Sorafenib with Transarterial Chemoembolization Achieves Improved Survival vs. Sorafenib Alone in Advanced Hepatocellular Carcinoma: A Nationwide Population-Based Cohort Study
Abstract
:1. Introduction
2. Results
2.1. Demographics of the Two Groups after Propensity Score Matching (PSM)
2.2. Follow-Up and Survival Analysis Results
2.3. Subgroup Analysis
2.4. Major Complications Compared between Two Groups
2.5. Sensitivity Analysis of Survival Outcome
3. Discussion
4. Materials and Methods
4.1. Source of Data
4.2. Inclusion and Exclusion Criteria
4.3. Patient Accrual and Cohort Assembly
4.4. Propensity Score Matching
4.5. Outcome Measures
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Xiang, X.; Zhong, J.H.; Wang, Y.Y.; You, X.M.; Ma, L.; Xiang, B.D.; Li, L.Q. Distribution of tumor stage and initial treatment modality in patients with primary hepatocellular carcinoma. Clinical & translational oncology. Offic. Publ. Fed. Span. Oncol. Soc. Nat. Cancer Inst. Mex. 2017, 19, 891–897. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, Y.J.; Kim, D.Y.; Bae, S.H.; Paik, S.W.; Lee, Y.J.; Kim, H.Y.; Lee, H.C.; Han, S.Y.; Cheong, J.Y.; et al. Sorafenib with or without concurrent transarterial chemoembolization in patients with advanced hepatocellular carcinoma: A phase III STAH trial. J. Hepatol. 2018, 70, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Fox, R.; Ma, Y.T.; Ross, P.J.; James, M.W.; Sturgess, R.; Stubbs, C.; Stocken, D.D.; Wall, L.; Watkinson, A.; et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): A randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 565–575. [Google Scholar] [CrossRef]
- Hsiao, W.D.; Peng, C.Y.; Chuang, P.H.; Lai, H.C.; Cheng, K.S.; Chou, J.W.; Chen, Y.Y.; Yu, C.J.; Feng, C.L.; Su, W.P.; et al. Evaluation of dose-efficacy of sorafenib and effect of transarterial chemoembolization in hepatocellular carcinoma patients: A retrospective study. BMC Gastroenterol. 2016, 16, 50. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, J.F.; Gholam, P.M.; Goldenberg, A.; Mantry, P.; Martin, R.C.; Piperdi, B.; Zigmont, E.; Imperial, J.; Babajanyan, S.; Foreman, P.K.; et al. Use of transarterial chemoembolization (TACE) and Sorafenib in patients with unresectable hepatocellular carcinoma: US regional analysis of the GIDEON registry. Liver Cancer 2016, 5, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.P.; Reyes, D.K.; Pawlik, T.M.; Feng, A.L.; Kamel, I.R.; Geschwind, J.F. Open-label single-arm phase II trial of Sorafenib therapy with drug-eluting bead transarterial chemoembolization in patients with unresectable hepatocellular carcinoma: Clinical results. Radiology 2015, 277, 594–603. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, J.; Lai, L.; Meng, X.; Zhou, B.; Huang, W.; Cai, M.; Shan, H. Hepatocellular carcinoma with portal vein tumor thrombus: Treatment with transarterial chemoembolization combined with sorafenib--a retrospective controlled study. Radiology 2014, 272, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, W.J.; Guan, S.; Li, H.L.; Xu, R.C.; Wu, J.B.; Liu, J.S.; Li, H.P.; Bai, W.; Yin, Z.X.; et al. Sorafenib combined with transarterial chemoembolization for the treatment of advanced hepatocellular carcinoma: A large-scale multicenter study of 222 patients. Ann. Oncol. Offic. J. Eur. Soc. Med. Oncol. 2013, 24, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.H.; Shim, J.H.; Kim, M.J.; Ryu, M.H.; Ryoo, B.Y.; Kang, Y.K.; Shin, Y.M.; Kim, K.M.; Lim, Y.S.; Lee, H.C. Sorafenib alone versus sorafenib combined with transarterial chemoembolization for advanced-stage hepatocellular carcinoma: Results of propensity score analyses. Radiology 2013, 269, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Wang, Y.J.; Zhao, Y.; Qi, X.S.; Yin, Z.X.; He, C.Y.; Li, R.J.; Wu, K.C.; Xia, J.L.; Fan, D.M.; et al. Sorafenib in combination with transarterial chemoembolization improves the survival of patients with unresectable hepatocellular carcinoma: A propensity score matching study. J. Dig. Dis. 2013, 14, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, T.M.; Reyes, D.K.; Cosgrove, D.; Kamel, I.R.; Bhagat, N.; Geschwind, J.F. Phase II trial of sorafenib combined with concurrent transarterial chemoembolization with drug-eluting beads for hepatocellular carcinoma. J. Clin. Oncol. Offic. J. Am. Soc. Clin. Oncol. 