Screening for Early Gastric Cancer Using a Noninvasive Urine Metabolomics Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Subject Characteristics
2.2. Study Design
2.3. Discrimination between Urine Samples from Healthy Subjects and Patients with GC Using NMR Spectra
2.4. Analysis of Contributing Metabolites Using Statistical Total Correlation Spectroscopy (S-TOCSY)
2.5. Diagnostic Performance: Validation of the Prediction Model
2.6. Relationship between Urine Metabolites and Gene Expression in Cancer Tissues
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Serum Assays of CEA, CA 19-9, and CA 72-4
4.3. Urine Sample Collection and Preparation
4.4. NMR Data Acquisition and Determination of Metabolic Profiles
4.5. Microarray Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duraes, C.; Almeida, G.M.; Seruca, R.; Oliveira, C.; Carneiro, F. Biomarkers for gastric cancer: Prognostic, predictive or targets of therapy? Virchows Arch. 2014, 464, 367–378. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 2005, 5, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Hallissey, M.T.; Allum, W.H.; Jewkes, A.J.; Ellis, D.J.; Fielding, J.W. Early detection of gastric cancer. BMJ 1990, 301, 513–515. [Google Scholar] [CrossRef] [Green Version]
- Ono, H. Early gastric cancer: Diagnosis, pathology, treatment techniques and treatment outcomes. Eur. J. Gastroenterol. Hepatol. 2006, 18, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, M.; Fukuhara, S.; Karpeh, M.; Brower, S. Evidence-based review of the management of early gastric cancer. Gastroenterol. Rep. Oxf. 2013, 1, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Pyo, J.H.; Lee, H.; Min, B.H.; Lee, J.H.; Choi, M.G.; Lee, J.H.; Choi, M.G.; Lee, J.H.; Sohn, T.S.; Bae, J.M.; et al. Long-Term Outcome of Endoscopic Resection vs. Surgery for Early Gastric Cancer: A Non-inferiority-Matched Cohort Study. Am. J. Gastroenterol. 2016, 111, 240–249. [Google Scholar] [CrossRef]
- Yao, K.; Anagnostopoulos, G.K.; Ragunath, K. Magnifying endoscopy for diagnosing and delineating early gastric cancer. Endoscopy 2009, 41, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Ono, H.; Hasuike, N.; Takizawa, K. Endoscopic submucosal dissection of early gastric cancer. Digestion 2008, 77, 23–28. [Google Scholar] [CrossRef]
- Layke, J.C.; Lopez, P.P. Gastric cancer: Diagnosis and treatment options. Am. Fam. Physician 2004, 69, 1133–1140. [Google Scholar]
- Tajiri, H.; Doi, T.; Endo, H.; Nishina, T.; Terao, T.; Hyodo, I.; Matsuda, K.; Yagi, K. Routine endoscopy using a magnifying endoscope for gastric cancer diagnosis. Endoscopy 2002, 34, 772–777. [Google Scholar] [CrossRef]
- Okines, A.; Verheij, M.; Allum, W.; Cunningham, D.; Cervantes, A. Group EGW. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2010, 21, v50–v54. [Google Scholar] [CrossRef] [PubMed]
- Kaise, M.; Ohkura, Y.; Iizuka, T.; Kimura, R.; Nomura, K.; Kuribayashi, Y.; Yamada, A.; Yamashita, S.; Furuhata, T.; Kikuchi, D.; et al. Endocytoscopy is a promising modality with high diagnostic accuracy for gastric cancer. Endoscopy 2015, 47, 19–25. [Google Scholar] [CrossRef]
- Kim, G.H. Is Endoscopic Grading of Atrophic Gastritis Useful for Predicting the Risk of Gastric Cancer? Korean J. Helicobacter Gastrointest. Res. 2019, 19, 209–210. [Google Scholar] [CrossRef] [Green Version]
- Guadagni, F.; Roselli, M.; Amato, T.; Cosimelli, M.; Perri, P.; Casale, V.; Carlini, M.; Santoro, E.; Cavaliere, R.; Greiner John, W.; et al. CA 72-4 measurement of tumor-associated glycoprotein 72 (TAG-72) as a serum marker in the management of gastric carcinoma. Cancer Res. 1992, 52, 1222–1227. [Google Scholar] [PubMed]
