Increased Soluble CrkL in Serum of Breast Cancer Patients Is Associated with Advanced Disease
Abstract
:1. Introduction
2. Results
2.1. CrkL Membranal Fraction In Vitro in Human Breast Cancer Cells
2.2. Soluble Fraction of CrkL Excreted in Breast Cancer Cells In Vitro
2.3. CrkL Expression in Clinical Tumor Biopsies
2.4. CrkL Soluble Fraction in Serum from Breast Cancer Patients
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Evaluation of Surface Bound CrkL by Flow Cytometry
4.3. Collection of Conditioned Media (CM) for Evaluation of Secreted CrkL
4.4. Patient Samples
4.5. Assessment of Cellular Localization of CrkL In Vitro Using Immunofluorescence
4.6. Enzyme Linked Immuno-Sorbent Assay (ELISA)
4.7. Evaluation of CrkL Expression in Tumor Samples Using Immunohistochemistry
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leeansyah, E.; Malone, D.F.; Anthony, D.D.; Sandberg, J.K. Soluble biomarkers of HIV transmission, disease progression and comorbidities. Curr. Opin. HIV AIDS 2013, 8, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Chien, K.Y.; Tsang, N.M.; Chang, K.P.; Hao, S.P.; Tsao, C.H.; Chang, Y.S.; Yu, J.S. Cancer cell-secreted proteomes as a basis for searching potential tumor markers: Nasopharyngeal carcinoma as a model. Proteomics 2005, 5, 3173–3182. [Google Scholar] [CrossRef] [PubMed]
- Cristaudo, A.; Bonotti, A.; Guglielmi, G.; Fallahi, P.; Foddis, R. Serum mesothelin and other biomarkers: What have we learned in the last decade? J. Thorac. Dis. 2018, 10 (Suppl. 2), S353–S359. [Google Scholar] [CrossRef] [PubMed]
- Kacinski, B.M.; Chambers, S.K.; Stanley, E.R.; Carter, D.; Tseng, P.; Scata, K.A.; Chang, D.H.; Pirro, M.H.; Nguyen, J.T.; Ariza, A.; et al. The cytokine CSF-1 (M-CSF) expressed by endometrial carcinomas in vivo and in vitro, may also be a circulating tumor marker of neoplastic disease activity in endometrial carcinoma patients. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 619–626. [Google Scholar] [CrossRef]
- Balk, S.P.; Ko, Y.J.; Bubley, G.J. Biology of prostate-specific antigen. J. Clin. Oncol. 2003, 21, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Raamanathan, A.; Simmons, G.W.; Christodoulides, N.; Floriano, P.N.; Furmaga, W.B.; Redding, S.W.; Lu, K.H.; Bast, R.C., Jr.; McDevitt, J.T. Programmable bio-nano-chip systems for serum CA125 quantification: Toward ovarian cancer diagnostics at the point-of-care. Cancer Prev. Res. 2012, 5, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.; Fritsche, H.; Mennel, R.; Norton, L.; Ravdin, P.; Taube, S.; Somerfield, M.R.; Hayes, D.F.; Bast, R.C., Jr. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 2007, 25, 5287–5312. [Google Scholar] [CrossRef]
- Danova, M.; Delfanti, S.; Manzoni, M.; Mariucci, S. Tissue and soluble biomarkers in breast cancer and their applications: Ready to use? J. Natl. Cancer Inst. Monogr. 2011, 2011, 75–78. [Google Scholar] [CrossRef]
- Ten Hoeve, J.; Morris, C.; Heisterkamp, N.; Groffen, J. Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene 1993, 8, 2469–2474. [Google Scholar]
- Birge, R.B.; Kalodimos, C.; Inagaki, F.; Tanaka, S. Crk and CrkL adaptor proteins: Networks for physiological and pathological signaling. Cell Commun. Signal. 2009, 7, 13. [Google Scholar] [CrossRef]
