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Abstract: The characterization of a gene product function is a process that involves multiple
laboratory techniques in order to silence the gene itself and to understand the resulting cellular
phenotype via several omics profiling. When it comes to tumor cells, usually the translation process
from in vitro characterization results to human validation is a difficult journey. Here, we present
a simple algorithm to extract mRNA signatures from cancer datasets, where a particular gene has
been deleted at the genomic level, ICAro. The process is implemented as a two-step workflow.
The first one employs several filters in order to select the two patient subsets: the inactivated one,
where the target gene is deleted, and the control one, where large genomic rearrangements should
be absent. The second step performs a signature extraction via a Differential Expression analysis
and a complementary Random Forest approach to provide an additional gene ranking in terms of
information loss. We benchmarked the system robustness on a panel of genes frequently deleted
in cancers, where we validated the downregulation of target genes and found a correlation with
signatures extracted with the L1000 tool, outperforming random sampling for two out of six L1000
classes. Furthermore, we present a use case correlation with a published transcriptomic experiment.
In conclusion, deciphering the complex interactions of the tumor environment is a challenge that
requires the integration of several experimental techniques in order to create reproducible results.
We implemented a tool which could be of use when trying to find mRNA signatures related to a gene
loss event to better understand its function or for a gene-loss associated biomarker research.

Keywords: transcriptional signatures; copy number variation; copy number aberration; TCGA
mining; cancer CRISPR; firehose; gene signature extraction; gene loss biomarkers; gene inactivation
biomarkers; biomarker discovery

1. Background

Translational research has been hard at work trying to find a way to characterize genes and gene
product functions for decades. One successful approach is the study of particular contexts where
the gene expression of interest is perturbed. In the past, biologists mostly tried to characterize gene
functions by overexpressing its mRNA, whereas more recently, several tools have been introduced
in the field of Cellular and Molecular Biology to erase a gene (or its mRNA). Furthermore, a rapid
evolution of induced DNA/RNA ablation techniques have emerged from perfectible approaches
including siRNA/shRNA to highly specific ones such as TALEN and CRISPRs/Cas9 [1,2].

Cancers 2019, 11, 256; doi:10.3390/cancers11020256 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
http://www.mdpi.com/2072-6694/11/2/256?type=check_update&version=1
http://dx.doi.org/10.3390/cancers11020256
http://www.mdpi.com/journal/cancers


Cancers 2019, 11, 256 2 of 11

An induced gene deletion (or mRNA ablation) event brings about a series of phenotypes, both
as direct consequences of the gene/protein absence and as epiphenomena mediated by the cellular
environment response of such a relevant change.

The granular study of these phenotypes has been accelerated dramatically by the introduction
of omic technologies in basic and translational research. For instance, we can easily take a
transcriptome-wide picture of the mRNA status or the profile of a large panel of metabolites. All these
data can easily help the investigators to apply the “guilt by association” approach in order to better
understand a gene function by looking at the correlated omic response [3]. In spite of the elegant
workflow (perturbation→ omics→ understanding), the process is hindered by a series of issues.

In regards to silencing technologies, while CRISPRs have promised to lead much less off-target
effects than shRNAs, they still are a challenging technique for several laboratories worldwide and
even show little correlation with RNA interference screens, a worrying scenario since thousands of
mechanistic papers on cellular and molecular biology are based on these tools [4]. Furthermore, most
of these characterizations are conducted in vitro, where the reproducibility of results is being pointed
out as a major issue [5–7].

Several efforts have been made towards also automating and standardizing in vitro results to make
them reproducible. Among these proposals, the L1000 connectivity map [8,9] is a clear example of a
thorough characterization of the mRNA response of thousands of compounds (shRNA, overexpression,
and drugs) in several cell lines.

However, when the whole question shifts to a difficult cellular context such as cancer, the situation
worsens. The network of intercellular and intracellular interactions of the tumor macroenvironment is
extremely complex and inevitably fails to be modeled by a simple mono-population cell line. In relation
to this, organoids are an interesting promise [10], but most medium- and small-sized laboratories
worldwide still do not have access to these kinds of models.

On the other hand, one resource that is available to any oncology-based research group is access
to public cancer datasets. Only The Cancer Genome Atlas (TCGA) contains several molecular profiles
from more than 11,000 patients at the time of the writing [11]. We tried to reason whether we could
extract huge amounts of data to make the process of elucidating gene functions in cancer contexts
easier and more robust. For this reason, we implemented ICAro (gene signature Inference system from
Copy number Aberrations), a framework that enables researchers to extract putative gene signatures
from publicly available Cancer Genomic datasets.

