Predicting VTE in Cancer Patients: Candidate Biomarkers and Risk Assessment Models
Abstract
:1. Introduction
2. VTE Biomarkers
2.1. D-Dimer
2.2. Soluble P-Selectin
2.3. Microparticles
2.4. Inflammatory Markers
2.5. Routine Laboratory Parameters
2.5.1. Hematological Parameters
2.5.2. Biochemical Parameters
3. Current Models for VTE Risk Prediction in Ambulatory Cancer Patients
4. Artificial Intelligence for Cancer-Associated Thrombosis Risk Assessment
5. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Heit, J.A.; Spencer, F.A.; White, R.H. The epidemiology of venous thromboembolism. J. Thromb. Thrombolysis 2016, 41, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crous-Bou, M.; Harrington, L.B.; Kabrhel, C. Environmental and genetic risk factors associated with venous thromboembolism. Semin. Thromb. Hemost. 2016, 42, 808–820. [Google Scholar] [CrossRef] [PubMed]
- Geerts, W.H.; Bergqvist, D.; Pineo, G.F.; Heit, J.A.; Samama, C.M.; Lassen, M.R.; Colwell, C.W. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008, 133, 381S–453S. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, R.; Cohen, A.T.; Combe, S.; Samama, M.M.; Desjardins, L.; Eldor, A.; Janbon, C.; Leizorovicz, A.; Olsson, C.G.; Turpie, A.G.; et al. Risk factors for venous thromboembolism in hospitalized patients with acute medical illness: Analysis of the MEDENOX Study. Arch. Intern. Med. 2004, 164, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Rickles, F.R.; Levine, M.; Edwards, R.L. Hemostatic alterations in cancer patients. Cancer Metastasis Rev. 1992, 11, 237–248. [Google Scholar] [CrossRef]
- Heit, J.A.; O’Fallon, W.M.; Petterson, T.M.; Lohse, C.M.; Silverstein, M.D.; Mohr, D.N.; Melton, L.J., 3rd. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: A population-based study. Arch. Intern. Med. 2002, 162, 1245–1248. [Google Scholar] [CrossRef] [PubMed]
- Dentali, F.; Ageno, W.; Becattini, C.; Galli, L.; Gianni, M.; Riva, N.; Imberti, D.; Squizzato, A.; Venco, A.; Agnelli, G. Prevalence and clinical history of incidental, asymptomatic pulmonary embolism: A meta-analysis. Thromb. Res. 2010, 125, 518–522. [Google Scholar] [CrossRef]
- Moore, R.A.; Adel, N.; Riedel, E.; Bhutani, M.; Feldman, D.R.; Tabbara, N.E.; Soff, G.; Parameswaran, R.; Hassoun, H. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: A large retrospective analysis. J. Clin. Oncol. 2011, 29, 3466–3473. [Google Scholar] [CrossRef]
- Barni, S.; Labianca, R.; Agnelli, G.; Bonizzoni, E.; Verso, M.; Mandalà, M.; Brighenti, M.; Petrelli, F.; Bianchini, C.; Perrone, T.; et al. Chemiotherapy-associated thromboembolic risk in cancer outpatients and effect of nadroparin thromboprophylaxis: Results of a retrospective analysis of the PROTECHT study. J. Transl. Med. 2011, 9, 179. [Google Scholar] [CrossRef]
- Lyman, G.H.; Eckert, L.; Wang, Y.; Wang, H.; Cohen, A. Venous thromboembolism risk in patients with cancer receiving chemotherapy: A real-world analysis. Oncologist 2013, 18, 1321–1329. [Google Scholar] [CrossRef]
- Roselli, M.; Riondino, S.; Mariotti, S.; La Farina, F.; Ferroni, P.; Guadagni, F. Clinical models and biochemical predictors of VTE in lung cancer. Cancer Metastasis Rev. 2014, 33, 771–789. [Google Scholar] [CrossRef] [PubMed]
- Riondino, S.; Del Monte, G.; Fratangeli, F.; Guadagni, F.; Roselli, M.; Ferroni, P. Anti angiogenic drugs, vascular toxicity and thromboembolism in solid cancer. Cardiovasc. Hematol. Agents Med. Chem. 2017, 15, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Riondino, S.; Guadagni, F.; Formica, V.; Ferroni, P.; Roselli, M. Gender differences in cancer-associated venous thromboembolism. Curr. Med. Chem. 2017, 24, 2589–2601. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Lensing, A.W.; Piccioli, A.; Bernardi, E.; Simioni, P.; Girolami, B.; Marchiori, A.; Sabbion, P.; Prins, M.H.; Noventa, F.; et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002, 100, 3484–3488. [Google Scholar] [CrossRef] [Green Version]
- Mandalà, M.; Falanga, A.; Roila, F. Management of venous thromboembolism (VTE) in cancer patients: ESMO Clinical Practice Guidelines. Ann. Oncol. 2011, 22, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Siragusa, S.; Armani, U.; Carpenedo, M.; Falanga, A.; Fulfaro, F.; Imberti, D.; Laurora, R.; Molinari, A.C.; Prisco, D.; Silingardi, M.; et al. Prevention of venous thromboembolism in patients with cancer: Guidelines of the Italian Society for Haemostasis and Thrombosis (SISET). Thromb. Res. 2011, 129, e171–e176. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Akl, E.A.; Crowther, M.; Gutterman, D.D.; Schuünemann, H.J.; American College of Chest Physicians Antithrombotic Therapy and Prevention of Thrombosis Panel. Executive summary: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, 7S–47S. [Google Scholar] [CrossRef] [PubMed]
- Streiff, M.B.; Bockenstedt, P.L.; Cataland, S.R.; Chesney, C.; Eby, C.; Fanikos, J.; Fogerty, A.E.; Gao, S.; Goldhaber, S.Z.; Hassoun, H.; et al. Venous thromboembolic disease. J. Natl. Compr. Cancer Netw. 2013, 11, 1402–1429. [Google Scholar] [CrossRef]
- Farge, D.; Debourdeau, P.; Beckers, M.; Baglin, C.; Bauersachs, R.M.; Brenner, B.; Brilhante, D.; Falanga, A.; Gerotzafias, G.T.; Haim, N.; et al. International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. J. Thromb. Haemost. 2013, 11, 56–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyman, G.H.; Bohlke, K.; Khorana, A.A.; Kuderer, N.M.; Lee, A.Y.; Arcelus, J.I.; Balaban, E.P.; Clarke, J.M.; Flowers, C.R.; Francis, C.W.; et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2015, 33, 654–656. [Google Scholar] [CrossRef]