- Mintz, P.J.; Cardo-Vila, M.; Ozawa, M.G.; Hajitou, A.; Rangel, R.; Guzman-Rojas, L.; Christianson, D.R.; Arap, M.A.; Giordano, R.J.; Souza, G.R.; et al. An unrecognized extracellular function for an intracellular adapter protein released from the cytoplasm into the tumor microenvironment. Proc. Natl. Acad. Sci. USA 2009, 106, 2182–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natsume, H.; Shinmura, K.; Tao, H.; Igarashi, H.; Suzuki, M.; Nagura, K.; Goto, M.; Yamada, H.; Maeda, M.; Konno, H.; et al. The CRKL gene encoding an adaptor protein is amplified, overexpressed, and a possible therapeutic target in gastric cancer. J. Transl. Med. 2012, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Chen, T.C.; Chau, G.Y.; Jan, Y.H.; Chen, C.H.; Hsu, C.N.; Lin, K.T.; Juang, Y.L.; Lu, P.J.; Cheng, H.C.; et al. Analysis of protein-protein interactions in cross-talk pathways reveals CRKL protein as a novel prognostic marker in hepatocellular carcinoma. Mol. Cell. Proteom. 2013, 12, 1335–1349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, Q.Z.; Fu, L.; Stoecker, M.; Wang, E.; Wang, E.H. Overexpression of CRKL correlates with poor prognosis and cell proliferation in non-small cell lung cancer. Mol. Carcinog. 2013, 52, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Fathers, K.E.; Bell, E.S.; Rajadurai, C.V.; Cory, S.; Zhao, H.; Mourskaia, A.; Zuo, D.; Madore, J.; Monast, A.; Mes-Masson, A.M.; et al. Crk adaptor proteins act as key signaling integrators for breast tumorigenesis. Breast Cancer Res. 2012, 14, R74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Miao, Z.; Wang, Z.; Xu, Y.; Wu, J.; Liu, X.; You, Y.; Li, J. Overexpression of CRKL correlates with malignant cell proliferation in breast cancer. Tumour Biol. 2013, 34, 2891–2897. [Google Scholar] [CrossRef] [PubMed]
- Arnoys, E.J.; Wang, J.L. Dual localization: Proteins in extracellular and intracellular compartments. Acta Histochem. 2007, 109, 89–110. [Google Scholar] [CrossRef]
- Fish, E.N.; Uddin, S.; Korkmaz, M.; Majchrzak, B.; Druker, B.J.; Platanias, L.C. Activation of a CrkL-stat5 signaling complex by type I interferons. J. Biol. Chem. 1999, 274, 571–573. [Google Scholar] [CrossRef]
- Ozawa, M.G.; Cardo-Vila, M.; Mintz, P.J.; Arap, W.; Pasqualini, R. Cracking the code for compartment-specific dual functionality proteins in cancer: The case for CRKL. Cell Cycle 2010, 9, 8–9. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Lavasani, S.; Mackey, J.; Pritchard, K.; Clemons, M.; Dent, S.; Latreille, J.; Lemieux, J.; Provencher, L.; Verma, S.; et al. Optimizing the management of HER2-positive early breast cancer: The clinical reality. Curr. Oncol. 2010, 17, 20–33. [Google Scholar] [CrossRef]
- Yanagi, H.; Wang, L.; Nishihara, H.; Kimura, T.; Tanino, M.; Yanagi, T.; Fukuda, S.; Tanaka, S. CRKL plays a pivotal role in tumorigenesis of head and neck squamous cell carcinoma through the regulation of cell adhesion. Biochem. Biophys. Res. Commun. 2012, 418, 104–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chafik, A. The role of CRKL in breast cancer metastasis: Insights from systems biology. Syst. Synth. Biol. 2015, 9, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wang, H.; Yang, Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol. Lett. 2017, 13, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Jiao, Y.; Yang, Y.; Wang, Z.; Xuan, Q.; Liu, H.; Lu, S.; Wang, Z.; Liu, Y.; Li, S.; et al. CrkL regulates SDF-1-induced breast cancer biology through balancing Erk1/2 and PI3K/Akt pathways. Med. Oncol. 2015, 32, 411. [Google Scholar] [CrossRef] [PubMed]
