Methylation Assessment for the Prediction of Malignancy in Mediastinal Adenopathies Obtained by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Patients with Lung Cancer
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Patients and Lymph Nodes
2.2. Methylation of Candidate Genes and Evaluation of the Diagnostic Performance
2.3. Performance of A Multivariate Model to Predict Malignancy in Negative Lymph Node Samples
3. Discussion
4. Materials and Methods
4.1. Patients and Study Design
4.2. Study Interventions
4.3. DNA Extraction and Sodium Bisulfite Modification
4.4. Methylation Analysis of the Candidate Genes
4.5. Analysis of the MS-qPCR Data
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detterbeck, F.C.; Lewis, S.Z.; Diekemper, R.; Addrizzo-Harris, D.; Alberts, M. Executive Summary: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, 7S–37S. [Google Scholar] [CrossRef] [PubMed]
- Turna, A.; Melek, H.; Kara, H.V.; Kılıç, B.; Erşen, E.; Kaynak, K. Validity of the updated European Society of Thoracic Surgeons staging guideline in lung cancer patients. J. Thorac. Cardiovasc. Surg. 2018, 155, 789–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rami-Porta, R.; Call, S.; Dooms, C.; Obiols, C.; Sánchez, M.; Travis, W.D.; Vollmer, I. Lung cancer staging: A concise update. Eur. Respir. J. 2018, 51, 1800190. [Google Scholar] [CrossRef] [PubMed]
- Sharples, L.D.; Jackson, C.; Wheaton, E.; Griffith, G.; Annema, J.T.; Dooms, C.; Tournoy, K.G.; Deschepper, E.; Hughes, V.; Magee, L.; et al. Clinical effectiveness and cost-effectiveness of endobronchial and endoscopic ultrasound relative to surgical staging in potentially resectable lung cancer: Results from the ASTER randomised controlled trial. Health Technol. Assess. 2012, 16, 1–75. [Google Scholar] [CrossRef] [PubMed]
- Monaco, S.E.; Khalbuss, W.E.; Pantanowitz, L. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA): A Practical Approach; Karger: Basel, Switzerland, 2014. [Google Scholar]
- Navani, N.; Brown, J.M.; Nankivell, M.; Woolhouse, I.; Harrison, R.N.; Jeebun, V.; Munavvar, M.; Ng, B.J.; Rassl, D.M.; Falzon, M.; et al. Suitability of endobronchial ultrasound-guided transbronchial needle aspiration specimens for subtyping and genotyping of non-small cell lung cancer: A multicenter study of 774 patients. Am. J. Respir. Crit. Care Med. 2012, 185, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Bindert, G.; Wang, Y.; Jiang, H.; Sun, H.; Henzler, T.; Wang, H.; Pilz, L.R.; Ren, S.; Zhou, C. EBUS-TBNA provides highest RNA yield for multiple biomarker testing from routinely obtained small biopsies in non-small cell lung cancer patients—A comparative study of three different minimal invasive sampling methods. PLoS ONE 2013, 8, e77948. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Yasufuku, K.; Suzuki, M.; Fujiwara, T.; Shibuya, K.; Takiguchi, Y.; Hiroshima, K.; Kimura, H.; Yoshino, I. Assessment of Chemosensitivity-related Aberrant Methylation of Nonsmall Cell Lung Cancer by EBUS-TBNA. J. Bronchology Interv. Pulmonol. 2009, 16, 10–14. [Google Scholar] [CrossRef]