- Oo, T.H. Outpatient thromboprophylaxis with low-molecular weight heparin in solid tumors: Where do we stand today? J. Thromb. Thrombolysis 2016, 41, 539–540. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansfield, A.S.; Tafur, A.J.; Wang, C.E.; Kourelis, T.V.; Wysokinska, E.M.; Yang, P. Predictors of active cancer thromboembolic outcomes: Validation of the Khorana score among patients with lung cancer. J. Thromb. Haemost. 2016, 14, 1773–1778. [Google Scholar] [CrossRef] [PubMed]
- Noble, S.; Alikhan, R.; Robbins, A.; Macbeth, F.; Hood, K. Predictors of active cancer thromboembolic outcomes: Validation of the Khorana score among patients with lung cancer: Comment. J. Thromb. Haemost. 2017, 15, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Dunkler, D.; Marosi, C.; Chiriac, A.L.; Vormittag, R.; Simanek, R.; Quehenberger, P.; Zielinski, C.; Pabinger, I. Prediction of venous thromboembolism in cancer patients. Blood 2010, 116, 5377–5382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelzer, U.; Sinn, M.; Stieler, J.; Riess, H. Primary pharmacological prevention of thromboembolic events in ambulatory patients with advanced pancreatic cancer treated with chemotherapy? Dtsch. Med. Wochenschr. 2013, 138, 2084–2088. [Google Scholar] [CrossRef] [PubMed]
- Verso, M.; Agnelli, G.; Barni, S.; Gasparini, G.; Labianca, R. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: The Protecht score. Intern. Emerg. Med. 2012, 7, 291–292. [Google Scholar] [CrossRef]
- Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 2006, 166, 458–464. [Google Scholar] [CrossRef]
- Blom, J.W.; Vanderschoot, J.P.; Oostindier, M.J.; Osanto, S.; van der Meer, F.J.; Rosendaal, F.R. Incidence of venous thrombosis in a large cohort of 66,329 cancer patients: Results of a record linkage study. J. Thromb. Haemost. 2006, 4, 529–535. [Google Scholar] [CrossRef]
- Khorana, A.A.; Dalal, M.; Lin, J.; Connolly, G.C. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer 2013, 119, 648–655. [Google Scholar] [CrossRef]
- Roselli, M.; Ferroni, P.; Riondino, S.; Mariotti, S.; Laudisi, A.; Vergati, M.; Cavaliere, F.; Palmirotta, R.; Guadagni, F. Impact of chemotherapy on activated protein C-dependent thrombin generation--association with VTE occurrence. Int. J. Cancer 2013, 133, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.B.; Bertoletti, L.; Magné, N.; Rancoule, C.; Mahé, I.; Font, C.; Sanz, O.; Martín-Antorán, J.M.; Pace, F.; Vela, J.R.; et al. RIETE investigators. Venous thromboembolism in radiation therapy cancer patients: Findings from the RIETE registry. Crit. Rev. Oncol. Hematol. 2017, 113, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Strukova, S. Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Front. Biosci. 2006, 11, 59–80. [Google Scholar] [CrossRef] [PubMed]
- Del Conde, I.; Bharwani, L.D.; Dietzen, D.J.; Pendurthi, U.; Thiagarajan, P.; López, J.A. Microvesicle-associated tissue factor and Trousseau’s syndrome. J. Thromb. Haemost. 2007, 5, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Tesselaar, M.E.; Romijn, F.P.; van der Linden, I.K.; Bertina, R.M.; Osanto, S. Microparticle-associated tissue factor activity in cancer patients with and without thrombosis. J. Thromb. Haemost. 2009, 7, 1421–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, S.G.; Cross, B.A. A factor X-activating cysteine protease from malignant tissue. J. Clin. Investig. 1981, 67, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Läubli, H.; Borsig, L. Selectins promote tumor metastasis. Semin. Cancer Biol. 2010, 20, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Goubran, H.A.; Kotb, R.R.; Stakiw, J.; Emara, M.E.; Burnouf, T. Regulation of tumor growth and metastasis: The role of tumor microenvironment. Cancer Growth Metastasis 2014, 7, 9–18. [Google Scholar] [CrossRef]
- Chen, M.; Geng, J.-G. P-selectin mediates adhesion of leukocytes.; platelets.; and cancer cells in inflammation.; thrombosis.; and cancer growth and metastasis. Arch. Immunol. Ther. Exp. 2006, 54, 75–84. [Google Scholar] [CrossRef]
- Coupland, L.A.; Chong, B.H.; Parish, C.R. Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 2012, 72, 4662–4671. [Google Scholar] [CrossRef]
- Kasthuri, R.S.; Taubman, M.B.; Mackman, N. Role of Tissue Factor in Cancer. J. Clin. Oncol. 2009, 27, 4834–4838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, L.J.; Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 2011, 11, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Di Nisio, M.; Ferrante, N.; De Tursi, M.; Iacobelli, S.; Cuccurullo, F.; Büller, H.R.; Feragalli, B.; Porreca, E. Incidental venous thromboembolism in ambulatory cancer patients receiving chemotherapy. Thromb. Haemost. 2010, 104, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Feffer, S.E.; Carmosino, L.S.; Fox, R.L. Acquired protein C deficiency in patients with breast cancer receiving cyclophosphamide, methotrexate, and 5-fluorouracil. Cancer 1989, 63, 1303–1307. [Google Scholar] [CrossRef] [Green Version]
- Sousou, T.; Khorana, A.A. New insights into cancer-associated thrombosis. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 316–320. [Google Scholar] [CrossRef]
- Ferroni, P.; Martini, F.; Portarena, I.; Grenga, I.; Riondino, S.; La Farina, F.; Laudisi, A.; Guadagni, F.; Roselli, M. Early changes of a novel APC-dependent thrombin generation assay during chemotherapy independently predict venous thromboembolism in cancer patients—A pilot study. Support. Care Cancer 2012, 20, 2713–2720. [Google Scholar] [CrossRef]
- Linkins, L.A.; Takach Lapner, S. Review of D-dimer testing: Good, Bad, and Ugly. Int. J. Lab. Hematol. 2017, 39, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Dempfle, C.E.; Borggrefe, M. Point of care coagulation tests in critically ill patients. Semin. Thromb. Hemost. 2008, 34, 445–450. [Google Scholar] [CrossRef]
- Legnani, C.; Fariselli, S.; Cini, M.; Oca, G.; Abate, C.; Palareti, G. A new rapid bedside assay for quantitative testing of D-Dimer (Cardiac D-Dimer) in the diagnostic work-up for deep vein thrombosis. Thromb. Res. 2003, 111, 149–153. [Google Scholar] [CrossRef]
