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Abstract: Radiobiological modelling has been a key part of radiation biology and therapy for many
decades, and many aspects of clinical practice are guided by tools such as the linear-quadratic
model. However, most of the models in regular clinical use are abstract and empirical, and do not
provide significant scope for mechanistic interpretation or making predictions in novel cell lines or
therapies. In this review, we will discuss the key areas of ongoing mechanistic research in radiation
biology, including physical, chemical, and biological steps, and review a range of mechanistic
modelling approaches which are being applied in each area, highlighting the possible opportunities
and challenges presented by these techniques.
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1. Introduction

In contrast to many other areas of biology, mathematical modelling has been an essential part
of the fields of radiation biology and radiation therapy since their inception. Close links between
the disciplines of physics, biology, and medicine have underpinned this connection, fostering a
robust field of physical and biological modelling of radiation responses. On the side of physics,
advanced mathematical methods underpin the optimization of modern radiotherapy techniques,
enabling precise conformation of dose to target tumors. However, mathematical modelling can also
contribute to advancing our understanding of fundamental radiobiology, and has done so since the
very earliest studies.

Mathematical modelling has been applied in radiobiology since the 1920s, in studies of
proliferation in bacteria and chick embryos [1,2]. In both cases, an exponential dependence of cell
viability on radiation was obtained, leading to the development of a “target theory” hypothesis of
radiation response. This suggested that cells contain a sensitive region (or “target”) which could be
inactivated by a damaging event (or “hit”), and that the yield of these hits is proportional to the dose
delivered. If radiation-induced is induced randomly among cells, these the number of hits per cell will
follow a Poisson distribution, with a mean number per cell of n = D/D0, where D is the dose delivered
and D0 is the dose which causes one “hit” on average. If only un-hit cells survive, then the survival

probability is the same as the probability of a cell having 0 hits, that is: S = Phits(0, D) = e−
D

D0 , where
Phits(0, D) is the probability of 0 hits following exposure to a dose D. An exponential dependence
results, as the probability of seeing 0 hits in a Poisson distribution with mean n is given by e−n.

These models proved highly effective in studies on bacteria and other simple systems, but
evidence grew that not all response curves showed this simple exponential dependence [3], with
some systems showing evidence of a “shouldered” response curve, with initially lower sensitivity to
radiation. Interest in this type of model expanded rapidly after the development of robust techniques to
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assess the in vitro radiation sensitivity of mammalian cells [4,5], which consistently showed shouldered
response curves.

Multi-target models sought to address this by suggesting that rather than a single target, cells
contained multiple targets, all of which must be inactivated to cause cell death. If each target still

had the same e−
D

D0 hit probability, then the probability of a cell surviving is S = 1 −
(

1 − e−
D

D0

)n
,

where n is the number of targets in the cell. This gave a survival curve with an initial slope of 0, which
gradually increased to 1/D0 at high doses (on a log scale). While the multi-target model was able to
successfully fit many observed cell-survival datasets, questions remained about its wider applicability.
In particular, a growing body of data indicated that many cell lines did not have zero initial slope, and
experiments at high doses often showed increasing curvature, up to the limit of detectability [6,7].

One alternative survival model, independently proposed by a number of authors, was the
linear-quadratic model S = e−αD−βD2

, which incorporated both a linear initial slope (governed
by α) and a continually increasing quadratic curvature (governed by β). The key features of this
Linear-Quadratic (LQ) model are illustrated in Figure 1, showing the contributions of the linear and
quadratic response components. The LQ has become the dominant mathematical model in modelling
the survival of cells in preclinical studies, in part motivated by its close links to clinical observations.
Studies of fractionation effects in tissues and tumors demonstrated that not only did the LQ model
effectively reproduce in vitro survival, but also the effect of clinical fractionation, providing a consistent
way to interpret these effects [8–10].
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Figure 1. Left: Illustration of linear-quadratic dose response model. This postulates that cell survival
has a “one-hit” linear component, and a “two-hit” quadratic component, which contribute varying
amounts with varying doses. While simple, this model has been shown to encapsulate many aspects of
radiation responses. Right: As an illustration, it provides an intuitive explanation for the benefits of
fractionation, where in low α/β tissues the “shoulder” is repeated, giving rise to significant sparing,
while in high α/β tissues, much less sparing is seen. However, this model has only limited scope for
mechanistic applications.

One important feature of the LQ is that despite its relative simplicity, it provides an intuitive
explanation for a range of biological effects. For example, the tissue-sparing benefits of fractionation
can be understood by noting that if cells are allowed to repair between two fractions of radiation, they
repair “sub-lethal” damage and repeat the shouldered portion of the curve, seeing less killing than if
the dose is delivered in a single fraction. The degree of sparing depends on the degree of curvature,
typically quantified in terms of the α/β ratio. This has units of Gy, and corresponds to the dose at
which the linear and quadratic components have equal contributions to cell killing. Cells with a low
α/β ratio see superior sparing compared to those with a high α/β ratio, as illustrated in Figure 1.
As a result, the LQ remains the foundation for determining the equivalence of different treatment
fractionation schedules in the clinic [11].

However, the LQ is not without its challenges, and there remain outstanding questions about its
interpretation. In addition to its applications in the analysis of clonogenic survival and fractionation,
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quadratic-type responses had also previously been fit to other endpoints, such as the formation
of chromosome aberrations and mutations [12,13]. In each case, the general features driving the
relationship are broadly similar; for example, that the linear component relates to “single-hit” damage
resulting from individual incident particles, and the quadratic component rates to the strength of
interaction of accumulated radiation effects from multiple incident particles. However, the exact
mechanisms underlying these trends were the subject of some debate.