- Ishigami, S.; Natsugoe, S.; Hokita, S.; Che, X.; Tokuda, K.; Nakajo, A.; Iwashige, H.T.; Tokushige, M.; Watanabe, T.; Takao, S.; et al. Clinical importance of preoperative carcinoembryonic antigen and carbohydrate antigen 19-9 levels in gastric cancer. J. Clin. Gastroenterol. 2001, 32, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Lai, I.R.; Lee, W.J.; Huang, M.T.; Lin, H.H. Comparison of serum CA72-4, CEA, TPA, CA19-9 and CA125 levels in gastric cancer patients and correlation with recurrence. Hepato Gastroenterol. 2002, 49, 1157–1160. [Google Scholar]
- Wobbes, T.; Thomas, C.M.; Segers, M.F.; Nagengast, F.M. Evaluation of seven tumor markers (CA 50, CA 19-9, CA 19-9 TruQuant, CA 72-4, CA 195, carcinoembryonic antigen, and tissue polypeptide antigen) in the pretreatment sera of patients with gastric carcinoma. Cancer 1992, 69, 2036–2041. [Google Scholar] [CrossRef]
- Carpelan-Holmstrom, M.; Louhimo, J.; Stenman, U.H.; Alfthan, H.; Haglund, C. CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers. Anticancer Res. 2002, 22, 2311–2316. [Google Scholar]
- Kodera, Y.; Isobe, K.; Yamauchi, M.; Satta, T.; Hasegawa, T.; Oikawa, S.; Kondoh, K.; Akiyama, S.; Itoh, K.; Nakashima, I.; et al. Expression of carcinoembryonic antigen (CEA) and nonspecific crossreacting antigen (NCA) in gastrointestinal cancer; the correlation with degree of differentiation. Br. J. Cancer 1993, 68, 130–136. [Google Scholar] [CrossRef]
- Ucar, E.; Semerci, E.; Ustun, H.; Yetim, T.; Huzmeli, C.; Gullu, M. Prognostic value of preoperative CEA, CA 199–, CA 724–, and AFP levels in gastric cancer. Adv. Ther. 2008, 25, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.P.; Liu, J.; Lei, H.Y.; Zhang, Q.W.; Zhao, L.; Yang, G.H. CA72-4 combined with CEA, CA125 and CAl9-9 improves the sensitivity for the early diagnosis of gastric cancer. Clin. Chim. Acta 2014, 437, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhang, C.; Gan, L.; Jia, Y.; Xiong, Y.; Chen, Y.; Wang, Z.; Wang, L.; Luo, H.; Li, J.; et al. iTRAQ-Based Quantitative Proteomics Approach Identifies Novel Diagnostic Biomarkers That Were Essential for Glutamine Metabolism and Redox Homeostasis for Gastric Cancer. Proteom. Clin. Appl. 2018, 13, 1800038. [Google Scholar] [CrossRef] [PubMed]
- Simonian, M.; Mosallayi, M.; Mirzaei, H. Circulating miR-21 as novel biomarker in gastric cancer: Diagnostic and prognostic biomarker. J. Cancer Res. Ther. 2018, 14, 475. [Google Scholar] [PubMed]
- Jin, X.; Yun, S.J.; Jeong, P.; Kim, I.Y.; Kim, W.J.; Park, S. Diagnosis of bladder cancer and prediction of survival by urinary metabolomics. Oncotarget 2014, 5, 1635–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, H.; Yoo, S.S.; Kang, J.; Kim, H.G.; Park, J.S.; Jeong, S.; Lee, J.I.; Kwon, H.N.; Kang, S.; Lee, D.; et al. A new NMR-based metabolomics approach for the diagnosis of biliary tract cancer. J. Hepatol. 2010, 52, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Carrola, J.; Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J. Proteome Res. 2011, 10, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Aronov, P.; Zakharkin, S.O.; Anderson, D.; Perroud, B.; Thompson, I.M.; Weiss, R.H. Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol. Cell Proteom. 2009, 8, 558–570. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Cai, G.; Su, M.; Chen, T.; Liu, Y.; Xu, Y.; Ni, Y.; Zhao, A.; Cai, S.; Xu, L.X.; et al. Urinary metabonomic study on colorectal cancer. J. Proteome Res. 2010, 9, 1627–1634. [Google Scholar] [CrossRef]