- Wells, P.S.; Anderson, D.R.; Rodger, M.; Forgie, M.; Kearon, C.; Dreyer, J.; Kovacs, G.; Mitchell, M.; Lewandowski, B.; Kovacs, M.J. Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis. N. Engl. J. Med. 2003, 349, 1227–1235. [Google Scholar] [CrossRef]
- Bucek, R.A.; Koca, N.; Reiter, M.; Haumer, M.; Zontsich, T.; Minar, E. Algorithms for the diagnosis of deep-vein thrombosis in patients with low clinical pretest probability. Thromb. Res. 2002, 105, 43–47. [Google Scholar] [CrossRef]
- Righini, M.; Goehring, C.; Bounameaux, H.; Perrier, A. Effects of age on the performance of common diagnostic tests for pulmonary embolism. Am. J. Med. 2000, 109, 357–361. [Google Scholar] [CrossRef]
- Tardy, B.; Tardy-Poncet, B.; Viallon, A.; Lafond, P.; Page, Y.; Venet, C.; Bertrand, J.C. Evaluation of D-dimer ELISA test in elderly patients with suspected pulmonary embolism. Thromb. Haemost. 1998, 79, 38–41. [Google Scholar] [CrossRef]
- Douma, R.A.; le Gal, G.; Söhne, M.; Righini, M.; Kamphuisen, P.W.; Perrier, A.; Kruip, M.J.; Bounameaux, H.; Büller, H.R.; Roy, P.M. Potential of an age adjusted D-dimer cut-off value to improve the exclusion of pulmonary embolism in older patients: A retrospective analysis of 3 large cohorts. BMJ 2010, 340, c1475. [Google Scholar] [CrossRef] [PubMed]
- Kraaijenhagen, R.A.; in’t Anker, P.S.; Koopman, M.M.; Reitsma, P.H.; Prins, M.H.; van den Ende, A.; Buller, H.R. High plasma concentration of factor VIII:C is a major risk factor for venous thromboembolism. Thromb. Haemost. 2000, 83, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Vormittag, R.; Dunkler, D.; Simanek, R.; Chiriac, A.L.; Drach, J.; Quehenberger, P.; Wagner, O.; Zielinski, C.; Pabinger, I. D-dimer and prothrombin fragment 1+2 predict venous thromboembolism in patients with cancer: Results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 2009, 27, 4124–4129. [Google Scholar] [CrossRef] [PubMed]
- Sud, R.; Khorana, A.A. Cancer-associated thrombosis: Risk factors, candidate biomarkers and a risk model. Thromb. Res. 2009, 123, 18–21. [Google Scholar] [CrossRef]
- Stender, M.T.; Frøkjaer, J.B.; Larsen, T.B.; Lundbye-Christensen, S.; Thorlacius-Ussing, O. Preoperative plasma D-dimer is a predictor of postoperative deep venous thrombosis in colorectal cancer patients: A clinical, prospective cohort study with one-year follow-up. Dis. Colon Rectum. 2009, 52, 446–451. [Google Scholar] [CrossRef]
- Kodama, J.; Seki, N.; Masahiro, S.; Kusumoto, T.; Nakamura, K.; Hongo, A.; Hiramatsu, Y. D-dimer level as a risk factor for postoperative venous thromboembolism in Japanese women with gynecologic cancer. Ann. Oncol. 2010, 21, 1651–1656. [Google Scholar] [CrossRef] [Green Version]
- Arpaia, G.; Carpenedo, M.; Verga, M.; Mastrogiacomo, O.; Fagnani, D.; Lanfredini, M.; Milani, M.; Cimminiello, C. D-dimer before chemotherapy might predict venous thromboembolism. Blood Coagul. Fibrinolysis 2009, 20, 170–175. [Google Scholar] [CrossRef]
- Ferroni, P.; Martini, F.; Portarena, I.; Massimiani, G.; Riondino, S.; La Farina, F.; Mariotti, S.; Guadagni, F.; Roselli, M. Novel high-sensitive D-dimer determination predicts chemotherapy-associated venous thromboembolism in intermediate risk lung cancer patients. Clin. Lung Cancer 2012, 13, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.; Sasaki, M.; Hosoi, H.; Sakamoto, Y.; Morizane, C.; Ueno, H.; Okusaka, T. Incidence and risk factors for venous thromboembolism in patients with pretreated advanced pancreatic carcinoma. Oncotarget 2018, 9, 16883–16890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.; Ryoo, B.Y.; Ryu, M.H.; Park, S.R.; Kang, M.J.; Kim, J.H.; Han, S.; Kang, Y.K. Incidence of venous thromboembolism and the role of D-dimer as predictive marker in patients with advanced gastric cancer receiving chemotherapy: A prospective study. World J. Gastrointest. Oncol. 2017, 9, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Roselli, M.; Ferroni, P.; Portarena, I.; Riondino, S.; La Farina, F.; Formica, V.; Vergati, M.; Guadagni, F. Predictive value of high-sensitive D-dimer determination for chemotherapy-associated venous thromboembolism in gastrointestinal cancer patients. Thromb. Haemost. 2012, 108, 1243–1245. [Google Scholar] [CrossRef]
- Wu, J.; Fu, Z.; Liu, G.; Xu, P.; Xu, J.; Jia, X. Clinical significance of plasma D-dimer in ovarian cancer: A meta-analysis. Medicine 2017, 96, e7062. [Google Scholar] [CrossRef]
- Reitter, E.M.; Kaider, A.; Ay, C.; Quehenberger, P.; Marosi, C.; Zielinski, C.; Pabinger, I. Longitudinal analysis of hemostasis biomarkers in cancer patients during antitumor treatment. J. Thromb. Haemost. 2016, 14, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, C.N.; Sfyroeras, G.S.; Kakisis, J.D.; Moulakakis, K.G.; Liapis, C.D. The role of soluble P selectin in the diagnosis of venous thromboembolism. Thromb. Res. 2014, 133, 17–24. [Google Scholar] [CrossRef]
- Andre, P.; Hartwell, D.; Hrachovinova, I.; Saffaripour, S.; Wagner, D.D. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc. Natl. Acad. Sci. USA 2000, 97, 13835–13840. [Google Scholar] [CrossRef] [Green Version]
- Shattil, S.J.; Hoxie, J.A.; Cunningham, M.; Brass, L.F. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J. Biol. Chem. 1985, 260, 11107–11114. [Google Scholar]
- McEver, R.P.; Zhu, C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 2010, 26, 363–396. [Google Scholar] [CrossRef]
- Fijnheer, R.; Frijns, C.J.M.; Korteweg, J.; Rommes, H.; Peters, J.H.; Sixma, J.J.; Nieuwenhuis, H.K. The origin of P-selectin as a circulating plasma protein. Thromb. Haemost. 1997, 77, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Martini, F.; Riondino, S.; La Farina, F.; Magnapera, A.; Ciatti, F.; Guadagni, F. Soluble P-selectin as a marker of in vivo platelet activation. Clin. Chim. Acta 2009, 399, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Riondino, S.; Vazzana, N.; Guadagni, F.; Davì, G. Biomarkers of platelet activation in acute coronary syndromes. Thromb. Haemost. 2012, 108, 1109–1123. [Google Scholar] [CrossRef] [PubMed]
