Integrating Small Animal Irradiators with Functional Imaging for Advanced Preclinical Radiotherapy Research
Abstract
:1. Introduction
2. Small Animal Radiotherapy: Rationale and Technology
3. Preclinical Imaging: Principles and Technology
4. Translational Research Opportunities
4.1. Quantifying Tumor Burden and Response to Therapy
4.2. Imaging the Immune Response
4.3. Image-Guided Adaptive Radiotherapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jaffray, D.A. Image-guided radiotherapy: From current concept to future perspectives. Nat. Rev. Clin. Oncol. 2012, 9, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Thariat, J.; Hannoun-Levi, J.-M.; Sun Myint, A.; Vuong, T.; Gérard, J.-P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 2012, 10, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-F.; Okunieff, P.; Bernhard, E.J.; Stone, H.B.; Yoo, S.; Coleman, C.N.; Vikram, B.; Brown, M.; Buatti, J.; Guha, C. Lessons Learned from Radiation Oncology Clinical Trials. Clin. Cancer Res. 2013, 19, 6089–6100. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.D.; Paulus, R.; Komaki, R.; Masters, G.; Blumenschein, G.; Schild, S.; Bogart, J.; Hu, C.; Forster, K.; Magliocco, A.; et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015, 16, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.A.; Chan, C.; Woolf, D.; Hiley, C.; Connor, J.O.; Bayman, N.; Blackhall, F.; Faivre-Finn, C.; Clara, C.; David, W. Is heterogeneity in stage 3 non-small cell lung cancer obscuring the potential benefits of dose-escalated concurrent chemo-radiotherapy in clinical trials? Lung Cancer 2018, 118, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.B.; Bernhard, E.J.; Coleman, C.N.; Deye, J.; Capala, J.; Mitchell, J.B.; Brown, J.M. Preclinical Data on Efficacy of 10 Drug-Radiation Combinations: Evaluations, Concerns, and Recommendations. Transl. Oncol. 2016, 9, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.N.; Higgins, G.S.; Brown, J.M.; Baumann, M.; Kirsch, D.G.; Willers, H.; Prasanna, P.G.S.; Dewhirst, M.W.; Bernhard, E.J.; Ahmed, M.M. Improving the predictive value of preclinical studies in support of radiotherapy clinical trials. Clin. Cancer Res. 2016, 22, 3138–3147. [Google Scholar] [CrossRef]
- Dilworth, J.T.; Krueger, S.A.; Wilson, G.D.; Marples, B. Preclinical Models for Translational Research Should Maintain Pace With Modern Clinical Practice. Radiat. Oncol. Biol. 2013, 88, 540–544. [Google Scholar] [CrossRef]
- Regaud, C.; Nogier, T. Stérilisation reontgénienne, totale et définitive, sans radiodermite, des testicules du belier adulte. C. R. Soc. Biol. 1911, 70, 202–203. [Google Scholar]
- Perlman, R.L. Mouse models of human disease: An evolutionary perspective. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar] [CrossRef]
- Fox, J.G.; Barthold, S.W.; Davisson, M.T.; Newcomer, C.E.; Quimby, F.W.; Smith, A.L. The Mouse in Biomedical Research, 2nd ed.; Elsevier Inc.: Oxford, UK, 2007; ISBN 9780123694546. [Google Scholar]
- Tratar, U.L.; Horvat, S.; Cemazar, M. Transgenic Mouse Models in Cancer Research. Front. Oncol. 2018, 8, 268. [Google Scholar] [CrossRef]
- Koontz, B.F.; Verhaegen, F.; De Ruysscher, D. Tumour and normal tissue radiobiology in mouse models: How close are mice to mini-humans? Br. J. Radiol. 2016, 90, 20160441. [Google Scholar] [CrossRef]