- Chen, J.L.; Fan, J.; Lu, X.J. CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis 2014, 35, 1032–1039. [Google Scholar] [CrossRef]
- Jung, J.; Jung, Y.; Bang, E.J.; Cho, S.I.; Jang, Y.J.; Kwak, J.M.; Park, S.; Hwang, G.S. Noninvasive Diagnosis and Evaluation of Curative Surgery for Gastric Cancer by Using NMR-based Metabolomic Profiling. Ann. Surg. Oncol. 2014, 21, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Wang, C.; Li, B. Metabolomic Analysis Using Liquid Chromatography/Mass Spectrometry for Gastric Cancer. Appl. Biochem. Biotechnol. 2015, 176, 2170–2184. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.; Mercier, P.; Schiller, D.; Bailey, R.; Robbins, S.; Eurich, D.T.; Dean, T.; Sawyer, M.B.; Broadhurst, D. 1H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. Br. J. Cancer 2015, 114, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ren, H.; Jiang, Y.; Gao, Y.; Liu, S. Urinary metabonomics of stomach cancer assessed by rapid resolution liquid chromatography/time-of-fight mass spectrometry. Chin. Med. J. 2012, 126, 1930–1933. [Google Scholar]
- Kim, E.R.; Kwon, H.N.; Nam, H.; Kim, J.J.; Park, S.; Kim, Y.H. Urine-NMR metabolomics for screening of advanced colorectal adenoma and early stage colorectal cancer. Sci. Rep. 2019, 9, 4786. [Google Scholar] [CrossRef]
- Bylesjo, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemometr. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.; et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009, 69, 4918–4925. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Leung, S.Y.; Yuen, S.T.; Chu, K.M.; Ji, J.; Li, R.; Chan, A.S.Y.; Law, S.; Troyanskaya, O.G.; Wong, J.; et al. Variation in gene expression patterns in human gastric cancers. Mol. Biol. Cell 2003, 14, 3208–3215. [Google Scholar] [CrossRef] [Green Version]
- Karnovsky, A.; Weymouth, T.; Hull, T.; Tarcea, V.G.; Scardoni, G.; Laudanna, C.; Sartor, M.A.; Stringer, K.A.; Jagadish, H.V.; Burant, C.; et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 2012, 28, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Sperandio, N.; Lawlor, R.T.; Scarpa, A.; Molinari, H.; Assfalg, M. Urine metabolic signature of pancreatic ductal adenocarcinoma by (1)h nuclear magnetic resonance: Identification, mapping, and evolution. J. Proteome Res. 2012, 11, 1274–1283. [Google Scholar] [CrossRef]
- Slupsky, C.M.; Steed, H.; Wells, T.H.; Dabbs, K.; Schepansky, A.; Capstick, V.; Faught, W.; Sawyer, M.B. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin. Cancer Res. 2010, 16, 5835–5841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasim, A.; Ma, H.; Mamtimin, B.; Abudula, A.; Niyaz, M.; Zhang, L.W.; Anwer, J.; Sheyhidin, I. Revealing the metabonomic variation of EC using (1)H-NMR spectroscopy and its association with the clinicopathological characteristics. Mol. Biol. Rep. 2012, 39, 8955–8964. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wang, L.; Liu, H.L.; Wu, X.B.; Wang, H.S.; Liu, Z.H.; Li, Y.; Diao, D.; Chen, H.; Peng, J. Tissue metabolomic fingerprinting reveals metabolic disorders associated with human gastric cancer morbidity. Oncol. Rep. 2011, 26, 431–438. [Google Scholar]
- Wu, H.; Xue, R.; Tang, Z.; Deng, C.; Liu, T.; Zeng, H.; Sun, Y.; Shen, X. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal. Bioanal. Chem. 2010, 396, 1385–1395. [Google Scholar] [CrossRef]