- Ghozlan, M.F.; Osman, A.A.; Mahmoud, H.M.; Eissa, D.G.; Abuelela, S. Comprehensive study on laboratory biomarkers for prediction and diagnosis of deep venous thrombosis. Blood Coagul. Fibrinolysis 2015, 26, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Simanek, R.; Vormittag, R.; Dunkler, D.; Alguel, G.; Koder, S.; Kornek, G.; Marosi, C.; Wagner, O.; Zielinski, C.; et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: Results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008, 112, 2703–2708. [Google Scholar] [CrossRef] [PubMed]
- Vormittag, R.; Simanek, R.; Ay, C.; Dunkler, D.; Quehenberger, P.; Marosi, C.; Zielinski, C.; Pabinger, I. High factor VIII levels independently predict venous thromboembolism in cancer patients: The cancer and thrombosis study. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 2176–2181. [Google Scholar] [CrossRef] [PubMed]
- D’Souza-Schorey, C.; Clancy, J.W. Tumor-derived microvesicles: Shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 2012, 26, 1287–1299. [Google Scholar] [CrossRef]
- Owens, A.P., 3rd; Mackman, N. Microparticles in hemostasis and thrombosis. Circ. Res. 2011, 108, 1284–1297. [Google Scholar] [CrossRef]
- Langer, F.; Ruf, W. Synergies of phosphatidylserine and protein disulfide isomerase in tissue factor activation. Thromb. Haemost. 2014, 111, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Aleman, M.M.; Gardiner, C.; Harrison, P.; Wolberg, A.S. Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J. Thromb. Haemost. 2011, 9, 2251–2261. [Google Scholar] [CrossRef]
- Van Der Meijden, P.E.; Van Schilfgaarde, M.; Van Oerle, R.; Renné, T.; ten Cate, H.; Spronk, H.M. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J. Thromb. Haemost. 2012, 10, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Dachary-Prigent, J.; Freyssinet, J.M.; Pasquet, J.M.; Carron, J.C.; Nurden, A.T. Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: A flow cytometry study showing a role for free sulfhydryl groups. Blood 1993, 81, 2554–2565. [Google Scholar] [PubMed]
- Han, X.; Guo, B.; Li, Y.; Zhu, B. Tissue factor in tumor microenvironment: A systematic review. J. Hematol. Oncol. 2014, 1, 7–54. [Google Scholar] [CrossRef] [PubMed]
- Tilley, R.E.; Holscher, T.; Belani, R.; Nieva, J.; Mackman, N. Tissue factor activity is increased in a combined platelet and microparticle sample from cancer patients. Thromb. Res. 2008, 122, 604–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, B.; Liebhardt, S.; Steinig, K.; Ditsch, N.; Rank, A.; Bauerfeind, I.; Spannagl, M.; Friese, K.; Reininger, A.J. Platelet-derived microparticles and coagulation activation in breast cancer patients. Thromb. Haemost. 2008, 100, 663–669. [Google Scholar] [CrossRef]
- Thaler, J.; Ay, C.; Weinstabl, H.; Dunkler, D.; Simanek, R.; Vormittag, R.; Freyssinet, J.M.; Zielinski, C.; Pabinger, I. Circulating procoagulant microparticles in cancer patients. Ann. Hematol. 2011, 90, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Laresche, C.; Pelletier, F.; Garnache-Ottou, F.; Lihoreau, T.; Biichle, S.; Mourey, G.; Saas, P.; Humbert, P.; Seilles, E.; Aubin, F. Increased levels of circulating microparticles are associated with increased procoagulant activity in patients with cutaneous malignant melanoma. J. Investig. Dermatol. 2014, 134, 176–182. [Google Scholar] [CrossRef]
- Woei-A-Jin, F.J.; Tesselaar, M.E.; Garcia Rodriguez, P.; Romijn, F.P.; Bertina, R.M.; Osanto, S. Tissue factor-bearing microparticles and CA19.9: Two players in pancreatic cancer-associated thrombosis? Br. J. Cancer 2016, 115, 332–338. [Google Scholar] [CrossRef]
- Fricke, A.; Ullrich, P.V.; Cimniak, A.F.V.; Becherer, C.; Follo, M.; Heinz, J.; Scholber, J.; Herget, G.W.; Hauschild, O.; Wittel, U.A.; et al. Levels of activated platelet-derived microvesicles in patients with soft tissue sarcoma correlate with an increased risk of venous thromboembolism. BMC Cancer 2017, 7, 17–527. [Google Scholar] [CrossRef]
- Campello, E.; Spiezia, L.; Radu, C.M.; Bulato, C.; Castelli, M.; Gavasso, S.; Simioni, P. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb. Res. 2011, 127, 473–477. [Google Scholar] [CrossRef]
- Zwicker, J.I.; Liebman, H.A.; Neuberg, D.; Lacroix, R.; Bauer, K.A.; Furie, B.C.; Furie, B. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin. Cancer Res. 2009, 15, 6830–6840. [Google Scholar] [CrossRef]
- van Doormaal, F.; Kleinjan, A.; Berckmans, R.J.; Mackman, N.; Manly, D.; Kamphuisen, P.W.; Richel, D.J.; Büller, H.R.; Sturk, A.; Nieuwland, R. Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thromb. Haemost. 2012, 108, 160–165. [Google Scholar] [CrossRef]
- Tesselaar, M.E.; Romijn, F.P.; van der Linden, I.K.; Prins, F.A.; Bertina, R.M.; Osanto, S. Microparticles-associated tissue factor activity: A link between cancer and thrombosis? J. Thromb. Haemost. 2007, 5, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.D.; Barcel, D.A.; Williams, J.C.; Wang, J.G.; Boles, J.C.; Manly, D.A.; Key, N.S.; Mackman, N. Pre-analytical and analytical variables affecting the measurement of plasma-derived microparticle tissue factor activity. Thromb. Res. 2012, 129, 80–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuana, Y.; Bertina, R.M.; Osanto, S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost. 2011, 105, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Mooberry, M.J.; Key, N.S. Microparticle analysis in disorders of hemostasis and thrombosis. Cytom. A 2016, 89, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.J.; Roxburgh, C.S.; Horgan, P.G.; McMillan, D.C. Does interleukin-6 link explain the link between tumour necrosis, local and systemic inflammatory responses and outcome in patients with colorectal cancer? Cancer Treat. Rev. 2013, 39, 89–96. [Google Scholar] [CrossRef]