- Wong, J.; Armour, E.; Kazanzides, P.; Iordachita, I.; Tryggestad, E.; Deng, H.; Matinfar, M.; Kennedy, C.; Liu, Z.; Chan, T.; et al. High-Resolution, Small Animal Radiation Research Platform With X-Ray Tomographic Guidance Capabilities. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; Tsiamas, P.; Velarde, E.; Tryggestad, E.; Jacques, R.; Berbeco, R.; McNutt, T.; Kazanzides, P.; Wong, J. Validation of GPU-accelerated superposition—Convolution dose computations for the Small Animal Radiation Research Platform. Med. Phys. 2018, 45, 2252–2265. [Google Scholar] [CrossRef] [PubMed]
- Weersink, R.A.; Ansell, S.; Wang, A.; Wilson, G.; Shah, D.; Lindsay, P.E.; Jaffray, D.A. Integration of optical imaging with a small animal irradiator. Med. Phys. 2018, 45, 102701. [Google Scholar] [CrossRef] [PubMed]
- Sha, H.; Udayakumar, T.S.; Johnson, P.B.; Dogan, N.; Pollack, A.; Yang, Y. An image guided small animal stereotactic radiotherapy system. Oncotarget 2016, 7, 18825. [Google Scholar] [CrossRef]
- Shi, J.; Udayakumar, T.S.; Wang, Z.; Dogan, N.; Pollack, A.; Yang, Y. Optical molecular imaging-guided radiation therapy part 1: Integrated x-ray and bioluminescence tomography. Med. Phys. 2018, 44, 4786–4794. [Google Scholar] [CrossRef]
- Shi, J.; Udayakumar, T.S.; Wang, Z.; Dogan, N.; Pollack, A. Optical molecular imaging-guided radiation therapy part 2: Integrated x-ray and fluorescence molecular tomography. Med. Phys. 2018, 45, 2252–2265. [Google Scholar] [CrossRef]
- Tillner, F.; Thute, P.; Löck, S.; Dietrich, A.; Fursov, A.; Haase, R.; Lukas, M.; Rimarzig, B.; Sobiella, M.; Krause, M.; et al. Precise image-guided irradiation of small animals: A flexible non-profit platform. Phys. Med. Biol. 2016, 61, 3084–3108. [Google Scholar] [CrossRef]
- Sharma, S.; Narayanasamy, G.; Przybyla, B.; Webber, J.; Boerma, M.; Clarkson, R.; Moros, E.G.; Corry, P.M.; Griffin, R.J. Advanced Small Animal Conformal Radiation Therapy Device. Technol. Cancer Res. Treat. 2016, 16, 45–56. [Google Scholar] [CrossRef]
- Hou, Z.; Rodriguez, M.; van den Fred, H.; Nelson, G.; Jogani, R.; Xu, J.; Zhu, X.; Xian, Y.; Tran, P.; Welsher, D.W.; et al. Development of a micro-computed tomography—Bades image-guided conformal radiotherapy system for small animals. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 297–305. [Google Scholar] [CrossRef]
- Felix, M.C.; Fleckenstein, J.; Kirschner, S.; Hartmann, L.; Wenz, F.; Brockmann, M.A.; Glatting, G.; Giordano, F.A. Image-guided radiotherapy using a modified industrial micro-CT for preclinical applications. PLoS ONE 2015, 10, e0126246. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.D.; Holdsworth, D.W.; Drangova, M. Implementation and commissioning of an integrated micro-CT/RT system with computerized independent jaw collimation. Med. Phys. 2013, 40, 081706. [Google Scholar] [CrossRef] [PubMed]
- Jacques, R.; Wong, J.; Taylor, R.; McNutt, T. Real-time dose computation: GPU-accelerated source modeling and superposition/convolution. Med. Phys. 2011, 38, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, F.; van Hoof, S.; Granton, P.V.; Trani, D. A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies. Z. Med. Phys. 2014, 24, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, F.; Dubois, L.; Gianolini, S.; Hill, M.A.; Karger, C.P.; Lauber, K.; Prise, K.M.; Sarrut, D.; Thorwarth, D.; Vanhove, C.; et al. ESTRO ACROP Guideline ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges. Radiother. Oncol. 2018, 126, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, F. Small Animal Imaging Basics and Practical Guide, 2nd ed.; Kiessling, F., Pichler, B.J., Hauff, P., Eds.; Springer International Publishing AG: New York, NY, USA, 2011; ISBN 9783319422008. [Google Scholar]