- Yang, T.; Luo, P.; Li, Y.; Hua, R.; Yin, P.; Xu, G. [A serum metabolomics study of gastric cancer based on pseudotargeted liquid chromatography-mass spectrometry approach]. Se Pu Chin. J. Chromatogr. 2014, 32, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, R.; Major, P.; Snieder, H.; Spector, T. Serum creatinine and fat-free mass (lean body mass). Clin. Chem. 2000, 46, 1695–1696. [Google Scholar] [CrossRef] [Green Version]
- Brindle, J.T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.K.; Bethell, H.W.L.; Clarke, S.; Schofield, P.M.; McKilligin, E.; Mosedale, D.E.; et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 2002, 8, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
- Davis, V.W.; Schiller, D.E.; Eurich, D.; Sawyer, M.B. Urinary metabolomic signature of esophageal cancer and Barrett’s esophagus. World J. Surg. Oncol. 2012, 10, 271. [Google Scholar] [CrossRef] [Green Version]
- Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; et al. Mutational landscape and significance across 12 major cancer types. Nature 2013, 502, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Abbassi-Ghadi, N.; Kumar, S.; Huang, J.; Goldin, R.; Takats, Z.; Hanna, G.B. Metabolomic profiling of oesophago-gastric cancer: A systematic review. Eur. J. Cancer 2013, 49, 3625–3637. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.B.; Yang, J.Y.; Kwack, S.J.; Park, K.L.; Kim, H.S.; Ryu, D.H.; Kim, Y.; Hwang, G.; Lee, B.M. Toxicometabolomics of urinary biomarkers for human gastric cancer in a mouse model. J. Toxicol. Environ. Health Part A 2010, 73, 1420–1430. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Jung, H.C. The role of serum pepsinogen in the detection of gastric cancer. Gut Liver 2010, 4, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Emwas, A.-H.; Saccenti, E.; Gao, X.; McKay, R.T.; dos Santos, V.A.M.; Roy, R.; Wishart, D.S. Recommended strategies for spectral processing and post-processing of 1D 1 H-NMR data of biofluids with a particular focus on urine. Metabolomics 2018, 14, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Choi, M.-Y.; Kang, S.; Kwon, H.N.; Wen, H.; Lee, C.H.; Park, M.; Wiklund, S.; Kim, H.J.; Kwon, S.W.; et al. Application of a 1H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. J. Agric. Food Chem. 2008, 56, 11589–11595. [Google Scholar] [CrossRef] [PubMed]
Variables | Whole Training Set | Whole Validation Set | ||||
---|---|---|---|---|---|---|
Gastric Cancer (n = 69) | Control (n = 67) | p-Value | Gastric Cancer (n = 34) | Control (n = 33) | p-Value | |
Age (years), mean (SD) | 53.3 ± 11.1 | 54.9 ± 11.8 | 0.447 | 54.1 ± 9.1 | 55.4 ± 10.2 | 0.519 |
Gender, male (%) | 68.1 | 71.6 | 0.654 | 58.8 | 66.7 | 0.507 |
BMI, mean (SD) | 22.7 ± 3.2 | 23.1 ± 4.2 | 0.528 | 22.1 ± 3.9 | 22.8 ± 5.5 | 0.621 |
Helicobacter pylori infection, n (%) | ||||||
Infected | 22 (31.9) | 22 (32.8) | 0.716 | 13 (38.2) | 11 (33.3) | 0.897 |
Uninfected | 15 (21.7) | 18 (26.9) | 7 (20.6) | 8 (24.2) | ||
Not examined | 32 (46.4) | 27 (40.3) | 14 (41.2) | 14 (42.4) | ||
Smoker, n (%) | ||||||
Current smoker | 16 (23.2) | 15 (22.4) | 0.956 | 6 (17.6) | 7 (21.2) | 0.506 |
Past smoker | 15 (21.7) | 16 (23.9) | 5 (14.7) | 8 (24.2) | ||
Nonsmoker | 38 (55.1) | 36 (53.7) | 23 (67.6) | 18 (54.5) | ||
Alcoholics, n (%) | ||||||
Heavy alcoholics | 12 (17.4) | 10 (14.9) | 0.696 | 6 (17.6) | 5 (15.2) | 0.783 |
Social drinker | 57 (82.6) | 57 (85.1) | 28 (82.4) | 28 (84.8) | ||
Laboratory finding | ||||||
Fasting blood glucose (mg/dL) | 102 ± 6 | 100 ± 11 | 0.767 | 103 ± 8 | 102 ± 2 | 0.551 |