As the LQ gained increased prominence as a model of survival in the 60s and 70s, a range of
quantitative models were developed to attempt to understand these trends. In 1972, Kellerer and Rossi
published proposed that the yield of “elementary lesions” followed a quadratic dependence with,
dose being formed either directly by a single event, or as “dual lesions” due to the interaction of two
sub-lesion events, in the “theory of dual radiation interaction” [14]. In this model, the nature of the
“lesions” were deliberately left unspecified. However, the following year Chadwick and Leenhouts
published their “molecular theory of cell survival”, which took a similar approach to predicting the
sensitivity of cell survival, but explicitly identified the critical lesions as DNA double strand breaks, and
sub-lesions as single strand breaks [15]. Although the two models had somewhat different underlying
assumptions, in both cases they could reproduce LQ trends at low doses, in good correspondence with
experimental observations. However, this was not the only approach taken.

An alternative family of models considered a linear yield of initial lesions, and modeled the
quadratic term of radiation response as being due to lesion interaction. Among the first comprehensive
model was the Repair-Misrepair (RMR) model of Tobias et al. [16,17]. In this model lesions are induced
linearly with dose, and can be repaired with either linear kinetics, or quadratic kinetics proportional to
the density of lesions. The former process can be interpreted as correct end joining, and the latter as
binary misrepair. Each of these types of joining can be associated with a probability of lethality, giving
rise to response curves which can replicate a number of different response models, including target
theory models and the LQ.

A number of other models have been developed using similar concepts of linear and quadratic
repair processes, with some minor variants on approach. Another extensively studied approach is
the Lethal-Potentially Lethal (LPL) model of Curtis [18]. In this model, rather than a single class of
lesion, there are “lethal” lesions, which are always fatal to the cell, and “potentially lethal” lesions,
which are repaired with linear and quadratic kinetics, as in the RMR. The linear component is treated
as correct rejoining, while the quadratic component is taken as incorrect rejoining and also considered
to be lethal.

One final class of model, rather than explicitly postulating direct lesion interaction as the driver
of misrepair, suggested that cells have a finite repair capacity. One such Saturable Repair model was
proposed by Goodhead [19], which suggested that as the number of lesions increased, the probability
of successful repair fell, due to a reduction in the cell’s ability to repair all of the induced damage,
for example, due to enzyme or energy depletion. As this means additional dose causes increasing
lethality, a shouldered response curve can be formed, potentially closely mimicking the LQ model for
suitable parameters.

All of these models have several desirable features—they provide a mechanistic link between the
LQ and fundamental damage and repair processes, and can potentially be applied to predict yields of
other endpoints, such as mutations, as well as the cell-protecting effects of fractionation or the Relative
Biological Effectiveness (RBE) of charged particles (discussed in more detail below).

Most of these models are sufficiently general to be applied in a range of scenarios. However, in
the majority of cases, the limitations of experimental clonogenic survival data mean that clinical results
cannot adequately distinguish between these models, as they can all predict broadly similar dose
response curves with suitable parameter selection (reviewed in [20]). It has thus proven challenging
to robustly demonstrate which, if any, of these models truly describe the mechanisms underpinning
the LQ.
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This presents difficulties for the translation of the LQ into modern radiotherapy. The benefits
of fractionation are typically explained in terms of the 4 R’s of radiotherapy—repair, reoxygenation,
redistribution, and repopulation [21]—and while some of those (most notably repair) are naturally
incorporated in the LQ model, others factors are more difficult to incorporate without the inclusion of
further empirical fitting parameters. Moreover, there is a growing interest in a range of other factors
which alter radiation responses, including radiations of different qualities [22], radiation-response
modifying drugs [23], microenvironmental features of the tumor [24], and inter-patient variations in
radiation sensitivity [25].

In addition, as the LQ model is applied as an empirical fit to survival, the parameters obtained
for a given cell or tissue do not provide any information about other potentially biologically relevant
endpoints of radiation exposure, such as the formation of potentially carcinogenic mutations. These
limitations, coupled with the burgeoning knowledge of the mechanisms underlying radiation response,
have driven considerable interest in the development of more mechanistic models of radiation response
and cellular fate.

However, as illustrated in Figure 2, radiation damage is initiated by physical interactions on
the timescale of femtoseconds, triggering a cascade of processes that can result in alterations to the
cell’s fate hours, days, or even years following the initial exposure, mediated by both chemical and
biological processes. While there are many models of both individual processes and combinations
relevant to specific endpoints, because of the range of processes and scales involved, there is not as yet
a single integrated model of all of these processes. In this review, we will discuss the modelling efforts
on these different scales, which attempt to better understand cellular responses to ionizing radiation,
and briefly discuss how this may build towards improved individualized predictions.
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Figure 2. Illustration of stages of a comprehensive mechanistic response model, and approximate
associated timescale. Early responses are dominated by physical interactions, models of which
generate distributions of reactive chemical species, and direct DSBs generated in typically less than
a nanosecond. These chemical species may also be included in a chemical interaction model, which
generates predictions of indirect DSBs, over a scale of 1 ms or less. Responses at the cell level then
take place over hours to days, as cells repair this damage and potentially respond by arresting, dying,
or seeing other changes in function. Finally, tissue-level responses integrate such responses over a
scale of hours to years, giving rise to clinically observable effects. Mechanistic modelling activity in
radiotherapy has primarily focused early in this timescale, on physico-chemical and early cellular
responses, with relatively little modelling of whole-tissue responses. This is in part due to the significant
cumulative complexity in describing all aspects of these responses in a single system.



