Value of Three-Dimensional Imaging Systems for Image-Guided Carbon Ion Radiotherapy
Abstract
:1. Introduction
2. Present Verification System in Carbon Ion Radiotherapy
3. 3D Imaging System
4. Precise Positioning
5. Precise Radiation Delivery
6. Planning Target Volume Margin Reduction
7. Hypofractionated C-Ion Radiotherapy and Motion Management
8. In-Room Computed Tomography
9. Image-Guided Adaptive C-Ion Radiotherapy
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Radiation Therapy, Management and Dosimetry Workplace Survey 2010. Available online: http://www.webcitation.org/75AgMAgI2 (accessed on 4 January 2019).
- Simpson, D.R.; Lawson, J.D.; Nath, S.K.; Rose, B.S.; Mundt, A.J.; Mell, L.K.J.C. A survey of image-guided radiation therapy use in the United States. Cancer 2010, 116, 3953–3960. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Kanai, T.; Yamada, S.; Yusa, K.; Tashiro, M.; Shimada, H.; Torikai, K.; Yushida, Y.; Kitada, Y.; Katoh, H. Carbon Ion Radiotherapy at the Gunma University Heavy Ion Medical Center: New Facility Set-up. Cancers 2011, 3, 4046–4060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamada, T.; Tsujii, H.; Blakely, E.A.; Debus, J.; Neve, W.D.; Durante, M.; Jäkel, O.; Mayer, R.; Orecchia, R.; Pötter, R. Carbon ion radiotherapy in Japan: An assessment of 20 years of clinical experience. Lancet Oncol. 2015, 16, e93–e100. [Google Scholar] [CrossRef]
- Tsujii, H.; Kamada, T. A review of update clinical results of carbon ion radiotherapy. Jpn. J. Clin. Oncol. 2012, 42, 670–685. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Shibayama, K.; Tanimoto, K.; Kumagai, M.; Matsuzaki, Y.; Furukawa, T.; Inaniwa, T.; Shirai, T.; Noda, K.; Tsuji, H. First clinical experience in carbon ion scanning beam therapy: Retrospective analysis of patient positional accuracy. J. Radiat. Res. 2012, 53, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Shiba, S.; Saitoh, J.I.; Irie, D.; Shirai, K.; Abe, T.; Kubota, Y.; Sakai, M.; Okada, R.; Ohno, T.; Nakano, T. Potential Pitfalls of a Fiducial Marker-matching Technique in Carbon-ion Radiotherapy for Lung Cancer. Anticancer Res. 2017, 37, 5673–5680. [Google Scholar] [PubMed]
- Irie, D.; Saitoh, J.I.; Shirai, K.; Abe, T.; Kubota, Y.; Sakai, M.; Noda, S.E.; Ohno, T.; Nakano, T. Verification of dose distribution in carbon ion radiotherapy for stage I lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Kubota, Y.; Shibuya, K.; Koyama, Y.; Abe, T.; Ohno, T.; Nakano, T. Fiducial marker matching versus vertebral body matching: Dosimetric impact of patient positioning in carbon ion radiotherapy for primary hepatic cancer. Phys. Medica 2017, 33, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Sakai, M.; Kubota, Y.; Saitoh, J.I.; Irie, D.; Shirai, K.; Okada, R.; Torikoshi, M.; Ohno, T.; Nakano, T. Robustness of patient positioning for interfractional error in carbon ion radiotherapy for stage I lung cancer: Bone matching versus tumor matching. Radiother. Oncol. 2017, 129, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Tashiro, M.; Shinohara, A.; Abe, S.; Souda, S.; Okada, R.; Ishii, T.; Kanai, T.; Ohno, T.; Nakano, T. Development of an automatic evaluation method for patient positioning error. J. Appl. Clin. Med. Phys. 2015, 16, 100–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurjar, O.P.; Mishra, S.P.; Bhandari, V.; Pathak, P.; Pant, S.; Patel, P. A study on the necessity of kV-CBCT imaging compared to kV-orthogonal portal imaging based on setup errors: Considering other socioeconomical factors. J. Canc. Res. Ther. 2014, 10, 583–586. [Google Scholar]
- Dzierma, Y.; Beyhs, M.; Palm, J.; Niewald, M.; Bell, K.; Nuesken, F.; Licht, N.; Rübe, C. Set-up errors and planning margins in planar and CBCT image-guided radiotherapy using three different imaging systems: A clinical study for prostate and head-and-neck cancer. Phys. Medica 2015, 31, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Mayyas, E.; Chetty, I.J.; Chetvertkov, M.; Wen, N.; Neicu, T.; Nurushev, T.; Ren, L.; Lu, M.; Stricker, H.; Pradhan, D. Evaluation of multiple image-based modalities for image-guided radiation therapy (IGRT) of prostate carcinoma: A prospective study. Med. Phys. 2013, 40, 041707. [Google Scholar] [CrossRef] [PubMed]
