradiol. J. 2013, 26, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Bohman, L.E.; Swanson, K.R.; Moore, J.L.; Rockne, R.; Mandigo, C.; Hankinson, T.; Assanah, M.; Canoll, P.; Bruce, J.N. Magnetic resonance imaging characteristics of glioblastoma multiforme: Implications for understanding glioma ontogeny. Neurosurgery 2010, 67, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Batista, K.M.; Vega, I.F.; de Eulate-Beramendi, S.A.; Morales, J.C.; Kurbanov, A.; Asnel, D.; Meilan, A.; Astudillo, A. Prognostic significance of the markers IDH1 and YKL40 related to the subventricular zone. Folia Neuropathol. 2015, 53, 52–59. [Google Scholar] [CrossRef]
- Patil, C.G.; Yi, A.; Elramsisy, A.; Hu, J.; Mukherjee, D.; Irvin, D.K.; John, S.Y.; Bannykh, S.I.; Black, K.L.; Nuño, M. Prognosis of patients with multifocal glioblastoma: A case-control study. J. Neurosurg. 2012, 117, 705–711. [Google Scholar] [CrossRef]
- Thomas, R.P.; Xu, L.W.; Lober, R.M.; Li, G.; Nagpal, S. The incidence and significance of multiple lesions in glioblastoma. J. Neurooncol. 2013, 112, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Lasocki, A.; Gaillard, F.; Tacey, M.; Drummond, K.; Stuckey, S. Multifocal and multicentric glioblastoma: Improved characterisation with FLAIR imaging and prognostic implications. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2016, 31, 92–98. [Google Scholar] [CrossRef]
- Lee, J.K.; Wang, J.; Sa, J.K.; Ladewig, E.; Lee, H.O.; Lee, I.H.; Kang, H.J.; Rosenbloom, D.S.; Camara, P.G.; Liu, Z.; et al. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat. Genet. 2017, 49, 594–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-El-Ardat, K.; Seifert, M.; Becker, K.; Eisenreich, S.; Lehmann, M.; Hackmann, K.; Rump, A.; Meijer, G.; Carvalho, B.; Temme, A.; et al. Comprehensive molecular characterization of multifocal glioblastoma proves its monoclonal origin and reveals novel insights into clonal evolution and heterogeneity of glioblastomas. Neuro-Oncol. 2017, 19, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C. Radiographic patterns of relapse in glioblastoma. J. Neurooncol. 2011, 101, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Petrecca, K.; Guiot, M.-C.; Panet-Raymond, V.; Souhami, L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J. Neurooncol. 2013, 111, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Tosoni, A.; Franceschi, E.; Sotti, G.; Frezza, G.; Amista, P.; Morandi, L.; Spagnolli, F.; Ermani, M. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: Correlation with MGMT promoter methylation status. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 1275–1279. [Google Scholar] [CrossRef]
- De Bonis, P.; Anile, C.; Pompucci, A.; Fiorentino, A.; Balducci, M.; Chiesa, S.; Lauriola, L.; Maira, G.; Mangiola, A. The influence of surgery on recurrence pattern of glioblastoma. Clin. Neurol. Neurosurg. 2013, 115, 37–43. [Google Scholar] [CrossRef]
- Tejada, S.; Díez-Valle, R.; Aldave, G.; Marigil, M.; de Gallego, J.; Domínguez, P.D. Factors associated with a higher rate of distant failure after primary treatment for glioblastoma. J. Neurooncol. 2014, 116, 169–175. [Google Scholar] [CrossRef]