Cancers 2019, 11, 205 5 of 23

2. Physical DNA Damage

The genetic content of the cell was putatively identified as the primary target for radiation action
some years before the structure of DNA was determined [13], a prediction which has been extensively
validated in a range of subsequent studies [26–28]. In particular, it has been shown that DNA double
strand breaks (DSBs)—events which sever both strands of the DNA in close proximity—are strongly
correlated with lethality. As discussed in more detail in Section 3, this is because although cells have a
number of pathways which can effectively repair DSBs, these are more error-prone than those which
repair simpler events, such as base damages or single-strand breaks [29].

On the macroscopic scale, radiation dose is frequently quoted as a spatially averaged quantity
across relatively large volumes—whole cell populations or tumors—but this does not fully reflect
the complexity of radiation damage. DNA has structure on the nanometre scale, with a double-helix
having a diameter of approximately 2 nm, and DSBs involving breaks separated by approximately two
turns or fewer, corresponding to on the order of 10 to 20 base pairs, or 4–8 nm in length. As a result,
physical differences in energy deposition on this scale lead to differences in biological effect. While
“sparsely ionizing” radiation, such as high energy X-rays, distributes its energy effectively randomly
around the DNA, high LET radiation (such as heavy charged particles) deposit their energy much
more densely. This leads to damage with greater complexity, potentially in greater amounts per unit
dose, which the cell finds more difficult to repair (schematically illustrated in Figure 3).
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Figure 3. Illustration of track structure and energy deposition distributions for a 10 MeV proton
(~5 keV/µm LET, blue, top) and 200 MeV carbon ion (~100 keV/µm LET, red, bottom), together with a
schematic representation of DNA for scale. For both particles, the primary particle track (lines) deposits
only a small fraction of the total energy, with large amounts of energy being deposited in the vicinity of
the track core by low energy secondary electrons, with individual energy depositions here shown as
points. It can be seen that while the proton deposits energy relatively sparsely, the carbon ion deposits
energy extremely densely along its track, potentially causing multiple closely spaced damages within
any DNA it traverses.

This elevation of damage means that densely ionizing particles exhibit a high Relative Biological
Effectiveness (RBE). This is defined as the ratio between the dose of a sparsely ionizing reference
radiation which gives rise to a particular biological effect, and the dose of a densely ionizing radiation
which has the same biological effect. The exact magnitude of RBE and its dependence on parameters
such as dose and LET is of particular concern in the delivery of radiotherapy with charged particles,
such as protons and ions, making this a topic of considerable research interest in radiobiology.

While many techniques are available to model energy depositions on the nanoscale, the “gold
standard” is provided by Monte Carlo track structure calculations [30]. Such simulations stochastically
model radiation interactions on an event-by-event basis, tracking each scattering, excitation, or
ionization event of both the primary and any secondary particles which are produced (giving “tracks”
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as illustrated in Figure 3). Such models have been in use for more than three decades. Early research
focused on microdosimetric energy distributions, assessing the stochastic distribution of energy on
the sub-cellular scale [31,32]. This work demonstrated the high degree of heterogeneity which can
be seen in the distribution of energy even within cells which are exposed to the same average dose,
highlighting the need for more detailed simulations to accurately predict radiation damage following
ionizing radiation exposure.

In the early 1990s, significant developments were made advancing this approach from simple
microdosimetric calculations to models incorporating key features of DNA structure. This enabled
calculations of energy depositions in various sub-regions of DNA, and predictions of the damage to
the DNA structure which would result [33,34]. By fitting the sensitivity of various parts of the DNA to
ionizing events, such as the amount of energy which must be deposited in a sugar-phosphate backbone
to cause a strand break, predicted yields of measurable endpoints (such as SSB and DSB) could be tuned
to match experimentally observed values, and the models used to interrogate underlying mechanisms
and endpoints which were not so readily measurable, such as the yield of complex, multiply-damaged
sites [26].

Historically, these Monte Carlo codes were typically developed ad-hoc by individual groups for
their particular research purposes, and so were frequently restricted in terms of their energy range
and simulated particles (reviewed in [35]). A wide range of codes have been applied in simulations
of dosimetry on both the patient and cellular scale, including MCNP [36], EGS [37], FLUKA [38],
KURBUC [39], MC4 [40], RITRACK [41], TRAX [42], PHITS [43], PARTRAC [44], and Geant4 [45].
Many Monte Carlo codes make use of a “condensed history” physics model, where some charged
particle interactions are condensed into single steps to improve performance (including MCNP, EGS,
FLUKA, Geant4). While this accurately reproduces results on the patient scale, it is insufficient
to fully explain interactions on the cellular scale. Instead, track-structure models which simulate
each interaction individually are needed to fully describe the interaction of radiation on the cellular
scale [46,47].

As a result, a number of dedicated codes have been developed for these purposes (including
KURBUC, MC4, RITRACK, TRAX, PHITS, and PARTRAC), and general-purpose Monte Carlo codes
have been extended to calculate track structure at lower energies, making them applicable to cellular
scales. Probably the most widely used code in this area is Geant4, a general-purpose Monte Carlo
toolkit originally designed for high-energy charged particle transport, which has been extended to
encompass ionizing events at energies relevant to cellular nanodosimetry (down to a few eV per
particle) through the Geant4-DNA project [48,49]. Geant4 also underpins the TOPAS and TOPAS-nBio
toolkits [50,51], which seek to make these Monte Carlo approaches more generally accessible.