This overall idea involves treating cancer as a Cas9 model by using Copy Number Variations
(CNVs) and inactivating mutations data on a particular gene target to split the patient dataset in
control and inactivated groups. Then, we obtained RNA (RNA-seq) expression levels to extract a gene
deletion signature. Here, we show that this method can still be a useful resource as an integrated tool
for molecular knowledge mining.

2. Implementation

The algorithm is based on the workflow shown in Figure 1: the main inputs of the model are
the gene of interest α and the particular tissue context Σ (chosen from the available TCGA cohort
codes, e.g., ACC and COAD). Next, the inactivated and control sample sets are built. In the first step,
only samples for which both CNV and mRNA-seq data are present in the TCGA database are included.
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Figure 1. A schematic representation of the ICAro (gene signature Inference system from Copy 

number Aberrations) workflow. The first part relies on sample filtering based on deletions and 

inactivating mutations spanning the gene target  in order to build the inactivated and the control 

sample sets. They are used as input for the signature extraction process, performed via a differential 

gene expression analysis (the voom function from limma) and a Random Forest classification 

(randomForest R package). 

The deletion-based filter extracts inactivated samples by selecting CNVs that overlap the gene  

location and in which the CNV-GISTIC score [12,13] is lower than −1. An optional filter allows to 

include only deletions larger than a given threshold. The second filter is based on inactivating 

mutations and requires an input file containing a list of protein substitution variants in the standard 

format according to Sequence Variant Nomenclature amino_acid/position/new_amino_acid (e.g., 

Cys28Ser). Unlike the first filter, it incorporates samples with variations present in the inactivating 

mutation list. Moreover, the specific format “STOP N” can be added to the list, where N is a number 

representing the rightmost stop-gain mutation allowing a sample to be included in the set. 

The control set is built starting from only samples with both CNV and mRNA-seq data. Other 

exclusion criteria for the control set include outside the gene , samples containing CNVs larger than 

a given threshold (e.g., 1 Mb), or mutations inside the same gene . With these filters, we tried to 

minimize the genomic interference of having huge structural rearrangements in the control set. 

The downstream analysis is executed only if there are at least five samples in the inactivated set 

and if the ratio between such a set and the control set is higher than a given threshold (0.05). 

RNA-seq raw count data are transformed in count per millions (CPM), and only genes for which 

CPM is greater than 5 in at least 5 samples are kept. 

The second part regarding the signature extraction is performed in two separated methods: the 

first one is a Differential Expression (DE) strategy in order to fetch up- and downregulated genes 

with regards to the inactivated set. Secondly, a Random Forest approach (RF) is employed with the 

Figure 1. A schematic representation of the ICAro (gene signature Inference system from Copy number
Aberrations) workflow. The first part relies on sample filtering based on deletions and inactivating
mutations spanning the gene target α in order to build the inactivated and the control sample sets.
They are used as input for the signature extraction process, performed via a differential gene expression
analysis (the voom function from limma) and a Random Forest classification (randomForest R package).

The inactivated sample selection is performed following two different strategies: in the first one,
both deletions and inactivating mutations if provided are used to include samples; in the second one,
samples are selected only by inactivating mutations.

The deletion-based filter extracts inactivated samples by selecting CNVs that overlap the gene
α location and in which the CNV-GISTIC score [12,13] is lower than −1. An optional filter allows
to include only deletions larger than a given threshold. The second filter is based on inactivating
mutations and requires an input file containing a list of protein substitution variants in the standard
format according to Sequence Variant Nomenclature amino_acid/position/new_amino_acid (e.g.,
Cys28Ser). Unlike the first filter, it incorporates samples with variations present in the inactivating
mutation list. Moreover, the specific format “STOP N” can be added to the list, where N is a number
representing the rightmost stop-gain mutation allowing a sample to be included in the set.

The control set is built starting from only samples with both CNV and mRNA-seq data.
Other exclusion criteria for the control set include outside the gene α, samples containing CNVs
larger than a given threshold (e.g., 1 Mb), or mutations inside the same gene α. With these filters,
we tried to minimize the genomic interference of having huge structural rearrangements in the
control set.

The downstream analysis is executed only if there are at least five samples in the inactivated set
and if the ratio between such a set and the control set is higher than a given threshold (0.05).
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RNA-seq raw count data are transformed in count per millions (CPM), and only genes for which
CPM is greater than 5 in at least 5 samples are kept.