- Leiro-Fernández, V.; De Chiara, L.; Botana-Rial, M.; González-Piñeiro, A.; Tardio-Baiges, A.; Núñez-Delgado, M.; Valverde Pérez, D.; Fernández-Villar, A. Viability of lymph node samples obtained by echobronchoscopy in the study of epigenetic alterations in patients with lung cancer. Arch. Bronconeumol. 2014, 50, 213–220. [Google Scholar] [CrossRef]
- Ofiara, L.M.; Navasakulpong, A.; Beaudoin, S.; Gonzalez, A.V. Optimizing tissue sampling for the diagnosis, subtyping, and molecular analysis of lung cancer. Front. Oncol. 2014, 4, 253. [Google Scholar] [CrossRef]
- Guarize, J.; Bianchi, F.; Marino, E.; Belloni, E.; Vecchi, M.; Donghi, S.; Lo Iacono, G.; Casadio, C.; Cuttano, R.; Barberis, M.; et al. MicroRNA expression profile in primary lung cancer cells lines obtained by endobronchial ultrasound transbronchial needle aspiration. J. Thorac. Dis. 2018, 10, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duruisseaux, M.; Esteller, M. Lung cancer epigenetics: From knowledge to applications. Semin. Cancer Biol. 2017, 51, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Balgkouranidou, I.; Liloglou, T.; Lianidou, E.S. Lung cancer epigenetics: Emerging biomarkers. Biomark. Med. 2013, 7, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, M. DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics 2019, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Mari-Alexandre, J.; Diaz-Lagares, A.; Villalba, M.; Juan, O.; Crujeiras, A.B.; Calvo, A.; Sandoval, J. Translating cancer epigenomics into the clinic: Focus on lung cancer. Transl. Res. 2017, 189, 76–92. [Google Scholar] [CrossRef] [PubMed]
- Varela-Lema, L.; Fernández-Villar, A.; Ruano-Ravina, A. Effectiveness and safety of endobronchial ultrasound-transbronchial needle aspiration: A systematic review. Eur. Respir. J. 2009, 33, 1156–1164. [Google Scholar] [CrossRef]
- Adams, K.; Shah, P.L.; Edmonds, L.; Lim, E. Test performance of endobronchial ultrasound transbronchial needle aspiration biopsy for mediastinal staging in patients with lung cancer: Systematic review and meta-analysis. Thorax 2009, 64, 757–762. [Google Scholar] [CrossRef]
- Fernández-Villar, A.; Mouronte-Roibás, C.; Botana-Rial, M.; Ruano-Raviña, A. Ten years of línear endobronchial ultrasound: Evidence of efficacy, safety and cost-effectiveness. Arch. Bronconeumol. 2016, 52, 96–102. [Google Scholar] [CrossRef]
- Xing, X.B.; Cai, W.B.; Luo, L.; Liu, L.S.; Shi, H.J.; Chen, M.H. The prognostic value of p16 hypermethylation in cancer: a meta-analysis. PloS ONE 2013, 8, e66587. [Google Scholar] [CrossRef]