- Kim, J.; Lee, I.H.; Cho, H.J.; Park, C.K.; Jung, Y.S.; Kim, Y.; Nam, S.H.; Kim, B.S.; Johnson, M.D.; Kong, D.S.; et al. Spatiotemporal Evolution of the Primary Glioblastoma Genome. Cancer Cell 2015, 28, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.M.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma: A Randomized Clinical Trial. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef]
- Jungk, C.; Mock, A.; Exner, J.; Geisenberger, C.; Warta, R.; Capper, D.; Abdollahi, A.; Friauf, S.; Lahrmann, B.; Grabe, N.; et al. Spatial transcriptome analysis reveals Notch pathway-associated prognostic markers in IDH1 wild-type glioblastoma involving the subventricular zone. BMC Med. 2016, 14, 170. [Google Scholar] [CrossRef] [PubMed]
- Capper, D.; Weißert, S.; Balss, J.; Habel, A.; Meyer, J.; Jäger, D.; Ackermann, U.; Tessmer, C.; Korshunov, A.; Zentgraf, H.; et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 2010, 20, 245–254. [Google Scholar] [CrossRef]
- Hartmann, C.; Meyer, J.; Balss, J.; Capper, D.; Mueller, W.; Christians, A.; Felsberg, J.; Wolter, M.; Mawrin, C.; Wick, W.; et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: A study of 1,010 diffuse gliomas. Acta Neuropathol. 2009, 118, 469–474. [Google Scholar] [CrossRef]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; DeGroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
Patients; n (%) | Group I | Group II | Group III | Group IV | Total | All | SVZ +/− | cortex +/− | II vs. III |
---|---|---|---|---|---|---|---|---|---|
96 (34) | 53 (18) | 105 (37) | 31 (11) | 285 (100) | p-value | ||||
Age (years); median (range) | 67 (20–84) | 60 (30–81) | 61 (36–87) | 64 (38–78) | 64 (20–87) | 0.095 | 0.404 | 0.218 | 0.443 |
Sex; n (male/female) | 58/38 | 34/19 | 67/38 | 19/12 | 178/107 | 0.953 | 0.808 | 1.0 | 1.0 |
KPS pre-op; median (range) | 85 (20–100) | 80 (30–100) | 90 (40–100) | 90 (50–100) | 90 (20–100) | 0.002 | <0.001 | 0.092 | 0.002 |
Survival Data | |||||||||
Death; n (%) | 93 (97) | 49 (91) | 95 (90) | 25 (81) | 272 (95) | 0.032 | 0.031 | 0.152 | 0.775 |
OS (months); median (range) | 10 (0–69) | 8 (0–83) | 14 (0–99) | 18 (0–68) | 12 (0–99) | <0.001 | <0.0001 | 0.701 | 0.018 |
PFS (months); median (range) | 4.5 (0–57) | 3 (0–43) | 4 (0–90) | 5 (0–57) | 4 (0–90) | 0.197 | 0.189 | 0.978 | 0.271 |
Survival after relapse (months); median (range) | 5 (0–49) | 6 (0–43) | 9 (0–78) | 11.5 (0–63) | 8 (0–78) | 0.041 | 0.032 | 0.286 | 0.91 |
LTS (> 36 months); n (%) | 7 (7) | 4 (8) | 11 (10) | 5 (16) | 27 (9) | 0.478 | 0.229 | 0.66 | 0.775 |
STS (> 6 < 10 months); n (%) | 21 (22) | 11 (20) | 16 (15) | 4 (13) | 52 (18) | 0.512 | 0.167 | 1.0 | 0.381 |
Molecular Data (n = 285) | |||||||||
MGMT meth; n (%) - Yes - No - N/A | 96 (100) 32 (33) 24 (25) 40 (42) | 53 (100) 14 (26) 16 (31) 23 (43) | 105 (100) 20 (19) 42 (40) 43 (41) | 31 (100) 9 (29) 12 (39) 10 (32) | 285 (100) 75 (26) 94 (33) 116 (41) | 0.203 | 0.045 | 0.944 | 0.394 |