The second part regarding the signature extraction is performed in two separated methods: the
first one is a Differential Expression (DE) strategy in order to fetch up- and downregulated genes with
regards to the inactivated set. Secondly, a Random Forest approach (RF) is employed with the aim
of building activated and inactivated sets from a binary classifier. From the RF, we extracted a gene
ranking list that allows to understand the most discriminatory genes in the classification process and
the most likely to be part of our signature.

In the DE approach, the voom function of the limma package is executed on the data and a linear
model followed by empirical bayesian statistics are performed in order to find differentially expressed
genes between the two sets. On the other hand, Random Forests are built via the randomForest
function of the randomForest package which implements the Breiman’s random forest algorithm for
classification. The preprocessing part is performed via custom Python scripting, whereas the filtered
sets are provided as input to an R script that will perform the second step with the voom limma
and randomForest [14,15] packages. The data fetch process is automated thanks to the Firebrowse
package [16].

The DE output file contains a list of genes with some features, such as the log fold-change
and q-value, where the user can observe the putative differentially expressed genes. We appended
additional columns to the differential output file in order to give more information on the kind of
induction adopted, e.g., two columns with a median expression for each group. The RF output file
contains a list of genes ranked by their meanDecreaseGini value, thus having the most important genes
in terms of loss of information on top.

The tool is freely available at https://gitlab.com/bioinfo-ire-release/icaro.

3. Results

In order to demonstrate the accuracy of our approach, we extracted 50 pairs of frequently
deleted genes (and their matching datasets) from the cBioPortal [17] (Tables S1 and S2) to run the
workflow with. Afterwards, from the output signature, we extracted the fold change and the adjusted
p-value of the target gene to understand whether we are selecting samples in which the target gene
is significantly downregulated. Indeed, almost all of the targets are significantly downregulated
(94.0%) and have a strong induction (i.e., log2FC < −0.58, meaning a 50% regulation, 93.6%) (Figure 2).
We performed a similar benchmarking for the RF results on the same genes. When visualizing the
meanDecreaseAccuracy (MDA) and meanDecreaseGini (MDG) of such genes, we observed that only
5/50 (10%) gene-dataset pairs had an MDG higher than 1%, while only 2/50 (4%) pairs showed an
MDG over 5% (Figure S1).

https://gitlab.com/bioinfo-ire-release/icaro
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Figure 2. The performance of the ICAro Differential Expression for 50 executions on frequently 

deleted gene-dataset pairs: Every point represents one ICAro execution on a gene-dataset pair (e.g., 

TP53 on COADREAD). The different colors represent several TCGA datasets. X-axis: log2FC (gene 

induction), Y-axis: transformed q-value (statistical significance). Most tests fall in the upper region, 

meaning that they are significant, and on the center of the X-axis, i.e., they are downregulated. The 

downregulation of deleted genes is a first step towards the in vivo validation of the ICAro process. 

For a complete key of datasets please refer to Table S1. 

We pointed out that inactivated set sizing was the main failure in the workflow. That is, for most 

datasets, it was difficult to find a high number of patients with focal deletions inside a particular 

gene. For the RF classification task, it seemed that the deleted gene expression level did not contain a 

sufficient amount of information in this in vivo setting in order to build a good classifier by itself. 

Next, we attempted to demonstrate that the algorithm was able to correlate with other data that 

were more similar to the typical laboratory approach. The idea involved testing whether the ICAro 

signature had significant similarities to shRNA knockout perturbations, the routine approach, or 

other drugs and kinase signatures. To this purpose, we used the aforementioned 50 signatures and 

we queried L1000 via the Enrichr API [8,9,18] for correlating with the Chemical, Kinase, and Ligand 
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with 5 significant terms (adjusted p-value < 0.05, median: 5 terms, and mean: 306 terms). When 

analyzing the particular sub-signatures, up-signatures tended to poorly overlap (median: 0) while 

down-signatures had better correlation (median from 2 to 660) (Table S3). This difference is to be 

clearly attributed to the nature of the model that we tested. In fact, our focus is on deletions; therefore 

a direct gene downregulation trend will overlap better than an in-trans upregulation event. 