2011, 29, 3960–3967. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, R.; Pannu, D.S.; Caridi, J.; Firpi, R.J.; Soldevila-Pico, C.; Morelli, G.; Clark, V.; Suman, A.; George, T.J., Jr.; Nelson, D.R. The combination of sorafenib with transarterial chemoembolisation for hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2011, 34, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Dufour, J.F.; Hoppe, H.; Heim, M.H.; Helbling, B.; Maurhofer, O.; Szucs-Farkas, Z.; Kickuth, R.; Borner, M.; Candinas, D.; Saar, B. Continuous administration of sorafenib in combination with transarterial chemoembolization in patients with hepatocellular carcinoma: Results of a phase I study. Oncologist 2010, 15, 1198–1204. [Google Scholar] [CrossRef]
- Geschwind, J.F.; Kudo, M.; Marrero, J.A.; Venook, A.P.; Chen, X.P.; Bronowicki, J.P.; Dagher, L.; Furuse, J.; Ladron de Guevara, L.; Papandreou, C.; et al. TACE treatment in patients with Sorafenib-treated unresectable hepatocellular carcinoma in clinical practice: Final analysis of GIDEON. Radiology 2016, 279, 630–640. [Google Scholar] [CrossRef]
- Zheng, L.; Guo, C.Y.; Chen, C.S.; Xiao, J.C.; Hu, H.T.; Cheng, H.T.; Zong, D.W.; Jiang, L.; Li, H.L. Sorafenib improves lipiodol deposition in transarterial chemoembolization of Chinese patients with hepatocellular carcinoma: A long-term, retrospective study. Oncotarget 2017, 8, 97613–97622. [Google Scholar] [CrossRef]
- Sherman, R.E.; Anderson, S.A.; Dal Pan, G.J.; Gray, G.W.; Gross, T.; Hunter, N.L.; LaVange, L.; Marinac-Dabic, D.; Marks, P.W.; Robb, M.A.; et al. Real-world evidence—What is it and what can it tell us? N. Engl. J. Med. 2016, 375, 2293–2297. [Google Scholar] [CrossRef]
- Yuan, H.; Ali, M.S.; Brouwer, E.S.; Girman, C.J.; Guo, J.J.; Lund, J.L.; Patorno, E.; Slaughter, J.L.; Wen, X.; Bennett, D. Real-world evidence: What it is and what it can tell us according to the international society for pharmacoepidemiology (ISPE) comparative effectiveness research (CER) special interest group (SIG). Clin. Pharmacol. Ther. 2018, 104, 239–241. [Google Scholar] [CrossRef] [PubMed]
- You, A.; Cao, M.; Guo, Z.; Zuo, B.; Gao, J.; Zhou, H.; Li, H.; Cui, Y.; Fang, F.; Zhang, W.; et al. Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse models. J. Hematol. Oncol. 2016, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Song, L.; Fan, N.; Feng, T.; Liu, L.; Yang, X.; Wang, M.; Li, Y.; Tian, Y.; Zhao, F.; et al. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway. Int. J. Oncol. 2017, 50, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Cao, M.; You, A.; Gao, J.; Zhou, H.; Li, H.; Cui, Y.; Fang, F.; Zhang, W.; Song, T.; et al. Metformin inhibits the prometastatic effect of sorafenib in hepatocellular carcinoma by upregulating the expression of TIP30. Cancer Sci. 2016, 107, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.H.; Park, J.W.; Kim, J.H.; An, M.; Kong, S.Y.; Nam, B.H.; Choi, J.I.; Kim, H.B.; Lee, W.J.; Kim, C.M. Association between increment of serum VEGF level and prognosis after transcatheter arterial chemoembolization in hepatocellular carcinoma patients. Cancer Sci. 2008, 99, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Sergio, A.; Cristofori, C.; Cardin, R.; Pivetta, G.; Ragazzi, R.; Baldan, A.; Girardi, L.; Cillo, U.; Burra, P.; Giacomin, A.; et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): The role of angiogenesis and invasiveness. Am. J. Gastroenterol. 2008, 103, 914–921. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (Lond. Engl.) 2017, 389, 56–66. [Google Scholar] [CrossRef]
- National Health Insurance Administration, Ministry of Health and Welfare, Taiwan, ROC. National Health Insurance Annual Report 2014-2015. National Health Insurance Administration; Ministry of Health and Welfare, Taiwan, Ed.; Taiwan Government: Taipei, Taiwan, 2014.