Radiographic Characteristics at 1st Diagnosis (n = 285) | |||||||||
Multifocal growth; n (%) - CE - FLAIR | 96 (100) 14 (15) 12 (13) | 53 (100) 4 (8) 3 (6) | 105 (100) 18 (17) 19 (18) | 31 (100) 2 (6) 2 (6) | 285 (100) 38 (13) 36 (13) | 0.235 0.100 | 0.602 0.212 | 0.056 0.031 | 0.146 0.049 |
Radiographic Characteristics at Recurrence (n = 187) | |||||||||
Imaging available; n (%) - Yes - No - Alive & no recurrence | 96 (100) 57 (59) 39 (41) 0 (0) | 53 (100) 28 (53) 25 (47) 0 (0) | 105 (100) 83 (79) 20 (19) 2 (2) | 31 (100) 19 (61) 11 (35) 1 (3) | 285 (100) 187 (66) 95 (33) 3 (1) | ||||
Location at recurrence; n (%) - Group I (rec) - Group II (rec) - Group III (rec) - Group IV (rec) | 57 (100) 47 (82) 2 (3.5) 4 (7) 4 (7) | 28 (100) 16 (57) 9 (32) 2 (7) 1 (4) | 83 (100) 24 (29) 8 (9.5) 38 (46) 13 (15.5) | 19 (100) 3 (16) 5 (26) 6 (32) 5 (26) | 187 (100) 90 (48) 24 (13) 50 (27) 23 (12) | <0.0001 | <0.0001 | 0.0003 | <0.0001 |
Recurrence pattern; n (%) - Local - Distant - Local & Distant | 57 (100) 41 (72) 3 (5) 13 (23) | 28 (100) 27 (96) 0 (0) 1 (4) | 83 (100) 51 (61) 8 (10) 24 (29) | 19 (100) 19 (100) 0 (0) 0 (0) | 187 (100) 138 (74) 11 (6) 38 (20) | 0.0001 | 0.078 | <0.0001 | 0.0002 |
Multifocal growth; n (%) - Multifocal CE (rec) - Multifocal FLAIR (rec) | 57 (100) 18 (32) 7 (12) | 28 (100) 2 (7) 2 (7) | 83 (100) 28 (34) 18 (22) | 19 (100) 2 (11) 2 (11) | 187 (100) 50 (27) 29 (15.5) | 0.013 0.193 | 0.409 0.106 | 0.001 0.164 | 0.006 0.096 |
Treatment at 1st Diagnosis (n = 285) | |||||||||
EOR; n (%) - GTR - Partial - Biopsy - Unknown | 96 (100) 19 (20) 62 (64.5) 1 (1) 14 (14.5) | 53 (100) 10 (19) 30 (57) 6 (11) 7 (13) | 105 (100) 49 (47) 42 (40) 3 (3) 11 (10) | 31 (100) 14 (45) 15 (48) 0 (0) 2 (7) | 285 (100) 92 (32) 149 (52) 10 (4) 34 (12) | 0.0005 | <0.0001 | 0.556 | 0.003 |
Adjuvant therapy; n (%) - RT - TMZ concomitant - Stupp - Clinical trial | 96 (100) 77 (80) 46 (48) 22 (23) 29 (30) | 53 (100) 44 (83) 34 (64) 12 (23) 17 (32) | 105 (100) 92 (88) 63 (60) 35 (33) 40 (38) | 31 (100) 27 (87) 19 (61) 10 (32) 8 (26) | 285 (100) 240 (84) 162 (57) 79 (28) 94 (33) | 0.289 0.509 | 0.064 0.451 | 0.773 0.492 | 0.199 0.488 |
Treatment at Recurrence (n = 187) | |||||||||
Salvage-therapy; n (%) - Treatment received - No treatment received - Lost to follow-up - Alive & no recurrence | 57 (100) 50 (88) 30 17 0 | 28 (100) 23 (82) 23 8 0 | 83 (100) 73 (88) 19 14 2 | 19 (100) 17 (89) 4 9 1 | 187 (100) 163 (87) 76 48 3 | 0.008 | 0.004 | 0.037 | 0.002 |
Re-resection; n (%) - GTR - Partial - Unknown | 10 (20) 4 (8) 5 (10) 1 (2) | 5 (22) 2 (9) 2 (9) 0 | 24 (33) 15 (21) 5 (7) 1 (1) | 6 (35) 3 (18) 1 (6) 2 (12) | 45 (28) 24 (15) 13 (8) 4 (2) | 0.24 | 0.194 | 0.45 | 0.538 |
Non-surgical therapies; n (%) - 0 (re-resection only) - 1 - 2–5 | 57 (100) 2 (4) 34 (68) 14 (28) | 28 (100) 1 (4) 13 (57) 9 (39) | 83 (100) 1 (1) 29 (40) 43 (59) | 19 (100) 0 5 (29) 12 (71) | 187 (100) 4 (2) 81 (50) 78 (48) | 0.013 | <0.001 | 0.789 | 0.209 |
Clinical and Radiographic Factors | p-Value | HR | 95% CI |
---|---|---|---|