- Topolnjak, R.; Sonke, J.J.; Nijkamp, J.; Rasch, C.; Minkema, D.; Remeijer, P.; Vliet-Vroegindeweij, C.V. Breast Patient Setup Error Assessment: Comparison of Electronic Portal Image Devices and Cone-Beam Computed Tomography Matching Results. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Borst, G.R.; Sonke, J.J.; Betgen, A.; Remeijer, P.; Herk, M.V.; Lebesque, J.V. Kilo-voltage cone-beam computed tomography setup measurements for lung cancer patients; first clinical results and comparison with electronic portal-imaging device. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.; Couto, J.G.; Barbosa, B. Use of planar kV vs. CBCT in evaluation of setup errors in oesophagus carcinoma radiotherapy. Rep. Pract. Oncol. Radiother. 2016, 21, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, Y.; Hayashi, H.; Abe, S.; Souda, S.; Okada, R.; Ishii, T.; Tashiro, M.; Torikoshi, M.; Kanai, T.; Ohno, T. Evaluation of the accuracy and clinical practicality of a calculation system for patient positional displacement in carbon ion radiotherapy at five sites. J. Appl. Clin. Med. Phys. 2018, 19, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirato, H.; Suzuki, K.; Sharp, G.C.; Fujita, K.; Onimaru, R.; Fujino, M.; Kato, N.; Osaka, Y.; Kinoshita, R.; Taguchi, H. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Habermehl, D.; Henkner, K.; Ecker, S.; Jäkel, O.; Debus, J.; Combs, S.E. Evaluation of different fiducial markers for image-guided radiotherapy and particle therapy. J. Radiat. Res. 2013, 54 (Suppl. 1), i61–i68. [Google Scholar] [CrossRef]
- Herrmann, R.; Carl, J.; Jäkel, O.; Bassler, N.; Petersen, J.B. Investigation of the dosimetric impact of a Ni-Ti fiducial marker in carbon ion and proton beams. Acta Oncol. 2010, 49, 1160–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, J.; Kudchadker, R.J.; Zhu, X.R.; Lee, A.K.; Newhauser, W.D. Dose perturbations and image artifacts caused by carbon-coated ceramic and stainless steel fiducials used in proton therapy for prostate cancer. Phys. Med. Biol. 2010, 55, 7135–7147. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Sato, Y.; Minami, H.; Yasukawa, Y.; Yamamoto, K.; Tamamura, H.; Shibata, S.; Bou, S.; Sasaki, M.; Tameshige, Y. Positioning accuracy and daily dose assessment for prostate cancer treatment using in-room CT-image guidance at a proton therapy facility. Med. Phys. 2018, 45, 1832–1843. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Efstathiou, J.A.; Sharp, G.C.; Lu, H.M.; Ciernik, I.F.; Trofimov, A.V. Evaluation of the dosimetric impact of interfractional anatomical variations on prostate proton therapy using daily in-room CT images. Med. Phys. 2011, 38, 4623–4633. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ahunbay, E.; Lawton, C.; Li, XA. Assessment and management of interfractional variations in daily diagnostic-quality-CT guided prostate-bed irradiation after prostatectomy. Med. Phys. 2014, 41, 031710. [Google Scholar] [CrossRef] [PubMed]
- Houweling, A.C.; Fukata, K.; Kubota, Y.; Shimada, H.; Rasch, C.R.; Ohno, T.; Bel, A.; Horst, A.V.D. The impact of interfractional anatomical changes on the accumulated dose in carbon ion therapy of pancreatic cancer patients. Radiother. Oncol. 2016, 119, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Miki, K.; Mori, S.; Shiomi, M.; Yamada, S. Gated carbon-ion scanning treatment for pancreatic tumour with field specific target volume and organs at risk. Phys. Medica 2016, 32, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Den, R.B.; Doemer, A.G.; Bednarz, G.; Galvin, J.M.; Keane, W.M.; Xiao, Y.; Machtay, M. Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy: A prospective study. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Ariyaratne, H.; Chesham, H.; Pettingell, J.; Alonzi, R. Image-guided radiotherapy for prostate cancer with cone beam CT: Dosimetric effects of imaging frequency and PTV margin. Radiother. Oncol. 2016, 121, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Knopf, A.C.; Boye, D.; Lomax, A.; Mori, S. Adequate margin definition for scanned particle therapy in the incidence of intrafractional motion. Phys. Med. Biol. 2013, 58, 6079–6094. [Google Scholar] [CrossRef] [PubMed]