- Prescott, M.J.; Lidster, K. Perspective Focus on Reproducibility Improving quality of science through better animal welfare: The NC3Rs strategy Focus on Reproducibility Perspective. Nat. Publ. Gr. 2017, 46, 152–156. [Google Scholar] [CrossRef]
- Vaidya, T.; Agrawal, A.; Mahajan, S.; Thakur, M.H.; Mahajan, A. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol. Diagn. Ther. 2018. [Google Scholar] [CrossRef]
- Mankoff, D. A Definition of Molecular Imaging. J. Nucl. Med. 2007, 48, 21–23. [Google Scholar]
- Ben-Haim, S.; Ell, P. PET and PET/CT in the Evaluation of Cancer Treatment Response. J. Nucl. Med. 2009, 50, 88–99. [Google Scholar] [CrossRef]
- Plathow, C.; Weber, W.A. Tumor Cell Metabolism Imaging. J. Nucl. Med. 2008, 49, 43S–63S. [Google Scholar] [CrossRef] [PubMed]
- Gambhir, S.S.; Yaghoubi, S.S. Molecular Imaging with Reporter Genes; Cambridge University Press: Cambridge, MA, USA, 2010; ISBN 9780511730405. [Google Scholar]
- Gambhir, S.S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2002, 2, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.W.; Djulbegovic, B.; Soares, H.P.; Siegel, B.A.; Lowe, V.J.; Lyman, G.H.; Coleman, R.E.; Wahl, R.; Paschold, J.C.; Avril, N.; et al. Recommendations on the Use of PET in Oncology. J. Nucl. Med. 2018, 49, 480–509. [Google Scholar] [CrossRef] [PubMed]
- Tichauer, K.M.; Wang, Y.; Pogue, B.W.; Liu, J.T.C. Quantitative in vivo cell-surface receptor imaging in oncology: Kinetic modeling & paired-agent principles from nuclear medicine and optical imaging. Phys. Med. Biol. 2016, 60, R239. [Google Scholar] [CrossRef]
- Ntziachristos, V.; Pleitez, M.A.; Aime, S.; Brindle, K.M. Emerging Technologies to Image Tissue Metabolism. Cell Metab. 2019. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Saito, A.; Isobe, T.; Ote, K. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys. Med. Biol. 2017, 62, 7148. [Google Scholar] [CrossRef]
- Raylman, R.R.; Stolin, A.V.; Martone, P.F.; Smith, M.F. TandemPET—A High Resolution, Small Animal, Virtual Pinhole-Based PET Scanner: Initial Design Study. IEEE Trans. Nucl. Sci. 2017, 63, 75–83. [Google Scholar] [CrossRef]
- Natarajan, A.; Mayer, A.T.; Reeves, R.E.; Nagamine, C.M.; Gambhir, S.S. Development of Novel ImmunoPET Tracers to Image Human PD-1 Checkpoint Expression on Tumor-Infiltrating Lymphocytes in a Humanized Mouse Model. Mol. Imaging Biol. 2017, 19, 903–914. [Google Scholar] [CrossRef]
- Knowles, S.M.; Wu, A.M. Advances in Immuno–Positron Emission Tomography: Antibodies for Molecular Imaging in Oncology. J. Clin. Oncol. 2012, 30, 3884. [Google Scholar] [CrossRef]
- Tavare, R.; Escuin-Ordinas, H.; Mok, S.; Mccracken, M.N.; Kirstin, A.; Tavar, R. An Effective Immuno-PET Imaging Method to Monitor CD8-Dependent Responses to Immunotherapy. Cancer Res. 2016. [Google Scholar] [CrossRef]
- Vera, D.R.B.; Smith, C.C.; Bixby, L.M.; Glatt, D.M.; Dunn, S.; Saito, R.; Kim, W.Y.; Serody, J.S.; Vincent, G.; Parrott, M.C. Immuno-PET imaging of tumor-infiltrating lymphocytes using zirconium-89 radiolabeled anti-CD3 antibody in immune-competent mice bearing syngeneic tumors. PLoS ONE 2018, 13, e0193832. [Google Scholar]