Figure 2. The performance of the ICAro Differential Expression for 50 executions on frequently deleted
gene-dataset pairs: Every point represents one ICAro execution on a gene-dataset pair (e.g., TP53 on
COADREAD). The different colors represent several TCGA datasets. X-axis: log2FC (gene induction),
Y-axis: transformed q-value (statistical significance). Most tests fall in the upper region, meaning that
they are significant, and on the center of the X-axis, i.e., they are downregulated. The downregulation
of deleted genes is a first step towards the in vivo validation of the ICAro process. For a complete key
of datasets please refer to Table S1.

We pointed out that inactivated set sizing was the main failure in the workflow. That is, for most
datasets, it was difficult to find a high number of patients with focal deletions inside a particular
gene. For the RF classification task, it seemed that the deleted gene expression level did not contain a
sufficient amount of information in this in vivo setting in order to build a good classifier by itself.

Next, we attempted to demonstrate that the algorithm was able to correlate with other data that
were more similar to the typical laboratory approach. The idea involved testing whether the ICAro
signature had significant similarities to shRNA knockout perturbations, the routine approach, or other
drugs and kinase signatures. To this purpose, we used the aforementioned 50 signatures and we
queried L1000 via the Enrichr API [8,9,18] for correlating with the Chemical, Kinase, and Ligand
Perturbation. We divided the signatures into up- and downregulated genes; therefore, for each
gene-dataset pair, we extracted a L1000 table, 300 in total (Figure 3). On average, every signature
correlated with 5 significant terms (adjusted p-value < 0.05, median: 5 terms, and mean: 306 terms).
When analyzing the particular sub-signatures, up-signatures tended to poorly overlap (median: 0)
while down-signatures had better correlation (median from 2 to 660) (Table S3). This difference is to be
clearly attributed to the nature of the model that we tested. In fact, our focus is on deletions; therefore
a direct gene downregulation trend will overlap better than an in-trans upregulation event.
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Figure 3. The amount of significant terms for down and up-regulated genes when compared to L1000
signatures: Every point is an ICAro execution with a significant gene set (up or down). Every signature
is compared with the amount of significant terms when sampling random gene sets of equal size.
Legend: * significant increase between random sampling and ICAro.

In order to show a comparison on the difference between this performance and random
distribution, we ran a parallel script, where given Ni, Mi, the number of significant genes from
each signature Si, we extracted Ni, Mi random genes and executed the Enrichr analysis on them.
The median number of significant signatures was 0 (adjusted p-value < 0.05, median: 0 terms, and mean:
36 terms), and five out of six classes had a median term number 0 (Figure 3 and Table S3). The mean
amount of terms resulted significantly more in 2 out of 6 cases, particularly in the Chemical Perturbation
Down and the Ligand Perturbation Down clusters, confirming the aforementioned hypothesis of the
ICAro applicability.

As a second validation process, without focusing on frequently deleted genes, we applied
the workflow on the genes of interest in tumor genomics, i.e., cancer driver genes. We focused
on 459 mutational cancer driver genes (Table S4), deriving from the Integrative Onco Genomics
(intOgen) list [19]. Among those, we excluded 23 of them, which were located in sexual chromosomes.
Given that we did not separate patients by gender, this would have had a strong bias in the
CNV/mRNA separation. The analysis was carried out on 35 datasets (Table S5): only on UCS
(Uterine Carcinosarcoma), no results were obtained. For the other datasets, there was a high variability
in the number of analyses successfully performed, starting from 2 for CHOL (Cholangiocarcinoma) and
DLBC (Diffuse Large B-cell Lymphoma) to 100 for OV (Ovarian serous cystadenocarcinoma), with a
mean of 22 successful runs per dataset. From a gene-centered perspective (Table S6), we obtained at
least 1 result from 148 genes (34%) and f in which the minimum is 1 for 60 genes and the maximum is
31 for the WNK1 gene, with a mean of 5 analyses for each gene. The main challenge in performing
an ICAro analysis is the lack of CNVs on the genes of interest: 59% of analyses failed for this reason.
Subsequently, the second main cause for this failure is the absence or the low amount of inactivated
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mRNA samples: 88% of samples which had passed the previous filters were rejected at this step.
Eight analyses were not performed due to a missing control sample. In conclusion, on the whole, only
5% of analyses were successfully performed.