- Huijskens, S.C.; van Dijk, I.W.E.M.; Visser, J.; Balgobind, B.V.; Rasch, C.R.N.; Alderliesten, T.; Bel, A. Predictive value of pediatric respiratory-induced diaphragm motion quantified using pre-treatment 4DCT and CBCTs. Radiat. Oncol. 2018, 13, 198. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, O.; Makishima, H.; Kamada, T. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers 2018, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Paz, A.E.; Yamamoto, N.; Sakama, M.; Matsufuji, N.; Kanai, T. Tumor Control Probability Analysis for Single-Fraction Carbon-Ion Radiation Therapy of Early-Stage Non-small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1551–1559. [Google Scholar] [CrossRef] [PubMed]
- Kasuya, G.; Kato, H.; Yasuda, S.; Tsuji, H.; Yamada, S.; Haruyama, Y.; Kobashi, G.; Ebner, D.K.; Okada, N.N.; Makishima, H. Progressive hypofractionated carbon-ion radiotherapy for hepatocellular carcinoma: Combined analyses of 2 prospective trials. Cancer 2017, 123, 3955–3965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tashiro, M.; Ishii, T.; Koya, J.; Okada, R.; Kurosawa, Y.; Arai, K.; Abe, S.; Ohashi, Y.; Shimada, H.; Yusa, K. Technical approach to individualized respiratory-gated carbon-ion therapy for mobile organs. Radiol. Phys. Technol. 2013, 6, 356–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gierga, D.P.; Brewer, J.; Sharp, G.C.; Betke, M.; Willett, C.G.; Chen, G.T. The correlation between internal and external markers for abdominal tumors: Implications for respiratory gating. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Homma, N.; Ichiji, K.; Abe, M.; Sugita, N.; Takai, Y.; Narita, Y.; Yoshizawa, M. A kernel-based method for markerless tumor tracking in kV fluoroscopic images. Phys. Med. Biol. 2014, 59, 4897–4911. [Google Scholar] [CrossRef] [PubMed]
- Hirai, R.; Sakata, Y.; Taguchi, Y.; Mori, S. Regression model of tumor and diaphragm position for marker-less tumor tracking in carbon ion scanning therapy for hepatocellular carcinoma. Int. J. Radiat. Oncol. 2016, 96, E639–E640. [Google Scholar] [CrossRef]
- Cui, Y.; Dy, JG.; Sharp, G.C.; Alexander, B.; Jiang, S.B. Multiple template based fluoroscopic tracking of lung tumor mass without implanted fiducial markers. Phys. Med. Biol. 2007, 52, 6229–6242. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Karube, M.; Shirai, T.; Tajiri, M.; Takekoshi, T.; Miki, K.; Shiraishi, Y.; Tanimoto, K.; Shibayama, K.; Yasuda, S. Carbon-ion pencil beam scanning treatment with gated markerless tumor tracking: An analysis of posintional accuracy. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, E623–E624. [Google Scholar] [CrossRef]
- Ebner, D.K.; Tsuji, H.; Yasuda, S.; Yamamoto, N.; Mori, S.; Kamada, T. Respiration-gated fast-rescanning carbon-ion radiotherapy. Jpn. J. Clin. Oncol. 2017, 47, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Furukawa, T. Rapid phase-correlated rescanning irradiation improves treatment time in carbon-ion scanning beam treatment under irregular breathing. Phys. Med. Biol. 2016, 61, 3857–3866. [Google Scholar] [CrossRef] [PubMed]