- Alam, I.S.; Mayer, A.T.; Sagiv-Barfi, I.; Wang, K.; Vermesh, O.; Czerwinski, D.K.; Johnson, E.M.; James, M.L.; Levy, R.; Gambhir, S.S. Imaging activated T cells predicts response to cancer vaccines. J. Clin. Investig. 2018, 128, 2569–2580. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.; Merkens, H.; Zhang, Z.; Uribe, C.F.; Zhang, C.; Colpo, N.; Lin, K.; Benard, F. Enhancing treatment efficacy of 177Lu-PSMA-617 with the conjugation of an albumin-binding motif: Preclinical dosimetry and endoradiotherapy studies. Mol. Pharm. 2018, 15, 5183–5191. [Google Scholar] [CrossRef] [PubMed]
- Trani, D.; Yaromina, A.; Dubois, L.; Granzier, M.; Peeters, S.G.J.A.; Biemans, R.; Nalbantov, G.; Lieuwes, N.; Reniers, B.; Troost, E.E.G.C.; et al. Preclinical Assessment of Efficacy of Radiation Dose Painting Based on Intratumoral FDG-PET Uptake. Clin. Cancer Res. 2015, 21, 5511–5519. [Google Scholar] [CrossRef] [PubMed]
- Rylova, S.N.; Barnucz, E.; Fani, M.; Braun, F.; Werner, M.; Lassmann, S.; Maecke, H.R.; Weber, W.A. Does Imaging avb3 Integrin Expression with PET Detect Changes in Angiogenesis During Bevacizumab Therapy? J. Nucl. Med. 2018, 55, 1878–1884. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.J.; Shuman, A.L.; Jenkins, W.T.; Kachur, A.V.; Karp, J.S.; Freifelder, R.; Dolbier, W.R., Jr.; Evans, S.M. The radiation response of cells from 9L gliosarcoma tumours is correlated with [F18]-EF5 uptake. Int. J. Radiat. Biol. 2009, 85, 1137–1147. [Google Scholar] [CrossRef]
- Ali, R.; Apte, S.; Vilalta, M.; Subbarayan, M.; Miao, Z.; Chin, F.T.; Graves, E.E. 18F-EF5 PET is predictive of response to fractionated radiotherapy in preclinical tumor models. PLoS ONE 2015, 10, e0139425. [Google Scholar] [CrossRef] [PubMed]
- Grkovski, M.; Fanchon, L.; Vara, N.; Pillarsetty, K.; Russell, J.; Humm, J.L. F-fluoromisonidazole predicts evofosfamide uptake in pancreatic tumor model. EJNMMI Res. 2018, 8, 53. [Google Scholar] [CrossRef]
- Jans, H.; Yang, X.; Brocks, D.R.; Kumar, P.; Wuest, M.; Wiebe, L.I. Positron Emission Tomography (PET) and Pharmacokinetics : Classical Blood Sampling Versus Image-Derived Analysis of [18 F] FAZA and [18 F] FDG in a Murine Tumor Bearing Model. J. Pharm. Pharm. Sci. 2018, 21, 32s–47s. [Google Scholar]
- Dubois, L.J.; Lieuwes, N.G.; Janssen, M.H.M.; Peeters, W.J.M.; Windhorst, A.D. Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc. Natl. Acad. Sci. USA 2011. [Google Scholar] [CrossRef]
- Peeters, S.G.J.A.; Zegers, C.M.L.; Lieuwes, N.G.; Van Elmpt, W.; Eriksson, J.; Van Dongen, G.A.M.S.; Dubois, L.; Lambin, P. A Comparative Study of the Hypoxia PET Tracers [18 F] HX4, [18 F] FAZA, and [18 F] FMISO in a Preclinical Tumor Model. Radiat. Oncol. Biol. 2015, 91, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Ronald, J.A.; Kim, B.-S.; Gowrishankar, G.; Namavari, M.; Alam, I.S.; D’Souza, A.; Nishikii, H.; Chuang, H.-Y.; Ilovich, O.; Lin, C.-F.; et al. A PET Imaging Strategy to Visualize Activated T Cells in Acute Graft-versus-Host Disease Elicited by Allogenic Hematopoietic Cell Transplant. Cancer Res. 2017, 77, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Namavari, M.; Chang, Y.F.; Kusler, B.; Yaghoubi, S.; Mitchell, B.S.; Gambhir, S.S. Synthesis of 2’-Deoxy-2’-[18F]fluoro-9-β-DArabinofuranosylguanine: A novel agent for imaging T-cell activation with PET. Mol. Imaging Biol. 2011, 13, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Dobiasch, S.; Kampfer, S.; Habermehl, D.; Duma, M.N.; Felix, K.; Strauss, A.; Schilling, D.; Wilkens, J.J.; Combs, S.E. MRI-based high-precision irradiation in an orthotopic pancreatic tumor mouse model. Strahlentherapie und Onkologie 2018, 194, 944–952. [Google Scholar] [CrossRef]