- Wu, J.Y.; Wang, J.; Lai, J.C.; Cheng, Y.W.; Yeh, K.T.; Wu, T.C.; Chen, C.Y.; Lee, H. Association of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation with p53 mutation occurrence in non-small cell lung cancer with different histology, gender and smoking status. Ann. Surg. Oncol. 2008, 15, 3272–3277. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Liu, F.; Xu, L.; Peng, F.; Zhao, N.; Fu, B.; Zhu, Z.; Shi, Y.; Liu, J.; et al. A systematic review and meta-analysis: Association between MGMT hypermethylation and the clinicopathological characteristics of non-small-cell lung carcinoma. Sci. Rep. 2018, 8, 1439. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Schlegel, A.; Kottwitz, D.; König, T.; Tetzner, R. Validation of the SHOX2/PTGER4 DNA Methylation Marker Panel for Plasma-Based Discrimination between Patients with Malignant and Nonmalignant Lung Disease. J. Thorac. Oncol. 2017, 12, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Darwiche, K.; Zarogoulidis, P.; Baehner, K.; Welter, S.; Tetzner, R.; Wohlschlaeger, J.; Theegarten, D.; Nakajima, T.; Freitag, L. Assessment of SHOX2 methylation in EBUS-TBNA specimen improves accuracy in lung cancer staging. Ann. Oncol. 2013, 24, 2866–2870. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, G.; Xu, N. Does hypermethylation of CpG island in the promoter region of the E-cadherin gene increase the risk of lung cancer? A meta-analysis. Thorac. Cancer 2019, 10, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Lee, H.J.; Kim, B.H.; Cho, N.Y.; Kang, G.H. DNA methylation profile during multistage progression of pulmonary adenocarcinomas. Virchows. Arch. 2011, 459, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mao, W.; Guo, D.; Xu, H. Clinicopathological Significance and Diagnostic Value of DLEC1 Hypermethylation in Lung Cancer: A Meta-analysis. J. Nippon Med. Sch. 2019, 86, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Hesson, L.B.; Cooper, W.N.; Latif, F. The role of RASSF1A methylation in cancer. Dis. Markers. 2007, 23, 73–87. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Chen, X.; Bi, J. The prognostic value of RASSF1A promoter hypermethylation in non-small cell lung carcinoma: A systematic review and meta-analysis. Carcinogenesis 2011, 32, 411–416. [Google Scholar] [CrossRef]
- De Sánchez Cos, J.; Hernández, J.H.; López, M.F.; Sánchez, S.P.; Gratacós, A.R.; Porta, R.R.; Sociedad Española Neumología y Cirugía Torácica. SEPAR guidelines for lung cancer staging. Arch. Bronconeumol. 2011, 47, 454–465. [Google Scholar] [CrossRef]
- De Leyn, P.; Dooms, C.; Kuzdzal, J.; Lardinois, D.; Passlick, B.; Rami-Porta, R.; Turna, A.; Van Schil, P.; Venuta, F.; Waller, D.; et al. Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small cell lung cancer. Eur. J. Cardiothorac. Surg. 2014, 45, 787–798. [Google Scholar] [CrossRef]
- Farjah, F.; Backhus, L.M.; Varghese, T.K.; Manning, J.P.; Cheng, A.M.; Mulligan, M.S.; Wood, D.E. External validation of a prediction model for pathologic N2 among patients with a negative mediastinum by positron emission tomography. J. Thorac. Dis. 2015, 7, 576–584. [Google Scholar] [CrossRef]