Total cholesterol (mg/dL) | 161 ± 22 | 156 ± 32 | 0.614 | 162 ± 11 | 151 ± 17 | 0.324 |
AST (U/L) | 27 ± 9 | 26 ± 2 | 0.522 | 26 ± 8 | 28 ± 8 | 0.483 |
ALT (U/L) | 19 ± 3 | 20 ± 4 | 0.559 | 17 ± 18 | 21 ± 3 | 0.427 |
ALP (U/L) | 74 ± 15 | 70 ± 12 | 0.311 | 73 ± 9 | 72 ± 2 | 0.652 |
Total bilirubin (mg/dL) | 0.7 ± 0.6 | 0.5 ± 0.3 | 0.682 | 0.8 ± 0.1 | 0.6 ± 0.4 | 0.531 |
BUN (mg/dL) | 14.1 ± 3.1 | 13.5 ± 3.7 | 0.747 | 14.3 ± 2.6 | 13.1 ± 5.9 | 0.829 |
Creatinine (mg/dL) | 1.07 ± 0.8 | 0.97 ± 0.4 | 0.299 | 1.09 ± 0.5 | 0.98 ± 0.9 | 0.185 |
Uric acid (mg/dL) | 5.2 ± 1.6 | 5.0 ± 1.5 | 0.688 | 4.9 ± 1.9 | 4.9 ± 2.1 | 0.759 |
Blood pressure | ||||||
Systolic | 130 ± 16 | 126 ± 15 | 0.738 | 126 ± 19 | 123 ± 21 | 0.717 |
Diastolic | 73 ± 12 | 74 ± 7 | 0.580 | 75 ± 18 | 72 ± 15 | 0.392 |
TNM stage a | - | - | - | - | ||
I (IA/IB) | 46 (37/9) | 23 (19/4) | ||||
II (IIA/IIB) | 7 (5/2) | 3 (2/1) | ||||
III | 10 | 5 | ||||
IV | 6 | 3 | ||||
Presence of lymph node metastasis, n (%) | 15 (21.7) | - | - | 7 (20.6) | - | - |
Histologic diagnosis, n (%) | - | - | - | - | ||
Differentiated | 37 (53.6) | 18 (52.9) | ||||
Undifferentiated | 32 (46.4) | 16 (47.1) | ||||
Epstein–Barr virus positivity, n (%) | 8 (11.6) | 4 (11.8) | ||||
Serum tumor marker (>cutoff value/total) | - | - | ||||
CA 19-9 b | 3 (4.3) | 1 (1.5) | 0.324 | 1 (2.9) | 0 | 0.321 |
CEA c | 2 (2.9) | 1 (1.5) | 0.577 | 0 | 0 | - |
CA 72-4 d | 6 (8.7) | 2 (3.0) | 0.157 | 2 (5.9) | 1 (3.0) | 0.573 |
No. | Metabolites | Chemical Shift (ppm) | p-Value | Changes (GC over Controls) | ROC Analysis | ||
---|---|---|---|---|---|---|---|
AUC | Sensitivity (%) | Specificity (%) | |||||
1 | Alanine | 1.49(d), | 1.18 × 10−4 | ▲ | 0.748 | 70 | 80 |
2 | Citrate | 2.54(d), 2.68(d) | 1.60 × 10−4 | ▲ | 0.632 | 50 | 70 |
3 | Creatine | 3.04(s) | 1.90 × 10−9 | ▲ | 0.863 | 80 | 90 |
4 | Creatinine | 3.05(s), 4.07(s) | 3.27 × 10−5 | ▽ | 0.723 | 60 | 80 |
5 | Glycerol | 3.57(m), 3.66(m), 3.78(m), | 7.51 × 10−19 | ▽ | 0.936 | 90 | 90 |
6 | Hippurate | 3.98(d), 7.55(t), 7.64(t), 7.83(m) | 1.75 × 10−6 | ▲ | 0.74 | 70 | 70 |
7 | Phenylalanine | 7.32(m), 7.38(m), 7.42(m) | 1.13 × 10−8 | ▲ | 0.802 | 80 | 70 |
8 | Taurine | 3.27(t), 3.43(t) | 1.90 × 10−6 | ▲ | 0.759 | 80 | 70 |
9 | 3-hydroxybutyrate | 1.21(d) | 4.61 × 10−4 | ▽ | 0.706 | 60 | 70 |
Variable | Metabolomics | Serum Markers | |||||
---|---|---|---|---|---|---|---|
All Stages | Stage I + II | Stage I (IA + IB) | Stage IA | CEA | CA 19-9 | CA 72-4 | |
Sensitivity (%) | 93.9 | 90.9 | 97.0 | 97.0 | 1.9 | 3.9 | 7.8 |
Specificity (%) | 94.1 | 92.3 | 95.7 | 94.7 | 99.0 | 99.0 | 97.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, H.N.; Lee, H.; Park, J.W.; Kim, Y.-H.; Park, S.; Kim, J.J. Screening for Early Gastric Cancer Using a Noninvasive Urine Metabolomics Approach. Cancers 2020, 12, 2904. https://doi.org/10.3390/cancers12102904
Kwon HN, Lee H, Park JW, Kim Y-H, Park S, Kim JJ. Screening for Early Gastric Cancer Using a Noninvasive Urine Metabolomics Approach. Cancers. 2020; 12(10):2904. https://doi.org/10.3390/cancers12102904
Chicago/Turabian StyleKwon, Hyuk Nam, Hyuk Lee, Ji Won Park, Young-Ho Kim, Sunghyouk Park, and Jae J. Kim. 2020. "Screening for Early Gastric Cancer Using a Noninvasive Urine Metabolomics Approach" Cancers 12, no. 10: 2904. https://doi.org/10.3390/cancers12102904
APA StyleKwon, H. N., Lee, H., Park, J. W., Kim, Y. -H., Park, S., & Kim, J. J. (2020). Screening for Early Gastric Cancer Using a Noninvasive Urine Metabolomics Approach. Cancers, 12(10), 2904. https://doi.org/10.3390/cancers12102904