- Bolcaen, J.; Descamps, B.; Deblaere, K.; Boterberg, T.; Hallaert, G.; Van den Broecke, C.; Decrock, E.; Vral, A.; Leybaert, L.; Vanhove, C.; et al. MRI-guided 3D conformal arc micro-irradiation of a F98 glioblastoma rat model using the Small Animal Radiation Research Platform (SARRP). J. Neuro-Oncol. 2014, 120, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Black, P.J.; Smith, D.R.; Chaudhary, K.; Xanthopoulos, E.P.; Chin, C.; Spina, C.S.; Hwang, M.E.; Mayeda, M.; Wang, Y.; Connolly, E.P.; et al. Velocity-based Adaptive Registration and Fusion for Fractionated Stereotactic Radiosurgery Using the Small Animal Radiation Research Platform. Radiat. Oncol. Biol. 2018, 15, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Rafat, M.; Aguilera, T.A.; Vilalta, M.; Bronsart, L.L.; Soto, L.A.; von Eyben, R.; Golla, M.A.; Ahrari, Y.; Melemenidis, S.; Afghahi, A.; et al. Macrophages Promote Circulating Tumor Cell-Mediated Local Recurrence Following Radiation Therapy in Immunosuppressed Patients. Cancer Res. 2018, 78, 4241–4253. [Google Scholar] [CrossRef] [PubMed]
- Vilalta, M.; Brune, J.; Rafat, M.; Soto, L.; Graves, E.E. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration. Clin. Exp. Metastasis 2018, 35, 247–254. [Google Scholar] [CrossRef]
- Jones, L.; Richmond, J.; Evans, K.; Carol, H.; Jing, D.; Kurmasheva, R.T.; Billups, C.A.; Houghton, P.J.; Smith, M.A.; Lock, R.B. Bioluminescence Imaging Enhances Analysis of Drug Responses in a Patient-Derived Xenograft Model of Pediatric ALL. Clin. Cancer Res. 2017, 23, 3744–3755. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, K.K.H.; Yu, J.; Eslami, S.; Iordachita, I.; Reyes, J.; Malek, R.; Tran, P.T.; Patterson, M.S.; Wong, J.W. Bioluminescence Tomography-Guided Radiation Therapy for Preclinical Research. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 1144–1153. [Google Scholar] [CrossRef]
- Shi, J.; Udayakumar, T.S.; Xu, K.; Dogan, N.; Pollack, A.; Yang, Y. Bioluminescence Tomography Guided Small-Animal Radiation Therapy and Tumor Response Assessment. Radiat. Oncol. Biol. 2018, 102, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, V.S.; Van Hoof, S.J.; Vaniqui, A.; Schyns, L.E.J.R. Small animal IGRT special feature: Full Paper An orthotopic non-small cell lung cancer model for image-guided small animal radiotherapy platforms. Br. J. Radiol. 2019, 91, 20180476. [Google Scholar]
- Fricke, I.B.; De Souza, R.; Costa Ayub, L.; Francia, G.; Kerbel, R.; Jaffray, D.A.; Zheng, J. Spatiotemporal assessment of spontaneous metastasis formation using multimodal in vivo imaging in HER2+ and triple negative metastatic breast cancer xenograft models in mice. PLoS ONE 2018, 13, e0196892. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.; Leung, M.K.K.; Conroy, L.; Chen, Y.; Bu, J.; Lindsay, P.E.; Mintzberg, S.; Virtanen, C.; Tsao, J.; Winegarden, N.A.; et al. In Vivo Optical Imaging of Tumor and Microvascular Response to Ionizing Radiation. PLoS ONE 2012, 7, e42133. [Google Scholar] [CrossRef]
- Davis, R.M.; Kiss, B.; Trivedi, D.R.; Metzner, T.J.; Liao, J.C.; Gambhir, S.S. Surface-Enhanced Raman Scattering Nanoparticles for Multiplexed Imaging of Bladder Cancer Tissue Permeability and Molecular Phenotype. ACS Nano 2018, 12, 9669–9679. [Google Scholar] [CrossRef]