- Kok, V.C.; Horng, J.T.; Huang, J.L.; Yeh, K.W.; Gau, J.J.; Chang, C.W.; Zhuang, L.Z. Population-based cohort study on the risk of malignancy in East Asian children with juvenile idiopathic arthritis. BMC Cancer 2014, 14, 634. [Google Scholar] [CrossRef]
- Kok, V.C.; Sung, F.C.; Kao, C.H.; Lin, C.C.; Tseng, C.H. Cancer risk in East Asian patients associated with acquired haemolytic anaemia: A nationwide population-based cohort study. BMC Cancer 2016, 16, 57. [Google Scholar] [CrossRef]
- Kok, V.C.; Tsai, H.J.; Su, C.F.; Lee, C.K. The risks for ovarian, endometrial, breast, colorectal, and other cancers in women with newly diagnosed endometriosis or adenomyosis: A population-based study. Int. J. Gynecol. Cancer 2015, 25, 968–976. [Google Scholar] [CrossRef]
- Lee, C.C.; Su, Y.C.; Ho, H.C.; Hung, S.K.; Lee, M.S.; Chiou, W.Y.; Chou, P.; Huang, Y.S. Increased risk of ischemic stroke in young nasopharyngeal carcinoma patients. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e833–e838. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Welfare, Taiwan. Cancer Registry Annual Report, 2012 Taiwan; Ministry of Health: Taichung, Taiwan, 2015; pp. 1–663.
- Wu, C.Y.; Lin, J.T.; Ho, H.J.; Su, C.W.; Lee, T.Y.; Wang, S.Y.; Wu, C.; Wu, J.C. Association of nucleos(t)ide analogue therapy with reduced risk of hepatocellular carcinoma in patients with chronic hepatitis B: A nationwide cohort study. Gastroenterology 2014, 147, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.S.; Sawhney, R.; Monto, A.; Nanavati, S.; Davoren, J.B.; Aslam, R.; Corvera, C.U. Periprocedural complications by Child-Pugh class in patients undergoing transcatheter arterial embolization or chemoembolization to treat unresectable hepatocellular carcinoma at a VA medical center. Am. J. Surg. 2010, 200, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.I.; Wang, X.; Speicher, P.J.; Hwang, E.S.; Cheng, P.; Harpole, D.H.; Berry, M.F.; Schrag, D.; Pang, H.H. Reporting and guidelines in propensity score analysis: A systematic review of cancer and cancer surgical studies. J. Natl. Cancer Inst. 2017, 109, djw323. [Google Scholar] [CrossRef] [PubMed]
- Saegusa, T.; Di, C.; Chen, Y.Q. Hypothesis testing for an extended cox model with time-varying coefficients. Biometrics 2014, 70, 619–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantel, N.; Byar, D.P. Evaluation of response-time data involving transient states: An illustration using heart-transplant data. J. Am. Stat. Assoc. 1974, 69, 81–86. [Google Scholar] [CrossRef]
- Mi, X.; Hammill, B.G.; Curtis, L.H.; Greiner, M.A.; Setoguchi, S. Impact of immortal person-time and time scale in comparative effectiveness research for medical devices: A case for implantable cardioverter-defibrillators. J. Clin. Epidemiol. 2013, 66, S138–S144. [Google Scholar] [CrossRef] [PubMed]
- Weberpals, J.; Jansen, L.; van Herk-Sukel, M.P.P.; Kuiper, J.G.; Aarts, M.J.; Vissers, P.A.J.; Brenner, H. Immortal time bias in pharmacoepidemiological studies on cancer patient survival: Empirical illustration for beta-blocker use in four cancers with different prognosis. Eur. J. Epidemiol. 2017, 32, 1019–1031. [Google Scholar] [CrossRef]