These different codes have seen a range of levels of uptake in different fields and applications, but
although all of these codes are capable of simulating nanoscale track structures, there remain a number
of outstanding research areas where further development is needed to more robustly predict DNA
damage from first principles. These include cross section models, descriptions of radiation chemistry,
DNA structures and geometry, and understanding of how these different events combine to give rise
to DSBs.

Interaction cross-sections are one of the key pieces of input data needed for Monte Carlo models,
describing the probability of various scattering and ionization events as a function of energy and
target material. However, the majority of nanoscale Monte Carlo calculations simply treat all organic
material as water-equivalent. While this is a good approximation at high energies, at low energies these
assumptions may break down [52,53]. As a result, there is ongoing research to attempt to measure and
model relevant cross-sections in organic molecules, including DNA, so that they can be more robustly
incorporated in the Monte Carlo models to provide better predictions of the damage ionizing radiation
may have on DNA.

Radiation chemistry is also an area of substantial development. It is well-known that direct
interactions between the ionizing particles and DNA are responsible for only approximately 30% of
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initial damage for photon irradiation, and a somewhat greater proportion for heavier charged particles.
Instead, so-called “indirect” interactions play a dominant role. These are events where radiation
interacts with another molecule (predominantly water), creating ions or radical species which proceed
to react with the DNA, damaging its structure and leading to strand breaks. While early modelling
simulated these radical species in small test volumes [33], simulating such reactions in realistic cell
volumes can be extremely time-consuming, because of the large number of species which can be
generated. Codes are under development, which provide this functionality more generally, including
as part of PARTRAC [44], Geant4-DNA [54], TOPAS-nBio [55], and TRAX-CHEM [56]. However, in
most cases these codes are still limited to simulations in liquid water, due to the lack of information on
reaction rates in more complex chemical compositions.

Because of the above approximations, actual DNA structures are also frequently neglected.
Instead, homogeneous water volumes are simulated, with DNA structures superimposed on the
simulation results to determine the distribution of damaging events. While this avoids complications
from the lack of cross-sections for relevant targets, the appropriate DNA structure to use remains an
outstanding research question. Early work [34] made use of small sections of DNA (equivalent to
single DNA strands of tens of base pairs in length), which is sufficient to calculate rates of local damage
in an “isolated” DNA section. However, DNA has a number of higher-degree levels of organization,
with individual strands wrapped around histones to form nucleosomes, which are in turn packed
into larger fibers. This organization means that DNA damage is not randomly distributed, but may
depend on local structure around a radiation track. A range of studies have modelled different DNA
structures [44,57–59], and shown that the choice of a particular DNA structure can have substantial
impacts on the predicted yields of different types of damage, and how it is distributed through
the genome.

Despite the above uncertainties, numerous models have been generated which predict the yield
of radiation-induced DSBs in a variety of systems, based on models of either direct damage alone,
or combinations of direct and indirect damage. These range from multi-scale models which simulate
damage in detail on small DNA structures and extrapolate to averaged or cell-level responses [58,60–62].
There are also a range of whole-cell models incorporating varying levels of detail on DNA damage
and chromosome structure, summarized in Table 1. Although these models have differences in their
design, underlying physics, whether or not they include chemical effects, and models of biological
structure and DNA damage, many of them produce broadly similar predictions.

Table 1. List of Monte Carlo models of DNA damage, which combine various track structure physics
codes with a variety of DNA models to generate predictions of different classes of DNA damage.
A broad range of underlying codes and models have been used to simulate damage from a range of
radiation types.

Paper Physics Code DNA Model Endpoints

Nikjoo et al. [39,63] KURBUC/PITS
Whole nucleus containing

chromatin fibers arranged in
hierarchy of spherical volumes

DSBs, SSBs, base
damages

Friedland et al. [44,64] PARTRAC Whole nucleus containing model
chromatin fiber random walk

DSBs, SSBs, DNA
fragment sizes

Bernal et al. [65] Geant4-DNA Atomistic DNA segment
model in cube DSBs, SSBs

Plante et al. [41] RITRACKS Flexible polymer chain chromosome
model in nucleus DSBs

Meylan et al. [66] Geant4-DNA DNAFabric-based nucleus model DSBs, SSBs

McNamara et al. [51,57] Geant4-DNA/TOPAS-nBio Multiple DNA structures, fractal
walk nucleus DSBs, SSBs

In part, this is the result of the above-mentioned significant uncertainty in the nature of the
physico-chemical processes, which give rise to double-strand breaks at the interface between physical
and biological models. Due to the lack of distinction between different modelling assumptions,
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there is very large uncertainty in the underlying biological parameters, and even quite different
models can be brought into a reasonable agreement through careful selection of different parameters.
These include the amount of energy which needs to be deposited in a single strand to cause a break
(with threshold energies estimated from a few eV up to 40 eV, or in some cases an energy-dependent
probability [34,61,67]), the likelihood of radical interaction causing damage, and how different damages
in close proximity interact. This problem is compounded by the often significant uncertainties present
in experimental measurements of DNA damage, which make determining absolute yields of many
types of damage challenging.

Thus, while a range of models exist to predict the yield and distribution of DNA damage for
different types of irradiation, there is a significant need to better characterize many of the fundamental
parameters governing these models, to refine their underlying structure, and enable more robust
comparisons between models. A recent collaboration has proposed a Standard for DNA Damage
reporting, enabling the outputs of various models to be efficiently compared, to help facilitate such
developments [68].