- Kiess, A.P.; Banerjee, S.R.; Mease, R.C.; Rowe, S.P.; Rao, A.; Foss, C.A.; Yang, X.; Cho, S.Y.; Nimmagadda, S.; Pomper, M.G.; et al. Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q. J. Nucl. Med. Mol. Imaging 2015, 59, 241–268. [Google Scholar]
- Tse, B.W.; Cowin, G.J.; Soekmadji, C.; Jovanovic, L.; Vasireddy, R.S.; Ling, M.T.; Khatri, A.; Liu, T.; Thierry, B.; Russell, P.J. PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine 2015, 10, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Smith-bindman, R.; Miglioretti, D.L.; Larson, E.B. Rising Use OfDiagnostic Medical Imaging In A Large Integrated Health System. Health Aff. 2008, 27, 1491–1502. [Google Scholar] [CrossRef]
- Rowlands, J.A. Diagnostic imaging over the last 50 years: Research and development in medical imaging science and technology. Phys. Med. Biol. 2006, 51, R5. [Google Scholar] [CrossRef]
- Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst. 2000, 92, 205–216. [Google Scholar] [CrossRef]
- Schwartz, L.H.; Litière, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1—Update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. J. Nucl. Med. 2009, 50 (Suppl. 1), 122S–150S. [Google Scholar] [CrossRef]
- Gammon, S.T.; Foje, N.; Brewer, E.M.; Owers, E.; Downs, C.A.; Budde, M.D.; Leevy, W.M.; Helms, M.N. Real-time Visualization of Lung Function: From Micro to Macro Preclinical anatomical, molecular, and functional imaging of the lung with multiple modalities. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 306, L897–L914. [Google Scholar] [CrossRef] [PubMed]
- Ghita, M.; Dunne, V.; Hanna, G.G.; Prise, K.M.; Williams, J.P.; Butterworth, K.T. Preclinical models of radiation induced lung damage: Challenges and opportunities for small animal radiotherapy. Br. J. Radiol. 2019, 92, 20180473. [Google Scholar] [CrossRef] [PubMed]
- Granton, P.V.; Dubois, L.; Van Elmpt, W.; Van Hoof, S.J.; Lieuwes, N.G.; De Ruysscher, D.; Verhaegen, F. A longitudinal evaluation of partial lung irradiation in mice by using a dedicated image-guided small animal irradiator. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 696–704. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Granton, P.V.; Lieuwes, N.G.; van Hoof, S.; Wollin, L.; Weynand, B.; Dingemans, A.M.; Verhaegen, F.; Dubois, L. Nintedanib reduces radiation-induced microscopic lung fibrosis but this cannot be monitored by CT imaging: A preclinical study with a high precision image-guided irradiator. Radiother. Oncol. 2017, 124, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Dunne, V.; Ghita, M.; Small, D.M.; Coffey, C.B.M.; Weldon, S.; Taggart, C.C.; Osman, S.O.; McGarry, C.K.; Prise, K.M.; Hanna, G.G.; et al. Inhibition of ataxia telangiectasia related-3 (ATR) improves therapeutic index in preclinical models of non-small cell lung cancer (NSCLC) radiotherapy. Radiother. Oncol. 2017, 124, 475–481. [Google Scholar] [CrossRef]
- Ghita, M.; Dunne, V.; McMahon, S.J.; Osman, S.O.; Small, D.M.; Weldon, S.; Taggart, C.C.; Mcgarry, C.K.; Hounsell, A.R.; Graves, E.E.; et al. Preclinical Evaluation of Dose-Volume Effects and Lung Toxicity Occurring in- and out-of-field. Int. J. Radiat. Oncol. Biol. Phys. 2018. [Google Scholar] [CrossRef]
- Egger, C.; Gérard, C.; Vidotto, N.; Accart, N.; Cannet, C.; Dunbar, A.; Tigani, B.; Piaia, A.; Jarai, G.; Jarman, E.; et al. Lung volume quantified by MRI reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: Effects of SOM230. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2018, 306, L1064–L1077. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef]