Overall Survival | |||
SVZ+ (1st diagnosis) | 0.008 ** | 1.434 | 1.099–1.872 |
Age (above median) | 0.036 * | 1.343 | 1.02–1.77 |
KPS pre-operative | 0.110 | 0.993 | 0.985–1.002 |
EOR: STR (1st diagnosis) | <0.0001 *** | 1.923 | 1.423–2.599 |
Intensified Treatment (1st diagnosis) | <0.0001 *** | 0.302 | 0.221–0.412 |
Multifocal disease CE (1st diagnosis) | 0.022 * | 1.56 | 1.067–2.280 |
Progression-Free Survival | |||
SVZ+ (1st diagnosis) | 0.529 | 0.918 | 0.703–1.199 |
EOR: STR (1st diagnosis) | <0.0001 *** | 1.811 | 1.348–2.433 |
Intensified Treatment (1st diagnosis) | <0.0001 *** | 0.431 | 0.322–0.579 |
Multifocal disease FLAIR (1st diagnosis) | 0.013 * | 1.614 | 1.108–2.350 |
Survival after Relapse | |||
SVZ+ (at relapse) | 0.015 * | 1.575 | 1.092–2.273 |
Cortex+ (at relapse) | <0.001 *** | 2.069 | 1.355–3.157 |
Treatment Intensity (at relapse) | <0.001 *** | 0.768 | 0.67–0.88 |
Multifocal disease FLAIR (at relapse) | 0.097 | 1.538 | 0.925–2.558 |
Clinical and Radiographic Factors | p-Value | HR | 95% CI |
---|---|---|---|
Overall Survival | |||
Location group II (1st diagnosis) | 0.007 * | 1.725 | 1.164–2.557 |
Age (above median) | <0.0001 *** | 2.531 | 1.690–3.788 |
KPS pre-operative | 0.139 | 1.009 | 0.997–1.021 |
EOR: STR (1st diagnosis) | <0.001 *** | 2.15 | 1.452–3.184 |
Intensified Treatment (1st diagnosis) | <0.0001 *** | 0.271 | 0.179–0.412 |
Progression-Free Survival | |||
Location group II (1st diagnosis) | 0.432 | 0.848 | 0.563–1.278 |
EOR: STR (1st diagnosis) | 0.003 ** | 1.829 | 1.233–2.712 |
Intensified Treatment (1st diagnosis) | <0.0001 *** | 0.406 | 0.270–0.611 |
Multifocal disease FLAIR (1stdiagnosis) | 0.104 | 1.519 | 0.918–2.514 |
Survival after Relapse | |||
Location group II (at relapse) | 0.148 | 0.623 | 0.328–1.183 |
Treatment Intensity (at relapse) | 0.002 ** | 0.702 | 0.560–0.879 |
Multifocal disease FLAIR (at relapse) | 0.005 ** | 2.966 | 1.399–6.291 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jungk, C.; Warta, R.; Mock, A.; Friauf, S.; Hug, B.; Capper, D.; Abdollahi, A.; Debus, J.; Bendszus, M.; von Deimling, A.; et al. Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma. Cancers 2019, 11, 122. https://doi.org/10.3390/cancers11010122
Jungk C, Warta R, Mock A, Friauf S, Hug B, Capper D, Abdollahi A, Debus J, Bendszus M, von Deimling A, et al. Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma. Cancers. 2019; 11(1):122. https://doi.org/10.3390/cancers11010122
Chicago/Turabian StyleJungk, Christine, Rolf Warta, Andreas Mock, Sara Friauf, Bettina Hug, David Capper, Amir Abdollahi, Jürgen Debus, Martin Bendszus, Andreas von Deimling, and et al. 2019. "Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma" Cancers 11, no. 1: 122. https://doi.org/10.3390/cancers11010122
APA StyleJungk, C., Warta, R., Mock, A., Friauf, S., Hug, B., Capper, D., Abdollahi, A., Debus, J., Bendszus, M., von Deimling, A., Unterberg, A., & Herold-Mende, C. (2019). Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma. Cancers, 11(1), 122. https://doi.org/10.3390/cancers11010122