3. DNA Repair

Although DNA damage is the primary driver of radiation-induced effects, it represents only
the initiating event in a cascade of processes. Living systems have evolved a wide range of systems
enabling the efficient repair of DNA damage, so only a very small fraction of even double-strand breaks
lead to lethality. While radiation induces 30–40 DSBs per cell per Gy, this typically corresponds to less
than one lethal event per cell [69]. Failures in these repair processes lead to lethality, either through the
failure to repair a subset of DSBs [70,71] or misrepair events, which cause significant chromosomal
abnormalities [72]. This is particularly apparent in cell lines with defects in key DNA repair genes,
which can be more than an order of magnitude more sensitive than repair-competent cells.

Due to their lethality, the repair of DSBs has been the subject of the majority of the modelling efforts
in this area. A number of high-level models of DNA damage were developed to attempt to understand
how damage may combine into different types of damage. A number of similar approaches considered
proximity effects as the major driver of misrepair, with spatially dense clusters of damage having a
high probability of incorrect end joining, leading to potentially deleterious misrepair [73–78]. Such
models often proved effective at predicting yields of events, such as mutations [76] and chromosome
aberrations, which can in turn be linked to cell death in some cases [76,79]. However, most such models
do not incorporate detailed models of the underlying repair processes, which limits their capacity to
incorporate our growing mechanistic understanding of DNA repair.

As schematically illustrated in Figure 4, there are three primary mechanisms by which
DSBs can be repaired: Nonhomologous End Joining (NHEJ), Homologous Recombination (HR),
or Microhomology-Mediated End Joining (MMEJ). NHEJ is active throughout the cell cycle, and rapidly
repairs most DNA DSBs, although is somewhat error-prone and often leads to small modifications
around the site of repair [80]. By contrast, HR makes use of DNA from a matching chromosome to
precisely repair DNA without introducing new sequence errors. However, because of the dependence
on a template strand, it is limited to activity in late S and G2 phases, where DNA has been replicated [81].
Finally, as a backup to these processes, MMEJ can act to rejoin DNA. In this process, DNA strands
are matched based on small regions of homology, typically involving significant resection at break
ends, and is very error-prone and almost always leads to at least moderate sequence alteration [82].
A number of potential pathways have been implicated in MMEJ, including a resection-dependent
subset of NHEJ [83], as well as a wholly distinct pathway known as alternative-NHEJ, which is
independent of most major NHEJ proteins [84].
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Figure 4. Illustration of double-strand break repair pathways, with DNA sequence progression
schematically illustrated by color scale, to highlight sequence alterations. Ionizing radiation induced
double strand breaks (top) can be repaired by one of three pathways—Non-Homologous End Joining
(NHEJ, left), Homologous Recombination (HR, center), or Microhomology-Mediated End Joining
(MMEJ, right). These pathways differ in their efficiency, fidelity, and activity throughout the cell cycle.
NHEJ has been the subject of extensive mechanistic modelling in radiotherapy, while relatively few
studies have been published of the other pathways.

The kinetics of these different repair pathways has been the subject of a range of experimental
and modelling studies. The most common empirical approach describes DNA repair as a single- or
multi-exponential process, with different sub-populations of breaks being repaired with different
kinetics. However, other explanations for the slowing rate of repair at later times have also been
suggested, such as a second-order exponential dependence [85] or more complex repair interplays
with multiple kinetic parameters or variable repair-times (summarized in [86]). Some of these models,
such as the multi-exponential approach, offer a seemingly natural link between groups of breaks
repaired with different kinetics and the various available pathways, although there is evidence that
other features of breaks, such as their complexity and the local structure of DNA, may also impact on
repair kinetics.

Some models of DNA repair fidelity and survival have sought to incorporate detail on these
pathways, reflecting them as different repair processes which still act in a largely probabilistic
fashion [76]. While still relatively abstract, such models still enable predictions of differential
responses in cells with different genetic backgrounds, building towards individualization of radiation
response predictions.

Much more detailed studies seek to fully model the biochemistry of these pathways, tracking
the migration and interaction of DNA ends and proteins, either using population biokinetics and
probabilistic models [87–89] or by modelling individual agents in a Monte Carlo fashion [90,91]. These
models have primarily focused on NHEJ, and have demonstrated the ability to reproduce observed
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trends in DNA repair kinetics and the impact of knocking out some key genes [92], potentially
providing a framework to better understand these processes on a quantitative level.

By contrast with NHEJ, no quantitative mechanistic models of the other major DNA repair
pathways, HR and MMEJ, have been published in combination with radiation. For HR, this is in
part due to its complexity, as it involves template DNA strands and a range of potential mechanisms
for the resolution of the resulting D-loop (or Holliday Junction) formed between the repaired and
template chromatids, the relative activity of which has yet to be fully determined [93]. In the case of
alternative-NHEJ, the pathway has only been recently identified as distinct from NHEJ, and while
many of the key genes involved have been identified [94], there has been relatively limited modelling
of their function.

To fully model the consequences of ionizing radiation, robust descriptions of these pathways
are needed to accurately predict the consequences of repair. This includes not only the activity and
fidelity of individual pathways, but also how they interact with one another to determine which
pathway repairs a particular break, and how this depends on the physical complexity of damage and
the potential presence of other damage within the nucleus.

At present, there are a number of models, based on both simple proximity-based or more
sophisticated molecular kinetics, which make predictions that can potentially be experimentally
tested, relating to yields of different types of misrepair under different irradiation conditions. However,
as with initial physical damage, the extensive parameter space underpinning these responses make
robustly fitting and falsifying different models challenging—even relatively simple kinetic models of
NHEJ can involve between 10 and 20 fitting parameters [88,92].

4. Cell Fate

Once initial DNA damage distributions and their repair have been determined, there is still the
question about the cell’s eventual fate. A wide range of approaches has been taken to incorporate our
knowledge of these underlying processes into radiation response models.