- Couzin-Frankel, J. Cancer Immunotherapy. Science (80-) 2013, 342, 1432–1433. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Shalabi, A.; Hubbard-Lucey, V.M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann. Oncol. 2018, 29, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef]
- Lhuillier, C.; Vanpouille-Box, C.; Galluzzi, L.; Chiara, S. Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Semin. Cancer Biol. 2018, 52, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.; Smyth, M.J.; Galluzzi, L.; Lo, A. Control of Metastasis by NK Cells. Cancer Cell 2017, 32, 135–154. [Google Scholar] [CrossRef]
- Garnett, C.T.; Palena, C.; Chakarborty, M.; Tsang, K.; Schlom, J.; Hodge, J.W. Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in Enhanced Killing by Cytotoxic T Lymphocytes. Cancer Res. 2004, 64, 7985–7994. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Publ. Gr. 2016, 17, 97–111. [Google Scholar] [CrossRef]
- Van Der Veen, E.L.; Bensch, F.; Glaudemans, A.W.J.M.; Hooge, M.N.L.; Vries, E.G.E. De Molecular imaging to enlighten cancer immunotherapies and underlying involved processes. Cancer Treat. Rev. 2018, 70, 232–244. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef]
- Vanpouille-box, C.; Formenti, S.C.; Demaria, S. TREX1 dictates the immune fate of irradiated cancer cells. Oncoimmunology 2017, 6, e1339857. [Google Scholar] [CrossRef]
- Yan, D. Adaptive Radiotherapy: Merging Principle Into Clinical Practice. Semin. Radiat. Oncol. 2010, 20, 79–83. [Google Scholar] [CrossRef]
- Lagendijk, J.J.W.; Van Vulpen, M.; Raaymakers, B.W. The development of the MRI linac system for online MRI-guided radiotherapy: A clinical update. J. Intern. Med. 2016, 280, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Mutic, S.; Low, D.; Chmielewski, T.; Fought, G.; Gerganov, G.; Hernandez, M.; Kawrakow, I.; Kishawi, E.; Kuduvalli, G.; Sharma, A.; et al. The Design and Implementation of a Novel Compact Linear Accelerator-Based Magnetic Resonance Imaging-Guided Radiation Therapy (MR-IGRT) System. Radiat. Oncol. Biol. 2016, 96, E641. [Google Scholar] [CrossRef]
- Raaijmakers, A.; Raaymakers, B.; van der Meer, S.; Lagendijk, J.J.W. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field Integrating a MRI scanner with a 6 MV radiotherapy accelerator: Impact of the surface or. Phys. Med. Biol. 2007, 52, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Hanna, G.G.; Koste, D.; Dahele, M.R.; Carson, K.J.; Haasbeek, C.J.A.; Migchielsen, R.; Hounsell, A.R.; Senan, S. Defining Target Volumes for Stereotactic Ablative Radiotherapy of Early-stage Lung Tumours: A Comparison of Three-dimensional 18 F-fluorodeoxyglucose Positron Emission Tomography and Four-dimensional Computed Tomography q. Clin. Oncol. 2012, 24, e71–e80. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.J.W.L.; Lambin, P.; Ruysscher, D. De FDG for dose painting: A rational choice. Radiother. Oncol. 2010, 97, 163–164. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Lee, S.; Ho, S.; Sook, J.; Joon, S.; Chun, K.; Kyung, E.; Hoon, J.; Hoon, S.; Kim, S.; et al. Planning study for available dose of hypoxic tumor volume using fluorine-18-labeled fluoromisonidazole positron emission tomography for treatment of the head and neck cancer. Radiother. Oncol. 2010, 97, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Judenhofer, M.S.; Cherry, S.R. Applications for Preclinical PET/MRI. Semin. Nucl. Med. 2013, 43, 19–29. [Google Scholar] [CrossRef]