- Kaminska, J.; Kowalska, M.M.; Nowacki, M.P.; Chwalinski, M.G.; Rysinska, A.; Fuksiewicz, M. CRP, TNF-alpha, IL-1ra, IL-6, IL-8 and IL-10 in blood serum of colorectal cancer patients. Pathol. Oncol. Res. 2000, 6, 38–41. [Google Scholar] [CrossRef]
- Reitter, E.M.; Ay, C.; Kaider, A.; Pirker, R.; Zielinski, C.; Zlabinger, G.; Pabinger, I. Interleukin levels and their potential association with venous thromboembolism and survival in cancer patients. Clin. Exp. Immunol. 2014, 177, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, M.B.; Langley, R.R.; Fidler, I.J. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res. 2005, 65, 10794–10800. [Google Scholar] [CrossRef]
- Stone, R.L.; Nick, A.M.; McNeish, I.A.; Balkwill, F.; Han, H.D.; Bottsford-Miller, J.; Rupairmoole, R.; Armaiz-Pena, G.N.; Pecot, C.V.; Coward, J.; et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 2012, 366, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Hasegawa, K.; Yoshino, K.; Murakami, R.; Hisamatsu, T.; Stone, R.L.; Previs, R.A.; Hansen, J.M.; Ikeda, Y.; Miyara, A.; et al. Venous thromboembolism, interleukin-6 and survival outcomes in patients with advanced ovarian clear cell carcinoma. Eur. J. Cancer 2015, 51, 1978–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarig, G.; Miacheli, Y.; Lanir, N.; Brenner, B.; Haim, N. Mechanisms for acquired activated protein C resistance in cancer patients. J. Thromb. Haemost. 2005, 3, 589–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haim, N.; Lanir, N.; Hoffman, R.; Haim, A.; Tsalik, M.; Brenner, B. Acquired activated protein C resistance is common in cancer patients and is associated with venous thromboembolism. Am. J. Med. 2001, 110, 91–96. [Google Scholar] [CrossRef]
- Green, D.; Maliekel, K.; Sushko, E.; Akhtar, R.; Soff, G.A. Activated-protein-C resistance in cancer patients. Haemostasis 1997, 27, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Erman, M.; Abali, H.; Oran, B.; Haznedaroglu, I.C.; Canpinar, H.; Kirazli, S.; Celik, I. Tamoxifen-induced tissue factor pathway inhibitor reduction: A clue for an acquired thrombophilic state? Ann. Oncol. 2004, 15, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Elice, F.; Fink, L.; Tricot, G.; Barlogie, B.; Zangari, M. Acquired resistance to activated protein C (aAPCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism. Br. J. Haematol. 2006, 134, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, P.; Martini, F.; Portarena, I.; Grenga, I.; Riondino, S.; La Farina, F.; Laudisi, A.; Roselli, M.; Guadagni, F. An activated protein C-dependent thrombin generation assay predicts chemotherapy-associated venous thromboembolism in cancer patients. Thromb. Haemost. 2011, 105, 931–932. [Google Scholar] [CrossRef]
- Negaard, H.F.S.; Iversen, P.O.; Østenstad, B.; Mowinckel, M.C.; Sandset, P.M. Increased acquired activated protein C resistance in unselected patients with hematological malignancies. J. Thromb. Haemost. 2008, 6, 1482–1487. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, P.; Riondino, S.; Portarena, I.; Formica, V.; La Farina, F.; Martini, F.; Massimiani, G.; Palmirotta, R.; Guadagni, F.; Roselli, M. Association between increased tumor necrosis factor alpha levels and acquired activated protein C resistance in patients with metastatic colorectal cancer. Int. J. Colorectal Dis. 2012, 27, 1561–1567. [Google Scholar] [CrossRef]
- Reitsma, P.H.; Rosendaal, F.R. Activation of innate immunity in patients with venous thrombosis: The Leiden Thrombophilia Study. J. Thromb. Haemost. 2004, 2, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Federici, A.B. The von Willebrand factor from basic mechanisms to clinical practice. Blood Transfus. 2011, 9, s1–s2. [Google Scholar] [CrossRef] [PubMed]
- Koster, T.; Blann, A.D.; Briet, E.; Vandenbroucke, J.P.; Rosendaal, F.R. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet 1995, 345, 152–155. [Google Scholar] [CrossRef]
- Tsai, A.W.; Cushman, M.; Rosamond, W.D.; Heckbert, S.R.; Tracy, R.P.; Aleksic, N.; Folsom, A.R. Coagulation factors, inflammation markers, and venous thromboembolism: The longitudinal investigation of thromboembolism etiology (LITE). Am. J. Med. 2002, 113, 636–642. [Google Scholar] [CrossRef]
- Payne, A.B.; Miller, C.H.; Hooper, W.C.; Lally, C.; Austin, H.D. High factor VIII, von Willebrand factor, and fibrinogen levels and risk of venous thromboembolism in blacks and whites. Ethn. Dis. 2014, 24, 169–174. [Google Scholar]
- Jenkins, P.V.; Rawley, O.; Smith, O.P.; O’Donnell, J.S. Elevated factor VIII levels and risk of venous thrombosis. Br. J. Haematol. 2012, 157, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Kyrle, P.A.; Minar, E.; Hirschl, M.; Bialonczyk, C.; Stain, M.; Schneider, B.; Weltermann, A.; Speiser, W.; Lechner, K.; Eichinger, S. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N. Eng. J. Med. 2000, 343, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Legnani, C.; Cosmi, B.; Cini, M.; Frascaro, M.; Guazzaloca, G.; Palareti, G. High plasma levels of factor VIII and risk of recurrence of venous thromboembolism. Br. J. Haematol. 2004, 124, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Rickles, F.R.; Levine, M.N.; Dvorak, H.F. Abnormalities of hemostasis in malignancy. In Hemostasis and Thrombosis. Basic Principles and Clinical Practice; Colman, R.W., Hirsh, J., Marder, V.J., Clowes, A.W., George, J.N., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; pp. 1131–1152. [Google Scholar]
- Ferroni, P.; Santilli, F.; Guadagni, F.; Basili, S.; Davì, G. Contribution of platelet-derived CD40 ligand to inflammation, thrombosis and neoangiogenesis. Curr. Med. Chem. 2007, 14, 2170–2180. [Google Scholar] [CrossRef]