- Sanz-Santos, J.; Serra, M.; Gallego, M.; Montón, C.; Cosio, B.; Sauleda, J.; Fernández-Villar, A.; García-Luján, R.; de Miguel, E.; Cordovilla, R.; et al. Determinants of false-negative results in non-small-cell lung cancer staging by endobronchial ultrasound-guided needle aspiration. Eur. J. Cardiothorac. Surg. 2015, 47, 642–647. [Google Scholar] [CrossRef]
- Zhao, Q.T.; Guo, T.; Wang, H.E.; Zhang, X.P.; Zhang, H.; Wang, Z.K.; Yuan, Z.; Duan, G.C. Diagnostic value of SHOX2 DNA methylation in lung cancer: A meta-analysis. OncoTargets Ther. 2015, 8, 3433–3439. [Google Scholar] [CrossRef]
- Liu, Z.L.; Wang, Q.; Huang, L.N. E-cadherin gene methylation in lung cancer. Tumour Biol. 2014, 35, 9027–9033. [Google Scholar] [CrossRef]
- Hou, H.; Yu, X.; Cong, P.; Zhou, Y.; Xu, Y.; Jiang, Y. Six2 promotes non-small cell lung cancer cell stemness via transcriptionally and epigenetically regulating E-cadherin. Cell Prolif. 2019, 52, e12617. [Google Scholar] [CrossRef]
- Serra Fortuny, M.; Gallego, M.; Berna, L.; Montón, C.; Vigil, L.; Masdeu, M.J.; Fernández-Villar, A.; Botana, M.I.; Cordovilla, R.; García-Luján, R.; et al. FDG-PET parameters predicting mediastinal malignancy in lung cancer. BMC Pulm. Med. 2016, 16, 177. [Google Scholar] [CrossRef]
- Al-Haddad, M.; Wallace, M.B. Molecular diagnostics of non-small cell lung cancer using mediastinal lymph nodes sampled by endoscopic ultrasound-guided needle aspiration. Cytopathology 2006, 17, 3–9. [Google Scholar] [CrossRef]
- Hashimoto, T.; Kobayashi, Y.; Ishikawa, Y.; Tsuchiya, S.; Okumura, S.; Nakagawa, K.; Tokuchi, Y.; Hayashi, M.; Nishida, K.; Hayashi, S.; et al. Prognostic value of genetically diagnosed lymph node micrometas-tasis in non-small cell lung carcinoma cases. Cancer Res. 2000, 60, 6472–6478. [Google Scholar]
- Iwao, K.; Watanabe, T.; Fujiwara, Y.; Takami, K.; Kodama, K.; Higashiyama, M.; Yokouchi, H.; Ozaki, K.; Monden, M.; Tanigami, A. Isolation of a novel human lung-specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-small-cell lung cancer. Int. J. Cancer 2001, 91, 433–437. [Google Scholar] [CrossRef]
- Inage, T.; Nakajima, T.; Itoga, S.; Ishige, T.; Fujiwara, T.; Sakairi, Y.; Wada, H.; Suzuki, H.; Iwata, T.; Chiyo, M.; et al. Molecular Nodal Staging Using miRNA Expression in Lung Cancer Patients by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration. Respiration 2018, 96, 267–274. [Google Scholar] [CrossRef]
- Li, Y.Q.; Wang, K.P.; Ben, S.Q. Insight into the differences in classification of mediastinal and hilar lymph nodes between Wang’s lymph node map and the International Association for the Study of Lung Cancer lymph node map. J. Thorac. Dis. 2015, 7, S246–S255. [Google Scholar] [CrossRef]
Adenopathy (n = 218) | n (%) |
---|---|
Mediastinal Hilar | 186 (85.3%) 32 (14.7%) |
Adenopathy | |
2R, 2L, 4R, 4L, 7 10, 11, 12 8, 9 | 182 (83.5%) 32 (14.7%) 4 (1.8%) |
Adenopathy Short Axis (mm), mean ± SD | 12.1 ± 4.9 |