The final step of ICAro modeling features also a Random Forest analysis in addition to the
Differential Expression. The aim is to overcome the limitations of linear modeling and to provide
a clean gene rank in terms of importance. In order to further describe the relationship among the
two analyses, we compared the results of ICAro executions of the aforementioned 50 gene-datasets
pairs in terms of the Differential Expression vs. Random Forest results. This profiling presents
different scenarios, in which in some cases, the RF approach can massively extend the scope of the
DE, that features only a few significant genes (5 out of the top 100 RF genes are significant in DE,
Figure 4A). In other cases, the situation is the opposite, and the RF is only an extension of the strong
amount of significant DE genes (75 out of the 100 top RF genes are significant in DE, Figure 4B). The
full 50 plots are available at the application’s webpage.
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ADCY3 0.76 0.49 7.18 × 10−4 1.78 × 10−2 

Figure 4. (A,B) Two representative plots of the Differential Expression against the Random Forest
analysis on the ICAro system. Blue line: the top 100 genes from the Random Forest analysis, ranked by
the meanDecreaseGini (MDG). Red line: the adjusted p-value significance threshold. Left: only a few
genes are significantly regulated in the DE analysis, but more can be studied from the top 100 genes on
the RF analysis. Right: the opposite situation where most information lies in the differential expression,
and just most of the top 100 RF genes are significant in DE terms.

Finally, in order to present the scope and the possible applications of our system, we produced a
use case. We exploited a public transcriptomic dataset (GSE76689), a silencing experiment designed
to dissect the role of RB1 in Ovarian carcinoma [20]. We reproduced the DE analysis of the paper.
Globally, 2 down- and 8 upregulated genes are confirmed to be significant by the system, thus stressing
the importance of these mRNAs to discriminate signatures of RB1 loss in Ovarian carcinoma (Table 1).
Furthermore, the Random Forest modeling returned 5/10 of the significant genes to be in the top
100 Gini index ranking.
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Table 1. The significant genes validated in the GSE76689 dataset from the ICAro system.

Gene Log2FC siRB1 Log2FC ICAro adj PVal siRB1 adj P Val ICAro

RB1 −0.83 −1.12 5.73 × 10−4 1.81 × 10−6

SH3BP4 −0.64 −0.63 8.21 × 10−4 3.35 × 10−2

NUDT21 0.67 0.29 1.22 × 10−3 4.46 × 10−2

SLC27A3 0.64 0.40 5.70 × 10−3 3.45 × 10−2

C15orf38 0.77 0.42 1.40 × 10−3 3.82 × 10−2

ADCY3 0.76 0.49 7.18 × 10−4 1.78 × 10−2

TMEM106C 0.66 0.51 2.69 × 10−3 2.70 × 10−2

FANCE 0.47 0.57 2.92 × 10−2 2.36 × 10−3

WDR34 0.53 0.59 1.31 × 10−2 4.94 × 10−4

TCF19 0.49 0.99 2.68 × 10−2 1.81 × 10−6

Taken together, these results highlighted that the algorithm is able to extract a few significantly
correlated regulation signatures for genes that are frequently deleted in cancer. The workflow
performed better than random sampling and could be used by researchers to extract several “parent”
signatures from the target gene in a tumor environment. From the cancer gene driver’s point-of-view,
a small fraction could be queried for gene signatures thanks to ICAro. Finally, it can be exploited to
select a subset of genes of interest in a mRNA profiling experiment.

4. Discussion

The intricate patterns of transcriptional networks are complex to decipher for the biomedical
researcher, and in our experience, researchers struggle to find evidence to confirm a regulatory
hypothesis. This is one of the main reasons that led us to develop a simple algorithm to help
investigators in the field of Cancer Transcriptomics.

The other motivation comes from our experience in handling NGS data and bioinformatic analysis
of a medium-sized genomic facility. Translational projects are often designed to start with a whole
transcriptomic or a whole epigenomic experiment (e.g., RNA-seq and ChIP-seq), intended to be the
hypothesis driver for further investigations. As a matter of fact, the process risks to be interrupted
when bioinformaticians present researchers with enormous lists of genes and ontologies. We impute
this matter to three main factors: the lack of computational biologists in research groups, the intrinsic
difficulty of summarizing large quantity of data, and a slow validation process due to the high number
of possible targets as starting points. ICAro comes as an aid for the latter issues, providing hints on
mRNA targets that could indeed be validated in vivo.

Many confounding factors are not taken into account in the patient partitioning. These are, for
instance, patient stratification by demographic data. This is an issue of many algorithmic signatures
of the transcriptomic field that do not seem to care even if they are designed to stratify patients into
clinical settings [21,22]. In our case, the scarcity of the inactivated set, usually falling below the count
of 5, prevents us in further dividing the patient strata.