- Thomas, M.R.; Storey, R.F. The role of platelets in inflammation. Thromb. Haemost. 2015, 114, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, R.J.A.; Balaj, L.; Hulleman, E.; van Rijn, S.; Pegtel, D.M.; Walraven, M.; Widmark, A.; Gerritsen, W.R.; Verheul, H.M.; Vandertop, W.P.; et al. Blood platelets contain tumor-derived RNA biomarkers. Blood 2011, 118, 3680–3683. [Google Scholar] [CrossRef] [Green Version]
- Plantureux, L.; Crescence, L.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Effects of platelets on cancer progression. Thromb. Res. 2018, 164 (Suppl. 1), S40–S47. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Lyman, G.H. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005, 104, 2822–2829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandalà, M.; Barni, S.; Prins, M.; Labianca, R.; Tondini, C.; Russo, L.; Milesi, A.; Cremonesi, M.; Zaccanelli, M.; Regonesi, C.; et al. Acquired and inherited risk factors for developing venous thromboembolism in cancer patients receiving adjuvant chemotherapy: A prospective trial. Ann. Oncol. 2010, 21, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Vemulapalli, S.; Chintala, L.; Tsimberidou, A.M.; Dhillon, N.; Lei, X.; Hong, D.; Kurzrock, R. Clinical outcomes and factors predicting development of venous thromboembolic complications in patients with advanced refractory cancer in a Phase I Clinic: The M. D. Anderson Cancer Center experience. Am. J. Hematol. 2009, 84, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simanek, R.; Vormittag, R.; Ay, C.; Alguel, G.; Dunkler, D.; Schwarzinger, I.; Steger, G.; Jaeger, U.; Zielinski, C.; Pabinger, I. High platelet count associated with venous thromboembolism in cancer patients: Results from the Vienna Cancer and Thrombosis Study (CATS). J. Thromb. Haemost. 2010, 8, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Poruk, K.E.; Firpo, M.A.; Huerter, L.M.; Scaife, C.L.; Emerson, L.L.; Boucher, K.M.; Jones, K.A.; Mulvihill, S.J. Serum platelet factor 4 is an independent predictor of survival and venous thromboembolism in patients with pancreatic adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2605–2610. [Google Scholar] [CrossRef]
- Jensvoll, H.; Blix, K.; Brækkan, S.K.; Hansen, J.B. Platelet count measured prior to cancer development is a risk factor for future symptomatic venous thromboembolism: The Tromsø Study. PLoS ONE 2014, 9, e92011. [Google Scholar] [CrossRef]
- Ferroni, P.; Guadagni, F.; Riondino, S.; Portarena, I.; Mariotti, S.; La Farina, F.; Davi, G.; Roselli, M. Evaluation of mean platelet volume as a predictive marker for cancer-associated venous thromboembolism during chemotherapy. Haematologica 2014, 99, 1638–1644. [Google Scholar] [CrossRef] [Green Version]
- Riedl, J.; Kaider, A.; Reitter, E.M.; Marosi, C.; Jäger, U.; Schwarzinger, I.; Zielinski, C.; Pabinger, I.; Ay, C. Association of mean platelet volume with risk of venous thromboembolism and mortality in patients with cancer. Results from the Vienna Cancer and Thrombosis Study (CATS). Thromb. Haemost. 2014, 111, 670–678. [Google Scholar] [CrossRef]
- Rupa-Matysek, J.; Gil, L.; Barańska, M.; Dytfeld, D.; Komarnicki, M. Mean platelet volume as a predictive marker for venous thromboembolism in patients treated for Hodgkin lymphoma. Oncotarget 2018, 9, 21190–21200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupa-Matysek, J.; Gil, L.; Kroll-Balcerzak, R.; Barańska, M.; Komarnicki, M. Mean platelet volume as a predictive marker for venous thromboembolism and mortality in patients treated for diffuse large B-cell lymphoma. Hematol. Oncol. 2017, 35, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Riondino, S.; Formica, V.; Cereda, V.; Tosetto, L.; La Farina, F.; Valente, M.G.; Vergati, M.; Guadagni, F.; Roselli, M. Venous thromboembolism risk prediction in ambulatory cancer patients: Clinical significance of neutrophil/lymphocyte ratio and platelet/lymphocyte ratio. Int. J. Cancer 2015, 136, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Santos, J.; Di Micco, P.; Iannuzzo, M.; Lecumberri, R.; Guijarro, R.; Madridano, O.; Monreal, M.; RIETE Investigators. Elevated white blood cell count and outcome in cancer patients with venous thromboembolism. Findings from the RIETE Registry. Thromb. Haemost. 2008, 100, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Blix, K.; Jensvoll, H.; Brækkan, S.K.; Hansen, J.B. White blood cell count measured prior to cancer development is associated with future risk of venous thromboembolism—The Tromsø study. PLoS ONE 2013, 8, e73447. [Google Scholar] [CrossRef] [PubMed]
- Connolly, G.C.; Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Francis, C.W.; Lyman, G.H. Leukocytosis, thrombosis and early mortality in cancer patients initiating chemotherapy. Thromb. Res. 2010, 126, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojnuckarin, P.; Uaprasert, N.; Sriuranpong, V. Monocyte count associated with subsequent symptomatic venous thromboembolism (VTE) in hospitalized patients with solid tumors. Thromb. Res. 2012, 130, e279–e282. [Google Scholar] [CrossRef] [PubMed]
- Pabinger, I.; Posch, F. Flamethrowers: Blood cells and cancer thrombosis risk. Hematology Am. Soc. Hematol. Educ. Program. 2014, 2014, 410–417. [Google Scholar] [CrossRef]
- Budzianowski, J.; Pieszko, K.; Burchardt, P.; Rzeźniczak, J.; Hiczkiewicz, J. The role of hematological indices in patients with acute coronary syndrome. Dis. Mark. 2017, 2017, 3041565. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Y. Platelet-lymphocyte ratio is a predictor of venous thromboembolism in cancer patients. Thromb. Res. 2015, 136, 212–215. [Google Scholar] [CrossRef]