As noted above, many early radiation response models involved simplified descriptions of how
radiation response processes were believed to proceed. Approaches like the dual action model of
Rossi and Kellerer [14], the Repair-Misrepair model of Tobias [16], the lethal-potentially lethal model
of Curtis [18], or the molecular theory of Chadwick and Leenhouts [15] represented some of the
first efforts of incorporating knowledge of radiation biology into mechanistic response models. Such
approaches proved successful at capturing the basic features of the radiation dose response curve, and
there are a number of modern developments which have sought to place these on a more biologically
robust footing by incorporating additional detail about the underlying biology [89,95–97]. However,
a range of other approaches also seek to build on these more general assumptions to incorporate
further mechanistic details about the underlying radiation physics and biology.

For example, predicting the RBE of high LET radiations has been a topic of considerable interest,
due to both the interest in the underlying biology as well as the implications for clinical practice in
facilities which seek to use heavy charged particles for the treatment of cancer. Many empirical models
have been developed which predict protons RBE-LET dependence by applying simple modifications
to LQ parameters, typically of the form αp = p1αx +

p2LET
αx/βx

, where αx is the α LQ parameter for protons
or X-rays respectively, p1 and p2 are empirical fitting parameters, and αx/βx is the ratio for X-ray
responses [98–100]. Similar modifications are sometimes also proposed for the β term. While broadly
successful for proton therapy, such approaches are typically ineffective at the higher LETs used in
therapy with heavier ions, such as carbon.

A number of mechanistic explanations of cell inactivation were explored to attempt to better
understand the mechanisms underpinning these effects. This includes early work, such as geometric
radial energy distribution models developed by Butts and Katz [101] and applications of the dual action
model [14], as well as more recent modelling approaches, including the Repair-Misrepair-Fixation
model (RMF) [89] and many extensions of the DNA damage models, outlined in Section 3.



Cancers 2019, 11, 205 11 of 23

However, clinical RBE modelling is dominated by two approaches, which build on
microdosimetric simulations and simple assumptions about cellular fate. These are the Local Effect
Model (LEM) and the Microdosimetric Kinetic Model (MKM). In both cases, the models seek to take
advantage of a combination of biological response parameters determined for X-ray exposure and
microdosimetric calculations to predict the effects of high LET irradiation.

The LEM defines radiation response in terms of “lethal events”, such that survival is given by
S = e−N , where N is the number of lethal events. For X-rays, it can be seen that these lesions are formed
at a rate N = −αD − βD2, and the LEM assumes that the same dependence holds in sub-volumes
of the nucleus of cells exposed to heterogeneous radiation exposures. Thus, the total yield of lethal

events across a cell is given by N =
∫ −αDr−βD2

r
V dV, where Dr is the dose delivered to a point r within

the nucleus, and V is the total nuclear volume. It can be seen that because of the D2
r term, the total

yield of lethal lesions will be greater in a heterogeneous exposure than a uniform exposure, which
gives rise to elevated RBEs in such systems [102]. More recent versions of the LEM have moved to
explicitly consider break repair and misrepair probabilities similar to some other models described
above, but these approaches have yet to make the transition to clinical practice [103].

The MKM takes a conceptually similar approach. In it, the nucleus is sub-divided into a large
number of small “domains”, each of which can contain either directly lethal events, or potentially lethal
events. Potentially lethal events within the same sub-domain then have the chance of mis-rejoining
to cause lethal events or successfully repairing, giving rise to a linear-quadratic response for lethal
lesions within each micro-dosimetric domain. As in the LEM, rates for the formation of lethal and
sub-lethal damages can be determined from the approximately uniform damage caused by X-ray
irradiations, although the MKM uses the dose-weighted specific energy per track passing through a
domain to calculate the induced damage. Because high LET exposure leads to heterogeneous cellular
exposure and elevated risks of multiple sub-lethal events in a single domain, an increased probability
of misrepair and thus cell death results [104].

In both cases, by combining these relatively simple biological models with microdosimetric
models, good predictions can be obtained for RBEs in a range of systems. As a result, these models
have successfully made the transition into clinical use, with the LEM and MKM supporting treatment
planning optimization at carbon therapy institutes in Europe and Japan, respectively [105,106]. This
success shows the potential of more mechanistic models to inform clinical practice and improve patient
outcomes. Moreover, their mechanistic nature has enabled them to be applied and validated outside
their initial area of application, with the MKM model being applied in areas such as dose rate effects
in brachytherapy [107] and other modalities, such as boron neutron capture therapy [108], while the
LEM has been applied to gold nanoparticle enhanced X-ray therapies [109].

However, a major challenge which is presented in this area is what events lead to cell death.
For example, while the PARTRAC code is capable of simulating detailed models of initial damage and
how the cell resolves it, significant uncertainties in the absolute yield of damage remain, and survival
predictions still require assumptions to be made about how cells tolerate this damage [64]. Similar
limitations are present in other whole-cell DNA damage codes [66].

One common approach is to assume that some subset of types of repair failure can lead to cell
death. These can include combination of DSBs or other lesions into “complex” damages, which are
deemed irreparable, those which are determined to be unrepaired at a particular timepoint, or those
leading to significant misrepair, such as chromosome aberrations. A number of models have taken
this type of approach. For example, the BIANCA [79] model simulates the interaction of “cluster
lesions” in DNA to predict yields of chromosome aberrations (and later cell death) as a function of
LET. The GLOBLE model [110] applies a similar concept in low LET scenarios, modelling isolated and
clustered DSBs to better understand the LQ model and its temporal dependence. The “Multiscale”
approach [111] also models high- and low-LET effects by simulating the formation of complex clustered
lesions as the event which drives radiation-induced cell death. Finally, a combination of MCDS and
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RMF models [112] combines predictions of DSB yield with frequency-mean specific energy values to
predict the RBE of different ions.