- Jaffray, D.A. Image-guided radiotherapy: From current concept to future perspectives. Nat. Rev. Clin. Oncol. 2012, 9, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Batumalai, V.; Holloway, L.C.; Kumar, S.; Dundas, K.; Jameson, M.G.; Vinod, S.K.; Delaney, G.P. Survey of image-guided radiotherapy use in Australia. J. Med. Imaging Radiat. Oncol. 2016, 61, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Seco, J.; Spadea, M.F. Imaging in particle therapy: State of the art and future perspective. Acta Oncol. 2015, 54, 1254–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, Y.; Noda, K.; Murakami, T.; Shirai, T.; Furukawa, T.; Fujita, T.; Mori, S.; Mizushima, K.; Shouda, K.; Fujimoto, T. Development of a compact superconducting rotating-gantry for heavy-ion therapy. J. Radiat. Res. 2013, 317, 793–797. [Google Scholar] [CrossRef]
- Wong, J.R.; Grimm, L.; Uematsu, M.; Oren, R.; Cheng, C.W.; Merrick, S.; Schiff, P. Image-guided radiotherapy for prostate cancer by CT–linear accelerator combination: Prostate movements and dosimetric considerations. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, H.; Azuma, Y.; Inamura, K. Comparison of daily prostate positions during conformal radiation therapy of prostate cancer using an integrated CT-linear accelerator system: In-room CT image versus digitally reconstructed radiograph. J. Radiat. Res. 2011, 52, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Sato, Y.; Shibata, S.; Bou, S.; Yamamoto, K.; Tamamura, H.; Fuwa, N.; Takamatsu, S.; Sasaki, M.; Tameshige, Y. Effects of organ motion on proton prostate treatments, as determined from analysis of daily CT imaging for patient positioning. Med. Phys. 2018, 1844–1856. [Google Scholar] [CrossRef] [PubMed]
- Lim-Reinders, S.; Keller, B.M.; Al-Ward, S.; Sahgal, A.; Kim, A. Online Adaptive Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Sakai, M.; Tashiro, M.; Saitoh, J.; Abe, T.; Ohno, T.; Nakano, T. Technical Note: Predicting dose distribution with replacing stopping power ratio for inter-fractional motion and intra-fractional motion during carbon ion radiotherapy with passive irradiation method for stage I lung cancer. Med. Phys. 2018, 45, 3435–3441. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Sharp, G.C.; Phillips, J.; Winey, B.A. Proton dose calculation on scatter-corrected CBCT image: Feasibility study for adaptive proton therapy. Med. Phys. 2015, 42, 4449–4459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, K.; Kadoya, N.; Kato, T.; Endo, H.; Komori, S.; Abe, Y.; Nakamura, T.; Wada, H.; Kikuchi, Y.; Takai, Y. Feasibility of CBCT-based proton dose calculation using a histogram-matching algorithm in proton beam therapy. Phys. Medica 2017, 33, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, X.; Yang, X.; Tao, Y.; Xia, Y.; Deng, X.; Zheng, C.; Robbins, J.; Schultz, C.; Li, X.A. Early Prediction of Acute Xerostomia During Radiation Therapy for Head and Neck Cancer Based on Texture Analysis of Daily CT. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Schulze, R.; Heil, U.; Gross, D.; Bruellmann, D.; Dranischnikow, E.; Schwanecke, U.; Schoemer, E. Artefacts in CBCT: A review. Dentomaxillofac. Radiol. 2011, 40, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Ueda, U.; Hu, W.; Pouliot, J.; Yom, S.; Quivey, J.; Aubin, M.; Chen, J. SU-DD-A3-02: The Impact of Cone-Beam Computed Tomography (CBCT) Artifacts on Deformable Image Registration Algorithms. Med. Phys. 2010, 37, 3091. [Google Scholar] [CrossRef]
- Disher, B.; Hajdok, G.; Wang, A.; Craig, J.; Gaede, S.; Battista, J.J. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: Implications for on-line adaptive stereotactic body radiation therapy of lung. Phys. Med. Biol. 2013, 58, 4157–4174. [Google Scholar] [CrossRef] [PubMed]
- Veiga, C.; Janssens, G.; Teng, C.L.; Baudier, T.; Hotoiu, L.; McClelland, J.R.; Royle, G.; Lin, L.; Yin, L.; Metz, J.; et al. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagano, A.; Minohara, S.; Kato, S.; Kiyohara, H.; Ando, K. Adaptive radiotherapy based on the daily regression of a tumor in carbon-ion beam irradiation. Phys. Med. Biol. 2012, 57, 8343–8356. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gemmel, A.; Rietzel, E. A patient-specific planning target volume used in ‘plan of the day’ adaptation for interfractional motion mitigation. J. Radiat. Res. 2013, 54 (Suppl. 1), i82–i90. [Google Scholar] [CrossRef]