- Daniele, A.; Divella, R.; Quaranta, M.; Mattioli, V.; Casamassima, P.; Paradiso, A.; Garrisi, V.M.; Gadaleta, C.D.; Gadaleta-Caldarola, G.; Savino, E.; et al. Clinical and prognostic role of circulating MMP-2 and its inhibitor TIMP-2 in HCC patients prior to and after trans-hepatic arterial chemo-embolization. Clin. Biochem. 2014, 47, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J. Serum tumor markers in breast cancer: Are they of clinical value? Clin. Chem. 2006, 52, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Feller, S.M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 2001, 20, 6348–6371. [Google Scholar] [CrossRef] [PubMed]
Clinical Parameters | Negative | Positive | p-value | ||
---|---|---|---|---|---|
n | % | n | % | ||
Age | |||||
<60 years (n = 51) | 10 | 19.6 | 41 | 80.4 | 0.86 |
>60 years (n = 43) | 9 | 20.9 | 34 | 79.1 | |
T stage | |||||
T1 (n = 43) | 7 | 16.2 | 36 | 83.8 | 0.001 |
T2 (n = 40) | 8 | 20 | 32 | 80 | |
T3 (n = 3) | 1 | 33.3 | 2 | 66.7 | |
T4 (n = 8) | 3 | 37.5 | 5 | 62.5 | |
Nodal involvement | |||||
Negative (n = 33) | 3 | 9 | 30 | 91 | 0.007 |
Positive (n = 45) | 11 | 24.4 | 34 | 75.6 | |
Metastatic involvement | |||||
Negative (n = 61) | 10 | 16.4 | 51 | 83.6 | 0.08 |
Positive (n = 33) | 9 | 27.3 | 24 | 72.7 | |
Tumor size | |||||
<2 cm (n = 44) | 7 | 15.9 | 37 | 84.1 | 0.22 |
>2 cm (n = 50) | 12 | 24 | 38 | 76 | |
Estrogen receptor (ER) | |||||
Negative (n = 28) | 4 | 14.8 | 23 | 85.2 | 0.27 |
Positive (n = 67) | 15 | 22.4 | 52 | 77.6 | |
Progesterone receptor (PR) | |||||
Negative (n = 46) | 7 | 15.2 | 39 | 84.8 | 0.11 |
Positive (n = 48) | 12 | 25 | 36 | 75 |
Age | Stage at Diagnosis | Current Staging | CCrkL in Serum (pg/mL) | ||
---|---|---|---|---|---|
T | N | M | |||
49 | T1b | N1a | M0 | 1 | 0 |
66 | T1a | N0 | MX | 1 | 3.31 |
66 | T1c | N(i−) | M0 | 1 | 6.94 |
56 | T2 | N0(i+) | M0 | 2 | 0 |
52 | T2a | N0 | M0 | 2 | 0.67 |
47 | T1c | N1 | N/A | 2 | 1.41 |
75 | T2 | N1 | M0 | 2 | 1.85 |
44 | T2 | N1 | M0 | 2 | 1.91 |
48 | T2 | N1 | M0 | 2 | 2.04 |
76 | T2 | N0 | M0 | 2 | 2.09 |
65 | T2 | N0 | M0 | 2 | 2.32 |
38 | T2 | N0 | M0 | 2 | 4.35 |
59 | T1c | N1 | MX | 2 | 4.36 |
50 | T2 | N0 | M0 | 2 | 5.03 |
55 | T2 | N/A | N/A | 2 | 5.94 |
69 | T2 | N1a | N/A | 2 | 6.51 |
63 | T2 | N2 | M0 | 3 | 0 |
41 | T3 | N1a | M0 | 3 | 0.04 |
49 | T4 | N3 | M0 | 3 | 4.13 |
47 | T2 | N2a | MX | 3 | 7.97 |
48 | T2 | N3 | M0 | 4 | 2.92 |
68 | T2 | N1 | M0 | 4 | 3.19 |
42 | TX | NX | M1 | 4 | 4.11 |
49 | N/A | N/A | N/A | 4 | 4.78 |
62 | N/A | N/A | N/A | 4 | 5.29 |
40 | T2 | N1 | M1 | 4 | 6.38 |
63 | T2 | N1 | M0 | 4 | 8.71 |
50 | T2 | N3a | N/A | 4 | 8.8 |
67 | T3 | NX | M1 | 4 | 8.86 |
42 | Normal donors | 0.83 | |||
53 | 1.03 | ||||
61 | 1.38 | ||||
47 | 1.72 | ||||
49 | 1.86 | ||||
39 | 3.50 | ||||
70 | 4.00 | ||||
51 | 5.09 | ||||
58 | 5.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasan, S.; Godin, B. Increased Soluble CrkL in Serum of Breast Cancer Patients Is Associated with Advanced Disease. Cancers 2019, 11, 961. https://doi.org/10.3390/cancers11070961
Srinivasan S, Godin B. Increased Soluble CrkL in Serum of Breast Cancer Patients Is Associated with Advanced Disease. Cancers. 2019; 11(7):961. https://doi.org/10.3390/cancers11070961
Chicago/Turabian StyleSrinivasan, Srimeenakshi, and Biana Godin. 2019. "Increased Soluble CrkL in Serum of Breast Cancer Patients Is Associated with Advanced Disease" Cancers 11, no. 7: 961. https://doi.org/10.3390/cancers11070961
APA StyleSrinivasan, S., & Godin, B. (2019). Increased Soluble CrkL in Serum of Breast Cancer Patients Is Associated with Advanced Disease. Cancers, 11(7), 961. https://doi.org/10.3390/cancers11070961