While this represents only a selection of the models making use of this approach, it can be
seen that this concept of grouping damages spatially into lesions which either misrepair or are
deemed irreparable is very common across a wide range of models, despite substantial differences in
modelled endpoint and scenarios of interest. This is likely in part motivated by the good evidence that
chromosome aberrations that cause significant genetic rearrangement or loss are associated with a loss
of clonal viability [72], and the good correlations which have been observed between unrepaired DSBs
and cell death in some lines [71,113,114]. However, while this conceptual approach effectively captures
overall trends in radiobiological responses, there remains significant disagreement between models on
the exact form of this dependence, and these models have been validated to different degrees against
heterogeneous datasets.

Moreover, cell death is a complex process, involving both “passive” and “active” death pathways,
which can depend to varying degrees on the underlying cell biology, making it unclear by which
process a given cell will actually die [115]. These pathways include apoptosis [116,117], necrosis [118],
mitotic catastrophe [119], autophagy [120], and senescence [121]. Because many of these pathways
require the active involvement of different genes, they can vary substantially based on both the tissue
type of origin of a given cell, and any genetic alterations in the many genes involved in these processes.
This can significantly impact on the overall sensitivity of different cell lines, for example, with many
lymphoid cells showing dramatically higher levels of apoptosis and radiation sensitivity than cells
derived from epithelial tissue or fibroblasts [122,123].

These dependencies have been extensively studied in the literature, and some published response
models incorporate a high-level approximation of these pathways to reflect differences between
such cell lines. However, there is again relatively limited modelling of the mechanisms of these
pathways in determining radiation response. While some models do exist, they frequently focus on the
pathways more generally, including seeking to understand intrinsic and signalling-driven apoptosis
via chemotherapy, rather than that driven by radiation-induced damage [124–128].

Despite the significant complexity underlying these different pathways, improving our
understanding of them represents an area of significant unexplored potential in our attempts to
better understand radiation responses.

5. Tissue-Level Responses

Although this review has primarily focused on the response of individual cells, it is important
to note that clinical outcomes are defined at the multi-cellular level, in terms of responses in tumors
and normal tissues. While the intrinsic sensitivity of individual cells is believed to play a significant
role in radiosensitivity in both preclinical and clinical models [129–131], other effects also potentially
become significant.

While cell killing is associated with toxicity and tumor control, the precise amount of killing
and the distribution throughout the target which gives rise to different endpoints is highly variable.
In particular, while many tumor control probability (TCP) models assume that control depends on
killing all (clonogenically viable) tumor cells, normal tissue complication probability (NTCP) can
depend on the distribution of dose throughout the organ in a more complex fashion. Some organs
respond to irradiation with a severity which approximately follows the average dose across the whole
organ (“parallel” organs such as the lung or liver), while other organs can see significant toxicity
following irradiation of only a small sub-region (“serial” organs such as the spinal cord or bowel).

A variety of modelling approaches have been proposed to analyze this problem, beginning from
Poisson-based probabilistic models [132], which have been generalized using abstract approaches,
such as the generalized Equivalent Uniform Dose (EUD) [133,134], which seek to incorporate these
volume dependencies for different tissue types. For NTCP, two models are commonly used. The first
is the Lyman-Kutcher-Burman (LKB) model, which applies a tissue-specific empirical volume scaling
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to correct for irradiation of different sub-volumes to different doses, reflecting the difference between
serial and parallel organs [135,136]. An alternative process, which seeks to incorporate knowledge
of the structure of different tissue types, is the Relative Seriality model [137]. This model described
organs in terms of their “seriality”, with highly serial organs sensitive to toxicity arising due to damage
in very small volumes. However, as both of these approaches tend to abstract out significant amounts
of mechanistic information, there is also interest in more mechanistic approaches, such as tumor
models, which incorporate more details of proliferation, heterogeneity, and hypoxia [138,139], and
normal tissue models, which more explicitly define “functional sub-units” of the organs and how they
interrelate to incorporate these structural effects [140].

A final tissue-level endpoint of interest is carcinogenesis. While the majority of predictions of
cancer risk following radiation exposure are statistical, based on extrapolation from populations such
as the atomic bomb cohorts, the significant uncertainty in cancer risk at low doses means there is
considerable interest in using more mechanistic models to mitigate this uncertainty. Some of these
models remain stochastic, while incorporating more information on the stages of carcinogenesis, while
others seek to develop more comprehensive models from the cell level, simulating DNA repair failure
and mutation, together with clonal expansion driving cancer formation [141–144].

However, in both tumor and normal tissue models, there remains significant uncertainty in
model parameters, and there is typically limited incorporation of information from the single-cell level
beyond overall radiosensitivity, suggesting a further challenge in translating from cell-level models to
clinical responses.

In addition, irradiation in tissues opens the possibility of effects resulting from intercellular
communication. The two major pathways of this effect are the radiation induced bystander effect
(RIBE), and immune effects. In the RIBE, signals from neighboring cells can cause unirradiated cells to
suffer genomic stress and potentially die [145]. This is a departure from traditional radiobiology, where
radiation responses are predicted based on the dose delivered to the irradiated cell alone. A number of
RIBE models have been published, but are typically not incorporated in clinical planning [146–148].
The involvement of the immune system in radiotherapy is an area of rapidly growing interest, with
substantial evidence that changes in regulation of immune signals can play a significant role in
determining tumor control following radiotherapy [149,150]. As with the RIBE, a number of models
of radio-immunotherapy combinations have been published [151], but as this is a new and rapidly
developing field, once again they have seen little translation to clinical practice.