- Tham, T.; Rahman, L.; Persaud, C.; Olson, C.; Costantino, P. Venous thromboembolism risk in head and neck cancer: Significance of the preoperative platelet-to-lymphocyte ratio. Otolaryngol. Head Neck. Surg. 2018, 159, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Grilz, E.; Posch, F.; Königsbrügge, O.; Schwarzinger, I.; Lang, I.M.; Marosi, C.; Pabinger, I.; Ay, C. Association of platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio with the risk of thromboembolism and mortality in patients with cancer. Thromb. Haemost. 2018, 118, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Königsbrügge, O.; Posch, F.; Riedl, J.; Reitter, E.-M.; Zielinski, C.; Pabinger, I.; Ay, C. Association between decreased serum albumin with risk of venous thromboembolism and mortality in cancer patients. Oncologist 2016, 21, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Capanu, M.; Soff, G.; Asmis, T.; Kelsen, D.P. Risk factors for developing a new venous thromboembolism in ambulatory patients with non-hematologic malignancies and impact on survival for gastroesophageal malignancies. J. Thromb. Haemost. 2010, 8, 1702–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferroni, P.; Roselli, M.; Riondino, S.; Cavaliere, F.; Guadagni, F. Insulin resistance as a predictor of venous thromboembolism in breast cancer. Endocr. Relat. Cancer 2016, 23, L25–L28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guadagni, F.; Riondino, S.; Formica, V.; Del Monte, G.; Morelli, A.M.; Lucchetti, J.; Spila, A.; D’Alessandro, R.; Della-Morte, D.; Ferroni, P.; et al. Clinical significance of glycemic parameters on venous thromboembolism risk prediction in gastrointestinal cancer. World J. Gastroenterol. 2017, 23, 5187–5195. [Google Scholar] [CrossRef]
- Stegenga, M.E.; van der Crabben, S.N.; Blumer, R.M.; Levi, M.; Meijers, J.C.; Serlie, M.J.; Tanck, M.W.; Sauerwein, H.P.; van der Poll, T. Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia. Blood 2008, 112, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Ferroni, P.; Roselli, M.; Riondino, S.; Guadagni, F. Predictive value of HDL cholesterol for cancer-associated venous thromboembolism during chemotherapy. J. Thromb. Haemost. 2014, 12, 2049–2053. [Google Scholar] [CrossRef] [Green Version]
- Lötsch, F.; Königsbrügge, O.; Posch, F.; Zielinski, C.; Pabinger, I.; Ay, C. Statins are associated with low risk of venous thromboembolism in patients with cancer: A prospective and observational cohort study. Thromb. Res. 2014, 134, 1008–1013. [Google Scholar] [CrossRef]
- Khemasuwan, D.; Divietro, M.L.; Tangdhanakanond, K.; Pomerantz, S.C.; Eiger, G. Statins decrease the occurrence of venous thromboembolism in patients with cancer. Am. J. Med. 2010, 123, 60–65. [Google Scholar] [CrossRef]
- De Moreuil, C.; Le Mao, R.; Tromeur, C.; Couturaud, F.; Lacut, K.; Delluc, A. Association between statin exposure and venous thromboembolism risk in cancer patients. Data from the EDITH case-control study. Eur. J. Intern. Med. 2017, 46, e42–e44. [Google Scholar] [CrossRef] [PubMed]
- El-Refai, S.M.; Black, E.P.; Adams, V.R.; Talbert, J.C.; Brown, J.D. Statin use and venous thromboembolism in cancer: A large, active comparator, propensity score matched cohort study. Thromb. Res. 2017, 158, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Peippo, M.H.; Kurki, S.; Lassila, R.; Carpén, O.M. Real-world features associated with cancer-related venous thromboembolic events. ESMO Open 2018, 3, e000363. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, P.; Guadagni, F.; Laudisi, A.; Vergati, M.; Riondino, S.; Russo, A.; Davì, G.; Roselli, M. Estimated glomerular filtration rate is an easy predictor of venous thromboembolism in cancer patients undergoing platinum-based chemotherapy. Oncologist 2014, 19, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Otten, H.M.; Zwicker, J.I.; Connolly, G.C.; Bancel, D.F.; Pabinger, I. Subcommittee on Haemostasis and Malignancy. Prevention of venous thromboembolism in cancer outpatients: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2014, 12, 1928–1931. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.G.; Lee, E.; Kim, I.; Lee, K.W.; Kim, T.M.; Lee, S.H.; Kim, D.W.; Heo, D.S. Cisplatin-based chemotherapy is a strong risk factor for thromboembolic events in small-cell lung cancer. Cancer Res. Treat. 2015, 47, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Burbury, K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer—Results, practical issues and proposed strategies for future risk prediction models. Thromb. Res. 2016, 148, 63–69. [Google Scholar] [CrossRef]
- van Es, N.; Franke, V.F.; Middeldorp, S.; Wilmink, J.W.; Büller, H.R. The Khorana score for the prediction of venous thromboembolism in patients with pancreatic cancer. Thromb. Res. 2017, 150, 30–32. [Google Scholar] [CrossRef]
- Khorana, A.A.; Soff, G.A.; Kakkar, A.K.; Vadhan-Raj, S.; Riess, H.; Wun, T.; Streiff, M.B.; Garcia, D.A.; Liebman, H.A.; Belani, C.; et al. Rivaroxaban Thromboprophylaxis in High-Risk Ambulatory Cancer Patients Receiving Systemic Therapy: Results of a Randomized Clinical Trial (CASSINI). In Proceedings of the 60th American Society of Hematology (ASH) Annual Meeting and Exposition, San Diego, CA, USA, 1–4 December 2018. [Google Scholar]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. AVERT Investigators. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2018. [Google Scholar] [CrossRef]
- Mulder, F.I.; Candeloro, M.; Kamphuisen, P.W.; Di Nisio, M.; Bossuyt, P.M.; Guman, N.; Smit, K.; Büller, H.R.; van Es, N.; CAT Prediction Collaborators. The Khorana score for prediction of venous thromboembolism in cancer patients: A systematic review and meta-analysis. Haematologica 2019. [Google Scholar] [CrossRef]
- Scotté, F.; Elalamy, I.; Mayeur, D.; Meyer, G. Physicians’ decision about long-term thromboprophylaxis in cancer outpatients: CAT AXIS, a case vignette study on clinical practice in France. Support. Care Cancer 2018, 26, 2049–2056. [Google Scholar] [CrossRef]