Research Platform | Vendor Research Institute | Beam Energy (KeV) | Dose Rate (Gy/Min) | Beam Collimation | Accuracy (mm) | Image Guidance | Treatment Planning System | Reference |
---|---|---|---|---|---|---|---|---|
Commercially available | ||||||||
SARRP 1 | Xstrahl Life Sciences | 5–225 | 1–4 | Aperture MVC | 0.2 | CBCT BLT | Muriplan | [14,15] |
X-RAD 225Cx SmART 2 | Precision X-ray | 5–225 | 0.01–4 | Aperture | 0.2 | CBCT BLI | SmART-Plan | [16] |
Non-commercial | ||||||||
iSMAART | University of Miami, USA | 45–225 | 2.5–4 | Aperture | 0.4 | CBCT BLT FLT | In house | [17,18,19] |
SAIGRT 3 | Technical University of Dresden, Germany | 10–225 | 1–4 | Aperture MVC | 0.1 | CBCT | In house | [20] |
SACRTD 4 | University of Arkansas, AR, USA | 60–225 | 0.4–3 | Aperture | 0.2 | CBCT | In house | [21] |
Micro-CT based radiotherapy devices | Stanford University, USA | 70–120 | 2 | Aperture | <0.1 | CBCT | In house | [22] |
Heidelberg University, Germany | 10–160 | 4.5–6.4 | Aperture | <1 | CBCT | In house | [23] | |
The University of Western Ontario, Canada | 70–140 | 2 | Jaw Collimation | 0.1 | CBCT | In house | [24] |
Tracer | Targeting Moiety | Biological Target | Reference |
---|---|---|---|
64Cu | Anti-PD-1 | Tumor infiltrating lymphocytes | [41] |
124I | Anti-CD4 | CD8+ cells | [42,43,44] |
89Zr | Anti-CD4 | T-cell reconstitution post-transplant | [43] |
89Zr | Anti-CD3 | tumor-infiltrating lymphocytes | [44] |
64Cu | Anti-OX40 | T cells activation | [45] |
Anti-CTLA-4 | CTLA-4 visualization | ||
68Ga/18F | PSMA | PSMA | [46] |
18F-FDG | Fluorodeoxyglucose | Glucose metabolism | [47] |
68Ga-NODAGA-c(RGDfK) | RGD (arginine, glycine, aspartate) peptides | αvβ3 integrins in the tumor vasculature | [48] |
18F-EF5 | 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoro propyl)-acetamide | Hypoxia | [49,50] |
18F-FAZA | 1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole | ||
18F-FMISO | Fluoromisonidazole | [51,52,53,54] | |
18F-HX4 | fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propan-1-ol | ||
(18F)F-AraG | 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoro propyl)-acetamide fluoro-9-β-D-arabinofuranosyl guanin | T cell activation | [55,56] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghita, M.; Brown, K.H.; Kelada, O.J.; Graves, E.E.; Butterworth, K.T. Integrating Small Animal Irradiators with Functional Imaging for Advanced Preclinical Radiotherapy Research. Cancers 2019, 11, 170. https://doi.org/10.3390/cancers11020170
Ghita M, Brown KH, Kelada OJ, Graves EE, Butterworth KT. Integrating Small Animal Irradiators with Functional Imaging for Advanced Preclinical Radiotherapy Research. Cancers. 2019; 11(2):170. https://doi.org/10.3390/cancers11020170
Chicago/Turabian StyleGhita, Mihaela, Kathryn H. Brown, Olivia J. Kelada, Edward E. Graves, and Karl T. Butterworth. 2019. "Integrating Small Animal Irradiators with Functional Imaging for Advanced Preclinical Radiotherapy Research" Cancers 11, no. 2: 170. https://doi.org/10.3390/cancers11020170
APA StyleGhita, M., Brown, K. H., Kelada, O. J., Graves, E. E., & Butterworth, K. T. (2019). Integrating Small Animal Irradiators with Functional Imaging for Advanced Preclinical Radiotherapy Research. Cancers, 11(2), 170. https://doi.org/10.3390/cancers11020170