- Hild, S.; Graeff, C.; Rucinski, A.; Zink, K.; Habl, G.; Durante, M.; Herfarth, K.; Bert, C. Scanned ion beam therapy for prostate carcinoma: Comparison of single plan treatment and daily plan-adapted treatment. Strahlenther. Onkol. 2016, 192, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Minohara, S.; Fukuda, S.; Kanematsu, N.; Takei, Y.; Furukawa, T.; Inaniwa, T.; Matsufuji, N.; Mori, S.; Noda, K. Recent innovations in carbon-ion radiotherapy. J. Radiat. Res. 2010, 51, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Koay, E.J.; Lege, D.; Mohan, R.; Komaki, R.; Cox, J.D.; Chang, J.Y. Adaptive/Nonadaptive Proton Radiation Planning and Outcomes in a Phase II Trial for Locally Advanced Non-small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 1093–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, S.; Takei, Y.; Shirai, T.; Hara, Y.; Furukawa, T.; Inaniwa, T.; Tanimoto, K.; Tajiri, M.; Kuroiwa, D.; Kimura, T. Scanned carbon-ion beam therapy throughput over the first 7 years at National Institute of Radiological Sciences. Phys. Medica 2018, 52, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C. Fast optimization and dose calculation in scanned ion beam therapy. Med. Phys. 2014, 41, 071703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghilezan, M.; Yan, D.; Martinez, A. Adaptive Radiation Therapy for Prostate Cancer. Semin. Radiat. Oncol. 2010, 20, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPartlin, A.J.; Li, X.A.; Kershaw, L.E.; Heide, U.; Kerkmeijer, L.; Lawton, C.; Mahmood, U.; Pos, F.; As, N.V.; Herk, M.V. MRI-guided prostate adaptive radiotherapy—A systematic review. Radiother. Oncol. 2016, 119, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Lagendijk, J.J.; Raaymakers, B.W.; Vulpen, M.V. The Magnetic Resonance Imaging-Linac System. Semin. Radiat. Oncol. 2014, 24, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Pollard, J.M.; Wen, Z.; Sadagopan, R.; Wang, J.; Ibbott, G.S. The Future of Image-Guided Radiotherapy will be MR-Guided. Br. J. Radiol. 2017, 90, 20160667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, T. Particle radiotherapy with carbon ion beams. EPMA J. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Oborn, B.M.; Dowdell, S.; Metcalfe, P.E.; Crozier, S.; Mohan, R.; Keall, P.J. Future of Medical Physics: Real-time MRI guided Proton Therapy. Med. Phys. 2017, 44, e77–e90. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.P.; Sun, X.S.; Lou, K.; Zhu, X.R.; Mirkovic, D.; Poenisch, F.; Grosshans, D. In-beam PET imaging for on-line adaptive proton therapy: An initial phantom study. Phys. Med. Biol. 2014, 59, 3373–3388. [Google Scholar] [CrossRef] [PubMed]
Authors | Year | Tumor Type | Patient Number | BM vs. TM/MM | p-Value |
---|---|---|---|---|---|
Abe S. [9] | 2017 | Liver | 20 | 57.9 Gy vs. 59.8 Gy (Median D98) | 0.001 |
Sakai M. [10] | 2017 | Lung | 30 | 98.9% vs. 100% (Median V95%) | <0.001 |
Maeda Y. [23] | 2018 | Prostate | 30 | 90.4% vs. 98.7% (Ratio of V95% > 95%) | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Kubota, Y.; Tashiro, M.; Ohno, T. Value of Three-Dimensional Imaging Systems for Image-Guided Carbon Ion Radiotherapy. Cancers 2019, 11, 297. https://doi.org/10.3390/cancers11030297
Li Y, Kubota Y, Tashiro M, Ohno T. Value of Three-Dimensional Imaging Systems for Image-Guided Carbon Ion Radiotherapy. Cancers. 2019; 11(3):297. https://doi.org/10.3390/cancers11030297
Chicago/Turabian StyleLi, Yang, Yoshiki Kubota, Mutsumi Tashiro, and Tatsuya Ohno. 2019. "Value of Three-Dimensional Imaging Systems for Image-Guided Carbon Ion Radiotherapy" Cancers 11, no. 3: 297. https://doi.org/10.3390/cancers11030297
APA StyleLi, Y., Kubota, Y., Tashiro, M., & Ohno, T. (2019). Value of Three-Dimensional Imaging Systems for Image-Guided Carbon Ion Radiotherapy. Cancers, 11(3), 297. https://doi.org/10.3390/cancers11030297