- Van Es, N.; Di Nisio, M.; Cesarman, G.; Kleinjan, A.; Otten, H.M.; Mahé, I.; Wilts, I.T.; Twint, D.C.; Porreca, E.; Arrieta, O.; et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: A prospective cohort study. Haematologica 2017, 102, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Gerotziafas, G.T.; Taher, A.; Abdel-Razeq, H.; AboElnazar, E.; Spyropoulos, A.C.; El Shemmari, S.; Larsen, A.K.; Elalamy, I. COMPASS–CAT Working Group. A predictive score for thrombosis associated with breast, colorectal, lung, or ovarian cancer: The Prospective COMPASS-Cancer-Associated Thrombosis Study. Oncologist 2017, 22, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Cella, C.A.; Di Minno, G.; Carlomagno, C.; Arcopinto, M.; Cerbone, A.M.; Matano, E.; Tufano, A.; Lordick, F.; De Simone, B.; Arturo, C.; et al. Preventing venous thromboembolism in ambulatory cancer patients: The ONKOTEV Study. Oncologist 2017, 22, 601–608. [Google Scholar] [CrossRef]
- Muñoz Martín, A.J.; Ortega, I.; Font, C.; Pachón, V.; Castellón, V.; Martínez-Marín, V.; Salgado, M.; Martínez, E.; Calzas, J.; Rupérez, A.; et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br. J. Cancer 2018, 118, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Pabinger, I.; van Es, N.; Heinze, G.; Posch, F.; Riedl, J.; Reitter, E.M.; Di Nisio, M.; Cesarman-Maus, G.; Kraaijpoel, N.; Zielinski, C.C.; et al. A clinical prediction model for cancer-associated venous thromboembolism: A development and validation study in two independent prospective cohorts. Lancet Haematol. 2018, 5, e289–e298. [Google Scholar] [CrossRef]
- Ferroni, P.; Roselli, M.; Zanzotto, F.M.; Guadagni, F. Artificial intelligence for cancer-associated thrombosis risk assessment. Lancet Haematol. 2018, 5, e391. [Google Scholar] [CrossRef]
- Cancer Moonshot℠. Available online: https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative (accessed on 7 December 2018).
- Fayyad, U.; Shapiro, G.; Smyth, P. From data mining to knowledge discovery in database. AI Mag. 1996, 17, 37–54. [Google Scholar]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Riondino, S.; Nanni, U.; Roselli, M.; Guadagni, F. Risk Assessment for venous thromboembolism in chemotherapy-treated ambulatory cancer patients: A machine learning approach. Med. Decis. Mak. 2017, 37, 234–242. [Google Scholar] [CrossRef]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Riondino, S.; Guadagni, F.; Roselli, M. Validation of a machine learning approach for venous thromboembolism risk prediction in oncology. Dis. Mark. 2017, 2017, 8781379. [Google Scholar] [CrossRef]
- Lustig, D.B.; Rodriguez, R.; Wells, P.S. Implementation and validation of a risk stratification method at The Ottawa Hospital to guide thromboprophylaxis in ambulatory cancer patients at intermediate-high risk for venous thrombosis. Thromb. Res. 2015, 136, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.Y.; Cheng, C.W.; Kaddi, C.; Venugopalan, J.; Hoffman, R.; Wang, M.D. Omic and electronic health record Big Data analytics for precision medicine. IEEE Trans. Biomed. Eng. 2017, 64, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Alonso, S.G.; de la Torre Díez, I.; Rodrigues, J.J.P.C.; Hamrioui, S.; López-Coronado, M. A systematic review of techniques and sources of Big Data in the healthcare sector. J. Med. Syst. 2017, 41, 183. [Google Scholar] [CrossRef] [PubMed]
RAM | Score Items | n. of Patients | Type of VTE | c-Statistic | HR | Reference |
---|---|---|---|---|---|---|
Khorana score (KS) | Site of cancer, platelet count, leukocyte count, hemoglobin level or use of red cell growth factors, BMI ≥35 | Derivation cohort, n = 2701 | Symptomatic | 0.7 for both cohorts | NA | [22] |
Validation cohort, n = 365 | ||||||
Vienna CATS score | Adds soluble P-selectin and D-dimer to KS | n = 819 | Symptomatic | NA | 1.9 per 1 point increase | [25] |
PROTECHT score | Adds cisplatin/carboplatin-based chemotherapy or gemcitabine to KS | Placebo arm, n = 381 | Unclear | NA | NA | [27] |
Nadroparin arm, n = 769 | ||||||
ONKOTEV score | Khorana score >2, personal history of VTE, metastatic disease, vascular/lymphatic macroscopic compression | n = 843 | Symptomatic/incidental | 0.719 at 3 months 0.754 at 6 months | Score = 1: 3.29 Score = 2: 6.54 Score > 2: 13.74 | [166] |
COMPASS-CAT score | Anthracycline or anti-hormonal therapy, time since cancer diagnosis, central venous catheter, stage of cancer, presence of cardiovascular risk factors, recent hospitalization for acute medical illness, personal history of VTE and platelet count. | n = 1023 | Symptomatic | 0.850 | NA | [165] |
Tic-ONCO score | Adds genetic risk score to KS | n = 391 | Symptomatic | 0.73 | +LR = 1.69 | [167] |
CATS nomogram | Site of cancer and D-dimer | CATS cohort, n = 1423 | Symptomatic/incidental | 0.66 in CATS | NA | [168] |
MICA cohort, n = 832 | 0.68 in MICA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riondino, S.; Ferroni, P.; Zanzotto, F.M.; Roselli, M.; Guadagni, F. Predicting VTE in Cancer Patients: Candidate Biomarkers and Risk Assessment Models. Cancers 2019, 11, 95. https://doi.org/10.3390/cancers11010095
Riondino S, Ferroni P, Zanzotto FM, Roselli M, Guadagni F. Predicting VTE in Cancer Patients: Candidate Biomarkers and Risk Assessment Models. Cancers. 2019; 11(1):95. https://doi.org/10.3390/cancers11010095
Chicago/Turabian StyleRiondino, Silvia, Patrizia Ferroni, Fabio Massimo Zanzotto, Mario Roselli, and Fiorella Guadagni. 2019. "Predicting VTE in Cancer Patients: Candidate Biomarkers and Risk Assessment Models" Cancers 11, no. 1: 95. https://doi.org/10.3390/cancers11010095
APA StyleRiondino, S., Ferroni, P., Zanzotto, F. M., Roselli, M., & Guadagni, F. (2019). Predicting VTE in Cancer Patients: Candidate Biomarkers and Risk Assessment Models. Cancers, 11(1), 95. https://doi.org/10.3390/cancers11010095