Number of Punctures, mean ± SD | 1.9 ± 1.1 |
SUV Adenopathy, mean ± SD | 4.2 ± 3.1 |
Metastatic Node | |
Adenocarcinoma Squamous cell Large cell | 71 (32.6%) 29 (13.3%) 8 (3.6%) |
EBUS-TBNA Results | |
Metastatic nodes (true positives, TP) Negative (true + false negatives, TN + FN) Non metastatic nodes (true negatives, TN) Metastatic nodes (false negatives, FN) | 90 (41.3%) 128 (58.7%) 110 (50.5%) 18 (8.2%) |
Variable (%), mean ± SD | Metastatic Lymph Node | Non-Metastatic Lymph Node | p-Value |
---|---|---|---|
Sex, male | 51 (77.3%) | 43 (93.5%) | 0.034 |
Age, mean ± SD | 66.0 ± 10.7 | 63.1 ± 8.5 | 0.754 |
Tobacco habit, actual or former smoker | 57 (86.4%) | 43 (93.5%) | 0.358 |
Tumor diameter (mm), mean ± SD | 34.5 ± 18.2 | 36.7 ± 22.7 | 0.681 |
SUV Tumor, mean ± SD | 10.2 ± 5.1 | 10.69 ± 6.4 | 0.423 |
Adenopathy location, ipsilateral | 56 (84.8%) | 38 (82.6%) | 0.254 |
Adenopathy short axis (mm), mean ± SD | 13.3 ± 5.5 | 11.4 ± 5.0 | 0.065 |
SUV Adenopathy, mean ± SD | 6.0 ± 3.9 | 2.7 ± 1.3 | 0.046 |
Ratio SUVa/SUVt, mean ± SD | 0.7 ± 0.7 | 0.5 ± 0.6 | 0.391 |
Difference SUVt-SUVa, mean ± SD | 4.5 ± 5.4 | 8.1 ± 6.6 | 0.172 |
Gene | TP (n = 90) | FN (n = 18) | TN (n = 110) | p-Value1 | AUC1 | AUC2 |
---|---|---|---|---|---|---|
NMP Mean | NMP Mean | NMP Mean | p-Value2 | (95% CI) | (95% CI) | |
NMP Median | NMP Median | NMP Median | (108 vs. 110) | (18 vs. 110) | ||
(IQ range) | (IQ range) | (IQ range) | ||||
p16/INK4a | 9.69 | 0.29 | 0.62 | 0.603 | 0.629 | |
0.09 | 0.12 | 0.04 | 0.030 | (0.535–0.668) | (0.539–0.713) | |
(2 × 10−4–0.60) | (1 × 10−3–0.63) | (9 × 10−4–0.13) | 0.079 | |||
MGMT | 2.10 | 0.53 | 0.14 | 0.542 | 0.611 | |
1 × 10−4 | 0.02 | 6 × 10−5 | 0.302 | (0.474–0.610) | (0.521–0.696) | |
(7 × 10−6–0.04) | (6 × 10−5–0.15) | (4 × 10−6–0.05) | 0.131 | |||
SHOX2 | 25.26 | 6.75 | 0.49 | 0.862 | 0.732 | |
13.52 | 0.76 | 0.39 | <0.0001 | (0.809–0.905) | (0.646–0.806) | |
(2.73–34.37) | (0.32–2.58) | (0.10–0.70) | 0.002 | |||
E-cadherin | 0.76 | 1.97 | 0.80 | 0.602 3 | 0.531 | |
0.19 | 0.38 | 0.54 | 0.006 | (0.533–0.667) | (0.440–0.620) | |
(0.03–0.56) | (0.18–2.52) | (0.13–1.01) | 0.681 | |||
DLEC1 | 11.07 | 0.005 | 0.17 | 0.655 | 0.521 | |
0.01 | 1.5 × 10−4 | 2×10−4 | <0.0001 | (0.581–0.718) | (0.431–0.610) | |
(2 × 10−5–4.04) | (0–0.032) | (4 × 10−6–6 × 10−3) | 0.773 | |||
RASSF1A | 8.28 | 0.08 | 1.04 | 0.575 | 0.613 3 | |
6 × 10−4 | 8 × 10−7 | 4 × 10−6 | 0.003 | (0.505–0.642) | (0.523–0.697) | |
(6 × 10−7–5.30) | (0–0.02) | (9 × 10−7–0.014) | 0.126 |
Variable | TN | FN | OR (95% CI) | p-Value |
---|---|---|---|---|
Sex, male | 103 (93.6%) | 11 (61.1%) | 9.36 (2.8–31.7) | <0.001 |
Age, mean ± SD | 63.3 ± 8.8 | 70.3 ± 9.6 | 1.09 (1.027–1.156) | 0.004 |
Location of primary tumor, UL | 78 (70.9%) | 14 (77.8%) | 0.67 (0.22–2.07) | 0.488 |
Tumor histology, adenocarcinoma | 44 (60.3%) | 6 (46.2%) | 0.55 (0.17–1.85) | 0.346 |
Tumor diameter (mm), mean ± SD | 34.9 ± 19.8 | 40.8 ± 20.2 | 1.01 (0.99–1.04) | 0.241 |