Characteristics | Before Propensity-Score Matching | After Propensity-Score Matching | ||||||
---|---|---|---|---|---|---|---|---|
Without TACE (n = 3248; 88.4%) | With TACE (n = 426; 11.6%) | Standardized Mean Difference | p-Value | Without TACE (n = 1686; 79.8%) | With TACE (n = 426; 20.2%) | Standardized Mean Difference | p-Value | |
Age | ||||||||
Mean (Median) | 63.0 (63.1) | 59.3 (60.4) | −0.305 | 0.000 | 60.0 (60.0) | 59.3 (60.4) | −0.023 | 0.277 |
IQR | 55.2–72.5 | 50.7–68.7 | 51.8–67.8 | 50.7–68.7 | ||||
Gender, n (%) | ||||||||
Male | 2528 (77.8) | 355 (83.3) | 0.147 | 0.009 | 1410 (83.6) | 355 (83.3) | −0.013 | 0.883 |
Female | 720 (22.2) | 71 (16.7) | 276 (16.4) | 71 (16.7) | ||||
CCI, n (%) | ||||||||
0 | 53 (1.6) | 0 (0.0) | 0.395 | 0.000 | 3 (0.2) | 0 (0.0) | 0.007 | 0.682 |
1–2 | 413 (12.7) | 27 (6.3) | 105 (6.2) | 27 (6.3) | ||||
≥3 | 2782 (85.7) | 399 (93.7) | 1578 (93.6) | 399 (93.7) | ||||
Insurance premium category | ||||||||
Lowest | 429 (13.2) | 53 (12.4) | 0.003 | 0.357 | 194 (11.5) | 53 (12.4) | −0.015 | 0.320 |
Low | 1121 (34.5) | 146 (34.3) | 515 (30.5) | 146 (34.3) | ||||
Medium | 931 (28.7) | 122 (28.6) | 584 (34.6) | 122 (28.6) | ||||
High | 79 (2.4) | 16 (3.8) | 54 (3.2) | 16 (3.8) | ||||
Highest | 196 (6.0) | 33 (7.7) | 123 (7.3) | 33 (7.7) | ||||
Hospital status | ||||||||
Academic center | 2209 (68.0) | 321 (75.4) | 0.170 | 0.002 | 1268 (75.2) | 321 (75.4) | −0.03 | 0.951 |
Non-academic center | 1039 (32.0) | 105 (24.6) | 418 (24.8) | 105 (24.6) | ||||
Metastasis | ||||||||
Lymph nodes | 174 (5.4) | 29 (6.8) | 0.058 | 0.218 | 110 (6.5) | 29 (6.8) | 0.006 | 0.833 |
Lungs | 599 (18.4) | 90 (21.1) | 0.066 | 0.182 | 340 (20.2) | 90 (21.1) | 0.019 | 0.660 |
Adrenal gland | 59 (1.8) | 9 (2.1) | 0.021 | 0.670 | 37 (2.2) | 9 (2.1) | −0.004 | 0.918 |
Bone | 341 (10.5) | 55 (12.9) | 0.072 | 0.131 | 211 (12.5) | 55 (12.9) | 0.003 | 0.826 |
Peritoneum | 82 (2.5) | 14 (3.3) | 0.043 | 0.354 | 55 (3.3) | 14 (3.3) | −0.016 | 0.980 |
Type 2 diabetes | ||||||||
Yes | 534 (16.4) | 84 (19.7) | 0.082 | 0.089 | 332 (19.7) | 84 (19.7) | −0.002 | 0.990 |
No | 2909 (84.4) | 350 (80.6) | 1354 (80.3) | 342 (80.3) | ||||
Metformin use | ||||||||
Yes | 407 (12.5) | 60 (14.1) | 0.045 | 0.365 | 239 (14.2) | 60 (14.1) | −0.006 | 0.962 |
No | 3034 (88.1) | 374 (86.2) | 1447 (85.8) | 366 (85.9) | ||||
Alcoholic liver disease | ||||||||
Yes | 128 (3.9) | 26 (6.1) | 0.090 | 0.036 | 97 (5.8) | 26 (6.0) | 0.005 | 0.783 |
No | 3120 (96.1) | 400 (93.9) | 1589 (94.2) | 400 (93.9) | ||||
Chronic kidney disease | ||||||||
Yes | 109 (3.4) | 12 (2.8) | −0.033 | 0.558 | 45 (2.7) | 12 (2.8) | 0.011 | 0.866 |
No | 3139 (96.6) | 414 (97.2) | 1641 (97.3) | 414 (97.2) |
Outcome Measures | Sorafenib + TACE n = 426 | Sorafenib Alone n = 1686 | Hazard Ratio (95% Confidence Interval, CI) | p-Value |
---|---|---|---|---|
Median follow-up (Quartile) days | 221 (140–345) | 133 (68–251) | - | - |
Outcome N (%) Deaths | 164 (38.5) | 916 (54.3) | - | 0.000 |