The step between cell-based models and tissue-level responses remains a major challenge
in radiobiological modelling. Tissue structure introduces the possibility for complex volume
effects which are not apparent on the single-cell level, and this significant increase in complexity
is combined with limited experimental data, presenting a substantial challenge for modelers
to develop useful and robustly validated tools to link our extensive preclinical knowledge to
clinically-meaningful predictions.

6. Potential Impacts of Modelling Advances

A recurring theme in many of the above discussions is the substantial biological complexity that
underlies many aspects of radiation response, which is obscured by the relatively simple response
models that can successfully characterize both pre-clinical and clinical responses. In many cases, it is
reasonable to question how much benefit will be derived from the development of these much more
sophisticated models, or if relatively simple, well-established approaches may be sufficient to describe
all aspects of radiation response.

However, there are a number of major outstanding clinical questions which these simpler models
are not suited to address. One of the most significant of these is that there is now extensive clinical
evidence that even in a group of patients with tumors of the same type, there may be a broad range
of radiation sensitivities among their individual tumors [132], driven in large part by the cancers’
spectrum of underlying mutations [25]. Estimates of this variation from clinical response curves
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suggest it could represent large differences in radiation sensitivity even for cancers which would be
treated identically in the clinic (e.g., variations in 25% or more in the α component [132]). Consequently,
a large fraction of patients are almost certainly being under- and over-dosed by these population-based
models, which may significantly impact on clinical outcomes. Empirical population-level models
offer no way to address these issues and predict the sensitivity of an individual cancer, as their
model parameters are typically at least somewhat abstract and cannot be linked directly to particular
genetic pathways or tumor characteristics. This presents a significant challenge in radiation therapy,
preventing it from becoming a fully personalized therapy.

Similar issues arise in a number of other areas which can impact on tumor response—the effects of
factors such as the tumor microenvironment, hypoxia, and radiation quality are not easily incorporated
in these models, at best being addressed by empirical fitting parameters such as OER and RBE effects.
These represent significant additional avenues by which treatments could be personalized, if they
could be more robustly incorporated in biological models of tissue and tumor response.

As a result, there has been significant interest in the development of clinical signatures of
radiation sensitivity. It has been reported that the in vitro clonogenic radiation sensitivity of cells
cultured from tumors correlates well with tumor sensitivity in both animal models [130,152] and
patients [153–155], along with some other intermediate endpoints, such as residual DNA damage in ex
vivo irradiated samples. However, such assays are often labor-intensive and difficult to incorporate
into a clinical workflow [156]. More recently, there has been a dramatic increase in interest in the
use of genetic signatures of radiation response. These techniques seek to associate alterations in the
mutation status or expression of genes with radiation sensitivity, typically using purely statistical
association. A number of signatures have been reported, either focusing on radiation response in
general [157,158], or specific modulators of response, such as signatures of hypoxia [159]. While a
promising approach, many of these signatures have faced challenges around reproducibility and
robustness [160], as well as questions about if they are truly predictive of radiation response or merely
more generally prognostic [161]. In addition, the volume of data required to fully parameterize
such empirical models is often prohibitive—as an example, there is still little agreement on the true
magnitude of the RBE of protons, despite several hundred studies reporting results in this area [162].

The incorporation of more detailed mechanistic models has the potential to help address these
challenges. Models that enable the integration of statistical, population-level data with our growing
mechanistic knowledge of the underlying drivers of radiation response can enable the generation of
more robust and translatable predictions. Some models have demonstrated the basic potential for
predicting aspects of radiation response based on phenotypic or genotypic characteristics, although
this remains a significant area of ongoing research.

Such models can potentially be useful in other areas also. For example, radiation is rarely
delivered as a single agent in modern clinical practice, instead being combined with chemotherapy
or new targeted therapies to improve outcome. While these are typically prescribed based on their
activity as single agents, there is growing interest in specifically seeking to develop radiation sensitizing
agents [23]. In this approach, agents are usually identified which seek to target specific parts of the
radiation response pathway, such as genes involved in DNA repair [163–165]. While this approach has
identified some radiation sensitizers, translation has been limited. More robust mechanistic models
may enable better predictions of the impact of modifying these aspects of DNA repair without the
need for extensive preclinical testing.

However, in all cases, it is important to ensure that model development is carried out in a rational
way. As noted in the discussion of alternative clonogenic survival models in Section 1 and DNA
damage models in Section 2, as model complexity increases, it can become increasingly challenging
to distinguish between different models due to a proliferation of adjustable parameters, and added
complexity may actually impact negatively on model predictive power [166]. Thus, it is important
to ensure that that any additional modelling complexity adds value—either by enabling explanation
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of novel phenomena, or by enabling additional data sources to be exploited to refine and constrain
model predictions—and ideally, be feasible to test and validate in a clinical setting.

7. Conclusions

Mathematical modelling has been a key part of radiation biology and therapy for almost a century,
and continues to play an important role in research developments. While a number of relatively
simple and largely empirical models dominate current clinical and pre-clinical practice, significant
advances are being made in our understanding of all aspects of radiation response, including the
initial physics, resulting chemistry, and subsequent biological consequences. Although this is a very
complex and challenging area of research, applied correctly it has significant potential to advance our
understanding of the drivers of radiation response, and potentially translate this into useful clinical
predictive tools in the future, if strong collaboration can be maintained between the diverse disciplines
in radiation research.
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