In addition, most TCGA mutation datasets do not carry Variant Allele Frequency (VAF)
information. For this reason, we may erroneously include a few patients in the inactivation set
(that is already suffering from typical smaller size) that carry a stop-gain mutation in only a small
fraction of tumor cells (e.g., VAF < 10%). This limitation also applies to CNV data, where the GISTIC
threshold output are decided on a sample by sample basis [23]. Furthermore, it should be noted that
every sample profiled in the TCGA had a tumor cellularity of at least 80% (recently shifted to 60%)
and is not available metadata for which we could correct the CNV/Mutation status.
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Our implementation process also lacks some features that we plan to employ in the future.
The most obvious one is the lack of a gene amplification study. That is, the possibility to extract
a signature when a gene has more copies. This could be a valuable experiment mirroring another
frequent laboratory approach such as overexpression models. Another interesting add-on would be
appending genomic coordinates of each gene locus to the final output in order to understand whether
the differential effect is mostly guided by the CNV itself or by some other regulation pathways. Finally,
one more aspect that could be improved in the future is the simple automatization of functional APIs
from the result dataset, such as LINCs Cloud and ENRICHR, allowing researchers to better investigate
the mechanisms involved.

ICAro testing on a list of mutational cancer driver genes pointed out that the main problem is
that less than half of such genes are affected by CNVs, and among the samples with these deletions,
only 1 over 12 contains related mRNA experiments, thus preventing us from performing the analysis
on a larger set of data.

5. Conclusions

Mining knowledge regarding gene function or seeking inactivation biomarkers is not so trivial
tasks. It is for this reason, we developed an automated tool to integrate and mine knowledge from
third-level TCGA data. Our testing showed that this workflow is able to extract several transcriptional
signatures for a discrete set of genes.

From a biological perspective, the authors are aware that (a) the amount of patients with focal
deletions for a given gene will be discrete for the time being, (b) the cancer genomic and transcriptomic
background is a disorderly environment very different from engineered cell lines, and (c) it is known
that most frequent gene losses have recurrent breakpoints [12]. Nevertheless, we remain confident in
the value and feasibility of the presented approach due to the rapid increase in the amount of available
high-throughput data and in the vast disappointing failures of in vitro derived models.

We are currently working on an extended version for miRNA signature extraction that will be
useful for researchers in the non-coding RNA field. Investigators will fetch via ICAro differential
miRNA classes that are up-and downregulated by a particular gene deletion, providing additional
insights on miRNA-mRNA interaction.

In a real-life setting, we trust that the ICAro approach would be of value when paired with several
other approaches such as in vitro or in vivo knockout models, for instance when understanding
biomarkers for the inactivation of a particular gene. In this scenario, it will be useful to implement a
novel branch of the workflow to take into account also other emerging large-scale omic approaches
such as Reverse-Phase Protein Arrays (RPPA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/2/256/s1,
Figure S1: Performance of ICAro Random Forest classification for 50 executions on frequently deleted gene-dataset
pairs. MDA: meanDecreaseAccuracy and MDG: meanDecreaseGini, Table S1: The list of gene-dataset pairs used
for benchmarking purposes in Figures 2 and 3, Table S2: A full key of TCGA dataset names from Firebrowse at
the time of the writing, Table S3: The average number of significant L1000 signature overlaps from the ICAro
output and random sampling. The cpd, kpd, etc. stand for classes abbreviations for Chemical Perturbation Down,
etc., Table S4: The list of mutational cancer driver autosomal genes used for testing ICAro on each dataset, Table
S5: A dataset-centered summary of the ICAro tests using cancer driver genes. The column total contains the genes
analyzed for each dataset; no_cnv is the number of samples without CNVs on the queried gene; no_or_few_mrna is
the number of samples for which there are no mRNA data, the samples are less than 5, or the ratio between them
and the control samples is less than 0.05; no_control is the number of samples without mRNA control data; success
is the number of analysis successfully performed; and perc_success is the percentage of succeeded analysis on the
total number of analysis attempted for each dataset, Table S6: A gene-centered summary of the ICAro tests using
cancer driver genes. The columns follow the same nomenclature as Table S5 but on a gene-centered analysis.
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DE Differential Expression
RF Random Forest
CNV Copy Number Variations
CNA Copy Number Aberration
siRNA small interfering RNA
shRNA short hairpin RNA
CPM count per million
TALEN Transcription Activator-Like Effector Nucleases
CRISPR Clustered Regulatory Interspaced Short Palindromic Repeats
VAF Variant Allele Frequency
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