Median overall survival (OS) in days (95% CI) | 381 (327–435) | 204 (188–221) | 0.74 * (0.63–0.88) | 0.021 |
Median overall survival (OS) in months (95% CI) | 12.5 (10.8–14.3) | 6.7 (6.2–7.3) | ||
6-month OS | 80.3% | 54.4% | - | - |
1-year OS | 53.5% | 32.4% | - | - |
Median time (days) to sorafenib discontinuation (95% CI) | 144 (127–161) | 86 (80–92) | 0.76 (0.65–0.89) | 0.001 |
Median time (mo.) to sorafenib discontinuation (95% CI) | 4.7 (4.2–5.3) | 2.8 (2.6–3.0) |
Major Event | Sorafenib + TACE Event(s) (SD) | Sorafenib Alone Event(s) (SD) | Odds Ratio † (95% CI) | p-Value |
---|---|---|---|---|
Rupture of hepatocellular carcinoma | 9 (2.1) | 34 (2.0) | 1.05 (0.50–2.20) | 0.900 |
Spontaneous bacterial peritonitis | 11 (2.6) | 76 (4.5) | 0.56 (0.30–1.07) | 0.74 |
Esophageal variceal hemorrhage | 9 (2.1) | 28 (1.7) | 1.28 (0.60–2.73) | 0.525 |
Hepatic encephalopathy | 48 (11.3) | 251 (14.9) | 0.73 (0.52–1.01) | 0.056 |
Hepatic failure | 7 (1.6) | 12 (0.7) | 2.33 (0.91–5.96) | 0.069 |
Disseminated intravascular coagulopathy | 1 (0.2) | 4 (0.2) | 0.99 (0.11–8.88) | 0.992 |
Measures | Sorafenib Alone n = 1686 (Reference) | Sorafenib + TACE × 1 n = 293 | Sorafenib + TACE ≥ 2 n = 133 | ||
---|---|---|---|---|---|
Median follow-up (Quartile) days | 133 (68–251) | 196 (117–303) | 313 (195–420) | ||
Outcome N (%) Deaths | 916 (54.3) | 125 (42.7) | 39 (29.3) | ||
Median overall survival in days (95% CI) | 204 (188–221) | 315 (292–338) | Adjusted HR * = 0.97 (95% CI, 0.80–1.18) | NR | Adjusted HR * = 0.41 (95% CI, 0.29–0.56) |
Median overall survival in months (95% CI) | 6.7 (6.2–7.3) | 10.4 (9.6–11.1) | NR |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kok, V.C.; Chen, Y.-C.; Chen, Y.-Y.; Su, Y.-C.; Ku, M.-C.; Kuo, J.-T.; Yoshida, G.J. Sorafenib with Transarterial Chemoembolization Achieves Improved Survival vs. Sorafenib Alone in Advanced Hepatocellular Carcinoma: A Nationwide Population-Based Cohort Study. Cancers 2019, 11, 985. https://doi.org/10.3390/cancers11070985
Kok VC, Chen Y-C, Chen Y-Y, Su Y-C, Ku M-C, Kuo J-T, Yoshida GJ. Sorafenib with Transarterial Chemoembolization Achieves Improved Survival vs. Sorafenib Alone in Advanced Hepatocellular Carcinoma: A Nationwide Population-Based Cohort Study. Cancers. 2019; 11(7):985. https://doi.org/10.3390/cancers11070985
Chicago/Turabian StyleKok, Victor C., Yu-Ching Chen, Yang-Yuan Chen, Yu-Chieh Su, Ming-Chang Ku, Jung-Tsung Kuo, and Go J. Yoshida. 2019. "Sorafenib with Transarterial Chemoembolization Achieves Improved Survival vs. Sorafenib Alone in Advanced Hepatocellular Carcinoma: A Nationwide Population-Based Cohort Study" Cancers 11, no. 7: 985. https://doi.org/10.3390/cancers11070985
APA StyleKok, V. C., Chen, Y. -C., Chen, Y. -Y., Su, Y. -C., Ku, M. -C., Kuo, J. -T., & Yoshida, G. J. (2019). Sorafenib with Transarterial Chemoembolization Achieves Improved Survival vs. Sorafenib Alone in Advanced Hepatocellular Carcinoma: A Nationwide Population-Based Cohort Study. Cancers, 11(7), 985. https://doi.org/10.3390/cancers11070985