SUV primary tumor, mean ± SD | 11.3 ± 6.3 | 13.2 ± 3.9 | 1.05 (0.97–1.14) | 0.234 |
Adenopathy short axis (mm), mean ± SD | 11.5 ± 4.7 | 9.7 ± 2.7 | 0.9 (0.788–1.028) | 0.120 |
SUV adenopathy, mean ± SD | 2.9 ± 1.5 | 4.0 ± 2.4 | 1.37 (1.04–1.79) | 0.025 |
p16/INK4a, mean ± SD | 0.6 ± 5.04 | 0.3 ± 0.3 | 0.976 (0.82–1.17) | 0.791 |
MGMT, mean ± SD | 0.1 ± 0.7 | 0.5 ± 1.5 | 1.35 (0.91–2.01) | 0.142 |
SHOX2, mean ± SD | 0.5 ± 0.5 | 6.8 ± 23.3 | 2.90 (1.56–5.39) | 0.001 |
E-cadherin, mean ± SD | 0.8 ± 1.1 | 2.0 ± 4.0 | 1.27 (0.98–1.64) | 0.068 |
DLEC1, mean ± SD | 0.2 ± 1.1 | 5 × 10−3 ± 1 × 10−2 | 0 (0–0) | 0.529 |
RASSF1A, mean ± SD | 1.0 ± 9.5 | 0.1 ± 0.2 | 0.638 (0.10–3.98) | 0.631 |
Model | Variables Included | Apparent AUC | AUC | Specificity 1 | +PV 1 | Cut-Off 1 |
---|---|---|---|---|---|---|
(95% CI) | 10-fold CV | Sensitivity 1 | −PV 1 | |||
1 | Sex, age, adenopathy short axis, SUV of | 0.958 | 0.815 | 73.6% | 32.6% | >0.021 |
adenopathy, MGMT, SHOX2, E-cadherin | (0.907–0.986) | 87.5% | 97.6% | |||
2 | Sex, age, adenopathy short axis, SUV of | 0.953 | 0.812 | 83.6% | 40.0% | >0.066 |
adenopathy, SHOX2, E-cadherin | (0.900–0.983) | 75.0% | 95.8% | |||
3 | Sex, age, adenopathy short axis, SUV of | 0.951 | 0.827 | 82.7% | 42.4% | >0.076 |
adenopathy, SHOX2 | (0.897–0.981) | 82.4% | 96.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiro-Fernandez, V.; De Chiara, L.; Rodríguez-Girondo, M.; Botana-Rial, M.; Valverde, D.; Núñez-Delgado, M.; Fernández-Villar, A. Methylation Assessment for the Prediction of Malignancy in Mediastinal Adenopathies Obtained by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Patients with Lung Cancer. Cancers 2019, 11, 1408. https://doi.org/10.3390/cancers11101408
Leiro-Fernandez V, De Chiara L, Rodríguez-Girondo M, Botana-Rial M, Valverde D, Núñez-Delgado M, Fernández-Villar A. Methylation Assessment for the Prediction of Malignancy in Mediastinal Adenopathies Obtained by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Patients with Lung Cancer. Cancers. 2019; 11(10):1408. https://doi.org/10.3390/cancers11101408
Chicago/Turabian StyleLeiro-Fernandez, Virginia, Loretta De Chiara, Mar Rodríguez-Girondo, Maribel Botana-Rial, Diana Valverde, Manuel Núñez-Delgado, and Alberto Fernández-Villar. 2019. "Methylation Assessment for the Prediction of Malignancy in Mediastinal Adenopathies Obtained by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Patients with Lung Cancer" Cancers 11, no. 10: 1408. https://doi.org/10.3390/cancers11101408
APA StyleLeiro-Fernandez, V., De Chiara, L., Rodríguez-Girondo, M., Botana-Rial, M., Valverde, D., Núñez-Delgado, M., & Fernández-Villar, A. (2019). Methylation Assessment for the Prediction of Malignancy in Mediastinal Adenopathies Obtained by Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Patients with Lung Cancer. Cancers, 11(10), 1408. https://doi.org/10.3390/cancers11101408